A Deep Neuronal Network-Based Sensor for the Detection of Oxygen inside the Carbonization Furnace
Downloads
Agricultural production generates biological surpluses that can be used to produce additional products through thermal and/or chemical transformations, such as the carbonization of vegetables. The oxygen on the vegetable material during the carbonization process inside a furnace is an important parameter that determines not only the success of the process but also the quality of the final product. It is difficult to measure the oxygen inside the furnace in real time, partly because of the working environment of the sensor, and partly because of the operating characteristics of the furnace (continuous rotation on its axis). The goal of this project is to develop a reliable measurement system capable of operating in real-time. For the continuous and precise detection of the temperature inside the furnaces of a carbonization plant, we propose a method based on the characterization of the image inside the furnace using a deep neuronal network. First of all, the images of the interior of the furnace are captured through a digital camera in front of the material and the axis of rotation of the furnace. Then, the area of interest in each frame of the video is determined by image processing. Oxygen content information is then obtained using a deep model trained for the same furnace with pattern oxygen level sensors. Experiments conducted on actual operating conditions of the furnace demonstrate that the proposed method for estimating the working oxygen provides reliable data for the control of plant operation. The proposed measurement scheme demonstrated high reliability against the many changes present inside the furnace, also, its low computational consumption makes it a viable strategy for embedded implementation and operation in real-time.
Barrero, A., Robayo, M., & Jacinto, E., “Board navigation algorithm in controlled environments based on image processing”, Tekhnê, 2015, 12(2):23–34, ISSN 1692-8407.
Cerro, G., Ferdinandi, M., Ferrigno, L., Laracca, M., & Molinara, M., “Metrological characterization of a novel microsensor platform for activated carbon filters monitoring”, IEEE Transactions on Instrumentation and Measurement, 2018, 67(10):2504–2515,
doi:10.1109/TIM.2018.2843218.
Díaz, J. & Pérez, M., “Identificación de formas geométricas y colores mediante procesamiento y reconocimiento de imágenes”, Tekhnê, 2004, 2(1):9–17, ISSN 1692-8407.
Imaz, E., Alonso, R., Heras, C., Salinas, I., Carretero, E., & Carretero, C., “Infrared thermometry system for temperature measurement in induction heating appliances”, IEEE Transactions on Industrial Electronics, 2014, 61(5):2622–2630,
doi:10.1109/TIE.2013.2281166.
Manara, J., Zipf, M., Stark, T., Arduini, M., Ebert, H., Tutschke, A., Hallam, A., Hanspal, J., Langley, M., Hodge, D., & Hartmann, J., “Long wavelength infrared radiation thermometry for non-contact temperature measurements in gas turbines”, Infrared Physics & Technology, 2017, 80(1):120–130, ISSN 1350-4495, doi:https://doi.org/10.1016/j.infrared.2016.11.014.
Martínez, F., Martínez, F., & Montiel, H., “Low cost, high performance fuel cell energy conditioning system controlled by neural network”, TELKOMNIKA (Telecommunication Computing Electronics and Control), 2020, 18(6):3116–3122, ISSN 1693-6930, doi:10.12928/telkomnika.v18i6.16426.
Martínez, F., Rendón, A., & Guevara, P., “Combustion quality estimation in carbonization furnace using flame similarity measure”, Lecture Notes in Computer Science, 2016, 9939(1):125–133, ISSN 0302-9743,
doi:https://doi.org/10.1007/978-3-319-46759-7_10.
Montiel, H., Jacinto, E., & Martínez, F., “A double-loop hybrid approach for the recognition of fissures in bone structures”, ARPN Journal of Engineering and Applied Sciences, 2021, 16(11):1151–1156, ISSN 1819-6608.
Pan, D., Jiang, Z., Chen, Z., Gui, W., Xie, Y., & Yang, C., “A novel method for compensating temperature measurement error caused by dust using infrared thermal imager”, IEEE Sensors Journal, 2019a, 19(5):1730–1739, doi:10.1109/JSEN.2018.2882201.
Pan, D., Jiang, Z., Chen, Z., Gui, W., Xie, Y., & Yang, C., “Temperature measurement and compensation method of blast furnace molten iron based on infrared computer vision”, IEEE Transactions on Instrumentation and Measurement, 2019b, 68(10):3576–3588,
doi:10.1109/TIM.2018.2880061.
Senthil, P., Saravanan, A., Anish Kumar, K., Yashwanth, R., & Visvesh, S., “Removal of toxic zinc from water/wastewater using eucalyptus seeds activated carbon: non-linear regression analysis”, IET Nanobiotechnology, 2016, 10(4):244–253,
doi:10.1049/iet-nbt.2015.0087.
Torres, J. & Ramírez, L., “Adecuación del sistema de vacío FESTO perteneciente al laboratorio de automatización y control (LE-MC-01) del proyecto curricular de tecnología en mecánica UD”, Tekhnê, 2012, 9(1):69–78, ISSN 1692-8407.
Tripathy, H., Bej, D., Pattanaik, P., Mishra, D., Kamilla, S., & Tripathy, R., “Measurement of zone temperature profile of a resistive heating furnace through rvm model”, IEEE Sensors Journal, 2018, 18(11):4429–4435, doi:10.1109/JSEN.2018.2826722.
Tyndall, A., Cardell-Oliver, R., & Keating, A., “Occupancy estimation using a low-pixel count thermal imager”, IEEE Sensors Journal, 2016, 16(10):3784–3791, doi:10.1109/JSEN.2016.2530824.
Usamentiaga, R. & García, D., “Infrared thermography sensor for temperature and speed measurement of moving material”, Senosrs, 2017, 17(5):1–21, ISSN 1424-8220, doi: 10.3390/s17051157.
Vallecilla, L., Maestre, A., Salazar, R., Salamanca, N., Rincón, J., & Guevara, P., “Planta piloto de combustión para evaluación técnico ambiental de carbones”, Energética, 2016, 47(1):44–50, ISSN 0120-9833.
Wang, J., Shen, T., Zhao, J., Ma, S., Yao, Y., Chen, T., Shen, B., & Wu, Y., “Online measurement and control system development of combustion state for rolling reheating furnace”, in “35th Chinese Control Conference (CCC 2016)”, pp. 9530–9534,
doi:10.1109/ChiCC.2016.7554870.
Wang, Z., Wang, L., Yun, Z., & Wang, J., “Temperature control based on fuzzy-PID algorithm for the blackbody radiation source”, in “IEEE International Conference on Mechatronics and Automation (ICMA 2018)”, pp. 797–802, doi:10.1109/ICMA.2018.8484315.
Zhongyuan, G., Shaosheng, D., Jinsong, L., Changhui, Y., C., Y., & Liangbing, Y., “Research on application of polynomial fitting technique in rotary kiln infrared temperature measurement system”, Infrared Physics & Technology, 2016, 79(1):160–164, ISSN 1350-4495, doi:https://doi.org/10.1016/j.infrared.2016.10.012.