Financial Modeling in Corporate Strategy: A Review of AI Applications For Investment Optimization
Downloads
This review paper examines the integration of artificial intelligence (AI) into financial modeling and its implications for corporate strategy, with a particular focus on investment optimization. It explores various AI techniques, including machine learning, neural networks, and deep learning, and their transformative impact on traditional financial modeling practices. Key findings highlight the enhanced predictive accuracy, improved risk management, and personalized financial services that AI can provide. However, the integration of AI also poses significant challenges, such as data quality issues, algorithmic bias, and regulatory uncertainty. The review identifies critical opportunities for organizations to leverage AI-driven insights while addressing ethical considerations and promoting transparency. Ultimately, the paper underscores the importance of adopting AI in financial modeling to gain a competitive advantage in an increasingly data-driven financial landscape, while also advocating for responsible practices in AI deployment.
Ajegbile, M. D., Olaboye, J. A., Maha, C. C., Igwama, G. T., & Abdul, S. (2024). Health Informatics and Public Health: Leveraging Technology for Improved Health Outcomes. Health, 20(8), 229-235.
Behera, J., Pasayat, A. K., Behera, H., & Kumar, P. (2023). Prediction based mean-value-at-risk portfolio optimization using machine learning regression algorithms for multi-national stock markets. Engineering Applications of Artificial Intelligence, 120, 105843.
Bhuiyan, M. S. (2024). The role of AI-Enhanced personalization in customer experiences. Journal of Computer Science and Technology Studies, 6(1), 162-169.
Buckley, R. P., Zetzsche, D. A., Arner, D. W., & Tang, B. W. (2021). Regulating artificial intelligence in finance: Putting the human in the loop. Sydney Law Review, The, 43(1), 43-81.
Chhajer, P., Shah, M., & Kshirsagar, A. (2022). The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction. Decision Analytics Journal, 2, 100015.
Davenport, T. H., & Mittal, N. (2023). All-in on AI: How smart companies win big with artificial intelligence: Harvard Business Press.
de Bruijn, H., Warnier, M., & Janssen, M. (2022). The perils and pitfalls of explainable AI: Strategies for explaining algorithmic decision-making. Government information quarterly, 39(2), 101666.
Durán, J. M., & Jongsma, K. R. (2021). Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI. Journal of Medical Ethics, 47(5), 329-335.
Enahoro, Q. E., Ogugua, J. O., Anyanwu, E. C., Akomolafe, O., Odilibe, I. P., & Daraojimba, A. I. (2024). The impact of electronic health records on healthcare delivery and patient outcomes: A review. World Journal of Advanced Research and Reviews, 21(2), 451-460.
Ganesh, A. D., & Kalpana, P. (2022). Future of artificial intelligence and its influence on supply chain risk management–A systematic review. Computers & Industrial Engineering, 169, 108206.
Jacobides, M. G., Brusoni, S., & Candelon, F. (2021). The evolutionary dynamics of the artificial intelligence ecosystem. Strategy Science, 6(4), 412-435.
Jansen, S. (2020). Machine Learning for Algorithmic Trading: Predictive models to extract signals from market and alternative data for systematic trading strategies with Python: Packt Publishing Ltd.
Jing, N., Wu, Z., & Wang, H. (2021). A hybrid model integrating deep learning with investor sentiment analysis for stock price prediction. Expert Systems with Applications, 178, 115019.
Jogunola, O., Adebisi, B., Ikpehai, A., Popoola, S. I., Gui, G., Gačanin, H., & Ci, S. (2020). Consensus algorithms and deep reinforcement learning in energy market: A review. IEEE Internet of Things Journal, 8(6), 4211-4227.
Kamalov, F., Gurrib, I., & Rajab, K. (2021). Financial forecasting with machine learning: price vs return. Kamalov, F., Gurrib, I. & Rajab, K.(2021). Financial Forecasting with Machine Learning: Price Vs Return. Journal of Computer Science, 17(3), 251-264.
Kang, Y., Cai, Z., Tan, C.-W., Huang, Q., & Liu, H. (2020). Natural language processing (NLP) in management research: A literature review. Journal of Management Analytics, 7(2), 139-172.
Khalil, F., & Pipa, G. (2022). Is deep-learning and natural language processing transcending the financial forecasting? Investigation through lens of news analytic process. Computational Economics, 60(1), 147-171.
Kurani, A., Doshi, P., Vakharia, A., & Shah, M. (2023). A comprehensive comparative study of artificial neural network (ANN) and support vector machines (SVM) on stock forecasting. Annals of Data Science, 10(1), 183-208.
Leković, M. (2021). Historical development of portfolio theory. Tehnika.
Liang, W., Tadesse, G. A., Ho, D., Fei-Fei, L., Zaharia, M., Zhang, C., & Zou, J. (2022). Advances, challenges and opportunities in creating data for trustworthy AI. Nature Machine Intelligence, 4(8), 669-677.
Lo, A. W. (2004). The adaptive markets hypothesis: Market efficiency from an evolutionary perspective. Journal of Portfolio Management, Forthcoming.
Machireddy, J. R., Rachakatla, S. K., & Ravichandran, P. (2021). AI-Driven Business Analytics for Financial Forecasting: Integrating Data Warehousing with Predictive Models. Journal of Machine Learning in Pharmaceutical Research, 1(2), 1-24.
Mariani, M. M., Machado, I., Magrelli, V., & Dwivedi, Y. K. (2023). Artificial intelligence in innovation research: A systematic review, conceptual framework, and future research directions. Technovation, 122, 102623.
Mukhtarov, I. (2023). Methodology of leveraging big data in financial services for enhanced decision-making. Финансовые рынки и банки(9), 104-115.
Munappy, A. R., Bosch, J., Olsson, H. H., Arpteg, A., & Brinne, B. (2022). Data management for production quality deep learning models: Challenges and solutions. Journal of Systems and Software, 191, 111359.
Nwadiugwu, M. C. (2020). Neural networks, artificial intelligence and the computational brain. arXiv preprint arXiv:2101.08635.
Ochuba, N. A., Adewunmi, A., & Olutimehin, D. O. (2024). The role of AI in financial market development: enhancing efficiency and accessibility in emerging economies. Finance & Accounting Research Journal, 6(3), 421-436.
Odilibe, I. P., Akomolafe, O., Arowoogun, J. O., Anyanwu, E. C., Onwumere, C., & Ogugua, J. O. (2024). Mental health policies: a comparative review between the USA and African nations. International Medical Science Research Journal, 4(2), 141-157.
Ogugua, J. O., Okongwu, C. C., Akomolafe, O. O., Anyanwu, E. C., & Daraojimba, O. D. (2024). Mental health and digital technology: a public health review of current trends and responses. International Medical Science Research Journal, 4(2), 108-125.
Okoduwa, I. O., Ashiwaju, B. I., Ogugua, J. O., Arowoogun, J. O., Awonuga, K. F., & Anyanwu, E. C. (2024). Reviewing the progress of cancer research in the USA. World Journal of Biology Pharmacy and Health Sciences, 17(2), 068-079.
Olayinka, A. A. (2022). Financial statement analysis as a tool for investment decisions and assessment of companies’ performance. International Journal of Financial, Accounting, and Management, 4(1), 49-66.
Oriji, O., Shonibare, M. A., Daraojimba, R. E., Abitoye, O., & Daraojimba, C. (2023). Financial technology evolution in Africa: a comprehensive review of legal frameworks and implications for ai-driven financial services. International Journal of Management & Entrepreneurship Research, 5(12), 929-951.
Oyeniran, C., Adewusi, A. O., Adeleke, A. G., Akwawa, L. A., & Azubuko, C. F. (2022). Ethical AI: Addressing bias in machine learning models and software applications. Computer Science & IT Research Journal, 3(3), 115-126.
Palepu, K. G., Healy, P. M., Wright, S., Bradbury, M., & Coulton, J. (2020). Business analysis and valuation: Using financial statements: Cengage AU.
Paprocki, B., Pregowska, A., & Szczepanski, J. (2020). Optimizing information processing in brain-inspired neural networks. Bulletin of the Polish Academy of Sciences. Technical Sciences, 68(2).
Sarker, I. H. (2023). Machine learning for intelligent data analysis and automation in cybersecurity: current and future prospects. Annals of Data Science, 10(6), 1473-1498.
Singh, N., & Sabrol, H. (2021). Convolutional neural networks-an extensive arena of deep learning. A comprehensive study. Archives of Computational Methods in Engineering, 28(7), 4755-4780.
Sołoducho-Pelc, L., & Sulich, A. (2020). Between sustainable and temporary competitive advantages in the unstable business environment. Sustainability, 12(21), 8832.
Ta, V.-D., Liu, C.-M., & Tadesse, D. A. (2020). Portfolio optimization-based stock prediction using long-short term memory network in quantitative trading. Applied Sciences, 10(2), 437.
Udegbe, F. C., Ebulue, O. R., Ebulue, C. C., & Ekesiobi, C. S. (2024a). Machine Learning in Drug Discovery: A critical review of applications and challenges. Computer Science & IT Research Journal, 5(4), 892-902.
Udegbe, F. C., Ebulue, O. R., Ebulue, C. C., & Ekesiobi, C. S. (2024b). Precision Medicine and Genomics: A comprehensive review of IT-enabled approaches. International Medical Science Research Journal, 4(4), 509-520.
Udegbe, F. C., Ebulue, O. R., Ebulue, C. C., & Ekesiobi, C. S. (2024c). The role of artificial intelligence in healthcare: A systematic review of applications and challenges. International Medical Science Research Journal, 4(4), 500-508.
Venkataramanan, S., Sadhu, A. K. R., Gudala, L., & Reddy, A. K. (2024). Leveraging Artificial Intelligence for Enhanced Sales Forecasting Accuracy: A Review of AI-Driven Techniques and Practical Applications in Customer Relationship Management Systems. Australian Journal of Machine Learning Research & Applications, 4(1), 267-287.
Von Eschenbach, W. J. (2021). Transparency and the black box problem: Why we do not trust AI. Philosophy & Technology, 34(4), 1607-1622.
Wang, J., Xu, J., Cheng, Q., & Kumar, R. (2024). Research on finance Credit Risk Quantification Model Based on Machine Learning Algorithm. Academic Journal of Science and Technology, 10(1), 290-298.
Wu, X., Chen, H., Wang, J., Troiano, L., Loia, V., & Fujita, H. (2020). Adaptive stock trading strategies with deep reinforcement learning methods. Information Sciences, 538, 142-158.