CFD Analysis of Sector Combustion Simulation in Four Stroke Direct Injection Diesel Engine
Downloads
In this article an attempt has been made in cylinder sector combustion CFD simulation of four stroke petrol engines using ANSYS fluent 2019 to obtain very useful results using a modelled engine. In order to improve engine quality, understanding on sector combustion properties in engine cylinder is of major importance because combustion condition significantly influences engine efficiency, Capabilities in providing optimum combustion conditions which include high optimum swirl ratio, and optimum tumble ratio in respective engine can result in enhancement of engine power and comfort, along with reduction of fuel consumption, exhaust emission and noise. The simulation is applied for a geometry with crank radius (55mm), connecting rod length (165mm), Engine speed (1800rpm), which is developed to study the effect combustion inside the cylinder. Piston starts from bottom dead center about 541degrees and the maximum pressure reaches at 716 degrees. The pressure increases from 542 crank angle degree to 716 crank angle degree and reaches its maximum value at 716 crank angle degrees. The Maximum pressure at the end of compression is 63.69Kpa and temperature is 1200K. The maximum penetration length of injection is occurred at crank angle 722 degree is 0.014mm.
Bérd, P., Béard, P., Mokaddem, K., & Baritaud, T. J. S. t. (1998). Measurement and modeling of the flow-field in a DI diesel engine: effects of piston bowl shape and engine speed. 1583-1595.
Dhyani, V., Kumar, D., Ganji, P. R., & Raju, V. J. F. (2014). Numerical Experiment of CI engine combustion using Converge Software. 2014.
El-Adawy, M., Heikal, M., Aziz, A. R. A., Siddiqui, M., & Wahhab, H. A. A. J. A. E. J. (2017). Experimental study on an IC engine in-cylinder flow using different steady-state flow benches. 56(4), 727-736.
Erdil, A., & Kodal, A. J. P. o. t. I. o. M. E., Part C: Journal of Mechanical Engineering Science. (2007). A comparative study of turbulent velocity fields in an internal combustion engine with shrouded valve and flat/bowl piston configurations. 221(12), 1597-1607.
Gugulothu, S., & Reddy, K. J. J. A. F. M. (2016). CFD simulation of in-cylinder flow on different piston bowl geometries in a DI diesel engine. 9(3), 1147-1155.
Karunakar, K., Reddy, C. V. B., Basha, D. J., & Sivaramakrishnaiah, M. J. I. R. J. E. T. (2016). Design & analysis on a diesel engine by implementing tangential grooves on piston for combustion improvement through CFD. 3(6), 646-652.
Krishna, B. M., Bijucherian, A., Mallikarjuna, J. J. I. J. o. E., & Sciences, A. (2010). Effect of intake manifold inclination on intake valve flow characteristics of a single cylinder engine using particle image velocimetry. 6(2).
Kurniawan, W. H., Abdullah, S., & Shamsudeen, A. J. J. o. a. S. (2007). A computational fluid dynamics study of cold-flow analysis for mixture preparation in a motored four-stroke direct injection engine. 7(19), 2710-2724.
Londhekar, A., Shelke, S., Patil, N., Rajput, R., & Phadkale2019, K. (2019). A REVIEW ON: EFFECT OF NANO-FUEL ADDITIVES ON DIESEL ENGINE. Journal of Emerging Technologies and Innovative Research (JETIR), 6(3).
Millo, F., Piano, A., Peiretti Paradisi, B., Marzano, M. R., Bianco, A., & Pesce, F. C. J. E. (2020). Development and Assessment of an Integrated 1D-3D CFD Codes Coupling Methodology for Diesel Engine Combustion Simulation and Optimization. 13(7), 1612.
Pathak Yogesh, R., Deore Kailas, D., Patil Vijayendra, M. J. I. J. o. R. i. E., & Technology. (2014). In cylinder cold flow CFD simulation of IC engine using hybrid approach. 3, 16-21.
Raju, V., & Rao, S. S. J. P. E. (2015). Effect of fuel injection pressure and spray cone angle in DI diesel engine using CONVERGETM CFD Code. 127, 295-300.
Rao, G. P., Dhyani, V., Kumar, D., Raju, V., & Rao, S. S. J. W. J. o. E. (2016). Investigating optimal operating parameters of DI diesel engine: a CFD approach using CONVERGETM.
Shafie, N. M., Said, M. M. J. J. o. E. S., & Technology. (2017). Cold flow analysis on internal combustion engine with different piston bowl configurations. 12(4), 1048-1066.
Stone, C., & Ladommatos, N. J. S. t. (1992). The measurement and analysis of swirl in steady flow. 1674-1690.
Wei, S., Wang, F., Leng, X., Liu, X., Ji, K. J. E. C., & Management. (2013). Numerical analysis on the effect of swirl ratios on swirl chamber combustion system of DI diesel engines. 75, 184-190.
Zahid, M., & Syed, K. S. (2021). Investigation of Pollutants Formation in a Diesel Engine Using Numerical Simulation.