Thermochemical behaviour of Algal Waste: Kinetics and Mechanismof the Pyrolysis
Downloads
The present work assesses a possible process for treating algal wastes in an environmentally friendly way. It is based on the pyrolysis of these wastes for energetic valorization in order to evaluate its bioenergy potential. Thepyrolytic and kinetic characteristics of algal waste as a model for algal biomass were evaluated and compared at heating rates of 5, 10,20 and50°C min-1from 105 to900 °C in an inert atmosphere. The DTG curves showed three distinct stages of degradation; dehydration, devolatilization and residual decomposition. The kinetic analysis was established by the isoconversional methods of Friedman (FR), Flynn-Wall-Ozawa (FWO) and Vyazovkin (VYA) methods) to estimate activation energy, the master-plot methods were introduced to establish kinetic models. Activation energy values were shown to be 192.55, 183.26 and 185.45 kJ mol-1 as calculated by FR, FWO and VYA methods, respectively. The devolatilization stage of algal waste could be described by the Avramic-Erofeev equation (n = 3). It is shown that the isoconversional kinetic methods provide the reliable kinetic information suitable for adequately choosing the kinetic model which best describes the thermal decomposition of algal waste. The composite differential method was used to obtain the following kinetic triplet:
J.M. Amezaga, D.N. Bird, J.A. Hazelton, The future of bioenergy and rural development policies in Africa and Asia, Biomass Bioenergy. 59 (2013) 137–141. doi:10.1016/j.biombioe.2013.10.001.
O.K. Lee, E.Y. Lee, Sustainable production of bioethanol from renewable brown algae biomass, Biomass Bioenergy. 92 (2016) 70–75. doi:10.1016/j.biombioe.2016.03.038.
K. Miyamoto, Renewable biological systems for alternative sustainable energy production, Food & Agriculture Org., 1997. https://books.google.com/books?hl=fr&lr=&id=KB1XH4IgTqkC&oi=fnd&pg=PR3&dq=Renewable+Biological+Systems+for+Alternative+Sustainable+Energy+Production&ots=LbQjJ7NuA3&sig=GW6dI-6l3SVSETh0ym_5wyLK6WU (accessed May 25, 2017).
T. Ainane, Valorisation de la biomasse algale du Maroc: Potentialités pharmacologiques et Applications environnementales, cas des algues brunes Cystoseira tamariscifolia et Bifurcaria bifurcata, Faculté des Sciences Ben M’sik Université Hassan II Casablanca, 2011.
https://hal.archives-ouvertes.fr/tel-00637002/ (accessed March 20, 2017).
N. Hanif, M.C. Idrissi, T. Naoki, others, L’exploitation des algues rouges Gelidium dans la région d’El-Jadida: aspects socio-économiques et perspectives, Afr. Sci. Rev. Int. Sci. Technol. 10 (2014). http://www.ajol.info/index.php/afsci/article/view/109806 (accessed March 20, 2017).
A. Mouradi-Givernaud, L.A. Hassani, T. Givernaud, Y. Lemoine, O. Benharbet, Biology and agar composition of Gelidium sesquipedale harvested along the Atlantic coast of Morocco, Hydrobiologia. 398-399 (1999) 391–395.
doi:10.1023/A:1017094231494.
M. Ennouali, M. Ouhssine, K. Ouhssine, M. Elyachioui, Biotransformation of algal waste by biological fermentation, Afr. J. Biotechnol. 5 (2006). http://www.ajol.info/index.php/ajb/article/view/43087 (accessed March 17, 2017).
[8] N. Ferrera-Lorenzo, E. Fuente, I. Suárez-Ruiz, R.R. Gil, B. Ruiz, Pyrolysis characteristics of a macroalgae solid waste generated by the industrial production of Agar–Agar, J. Anal. Appl. Pyrolysis. 105 (2014) 209–216.
N. Ferrera-Lorenzo, E. Fuente, J.M. Bermúdez, I. Suárez-Ruiz, B. Ruiz, Conventional and microwave pyrolysis of a macroalgae waste from the Agar–Agar industry. Prospects for bio-fuel production, Bioresour. Technol. 151 (2014) 199–206.
N. Ferrera-Lorenzo, E. Fuente, I. Suárez-Ruiz, B. Ruiz, Sustainable activated carbons of macroalgae waste from the Agar–Agar industry. Prospects as adsorbent for gas storage at high pressures, Chem. Eng. J. 250 (2014) 128–136.
K. Jayaraman, M.V. Kok, I. Gokalp, Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends, Renew. Energy. 101 (2017) 293–300.
doi:10.1016/j.renene.2016.08.072.
K. Jayaraman, M.V. Kok, I. Gokalp, Combustion properties and kinetics of different biomass samples using TG–MS technique, J. Therm. Anal. Calorim. 127 (2017) 1361–1370.
doi:10.1007/s10973-016-6042-1.
M.V. Kok, E. Ozgur, Characterization of lignocellulose biomass and model compounds by thermogravimetry, Energy Sources Part Recovery Util. Environ. Eff. 39 (2017) 134–139.
doi:10.1080/15567036.2016.1214643.
M.Y. Guida, H. Bouaik, A. Tabal, A. Hannioui, A. Solhy, A. Barakat, A. Aboulkas, K.E. Harfi, Thermochemical treatment of olive mill solid waste and olive mill wastewater, J. Therm. Anal. Calorim. 123 (2016) 1657–1666.
doi:10.1007/s10973-015-5061-7.
M.S. Ahmad, M.A. Mehmood, O.S. Al Ayed, G. Ye, H. Luo, M. Ibrahim, U. Rashid, I. Arbi Nehdi, G. Qadir, Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential, Bioresour. Technol. 224 (2017) 708–713. doi:10.1016/j.biortech.2016.10.090.
K. Anastasakis, A.B. Ross, J.M. Jones, Pyrolysis behaviour of the main carbohydrates of brown macro-algae, Fuel. 90 (2011) 598–607.
doi:10.1016/j.fuel.2010.09.023.
S.-S. Kim, H.V. Ly, J. Kim, J.H. Choi, H.C. Woo, Thermogravimetric characteristics and pyrolysis kinetics of Alga Sagarssum sp. biomass, Bioresour. Technol. 139 (2013) 242–248.
doi:10.1016/j.biortech.2013.03.192.
D. Li, L. Chen, X. Zhang, N. Ye, F. Xing, Pyrolytic characteristics and kinetic studies of three kinds of red algae, Biomass Bioenergy. 35 (2011) 1765–1772. doi:10.1016/j.biombioe.2011.01.011.
M. Radhakumari, D.J. Prakash, B. Satyavathi, Pyrolysis characteristics and kinetics of algal biomass using tga analysis based on ICTAC recommendations, Biomass Convers. Biorefinery. 6 (2016) 189–195. doi:10.1007/s13399-015-0173-7.
K. Wu, J. Liu, Y. Wu, Y. Chen, Q. Li, X. Xiao, M. Yang, Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer, Bioresour. Technol. 163 (2014) 18–25. doi:10.1016/j.biortech.2014.03.162.
H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, J. Polym. Sci. Part C Polym. Symp. 6 (1964) 183–195. doi:10.1002/polc.5070060121.
J.H. Flynn, L.A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data, J. Polym. Sci. [B]. 4 (1966) 323–328.
J.H. Flynn, L.A. Wall, General treatment of the thermogravimetry of polymers, J Res Nat Bur Stand. 70 (1966) 487–523.
T. Ozawa, A New Method of Analyzing Thermogravimetric Data, Bull. Chem. Soc. Jpn. 38 (1965) 1881–1886.
T. Ozawa, Kinetic analysis of derivative curves in thermal analysis, J. Therm. Anal. Calorim. 2 (1970) 301–324.
C.D. Doyle, Kinetic analysis of thermogravimetric data, J. Appl. Polym. Sci. 5 (1961) 285–292.
S. Vyazovkin, A.I. Lesnikovick, Transformation of “degree of conversion against temperature” into “degree of conversion against time” kinetic data, Russ J Phys Chem. 62 (1988) 1535–1537.
S. Vyazovkin, N. Sbirrazzuoli, Confidence intervals for the activation energy estimated by few experiments, Anal. Chim. Acta. 355 (1997) 175–180.
G.I. Senum, R.T. Yang, Rational approximations of the integral of the Arrhenius function, J. Therm. Anal. 11 (1977) 445–447.
A.W. Coats, J.P. Redfern, Kinetic Parameters from Thermogravimetric Data, Nature. 201 (1964) 68–69. doi:10.1038/201068a0.
A.W. Coats, J.P. Redfern, Kinetic parameters from thermogravimetric data. II., J. Polym. Sci. [B]. 3 (1965) 917–920. doi:10.1002/pol.1965.110031106.
B. Maddi, S. Viamajala, S. Varanasi, Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass, Bioresour. Technol. 102 (2011) 11018–11026. doi:10.1016/j.biortech.2011.09.055.
A.B. Ross, J.M. Jones, M.L. Kubacki, T. Bridgeman, Classification of macroalgae as fuel and its thermochemical behaviour, Bioresour. Technol. 99 (2008) 6494–6504.
J. Yanik, R. Stahl, N. Troeger, A. Sinag, Pyrolysis of algal biomass, J. Anal. Appl. Pyrolysis. 103 (2013) 134–141. doi:10.1016/j.jaap.2012.08.016.