Cooling Profile of Potassium Hydrogen Tartrate Batch Crystallization
Downloads
Batch crystallization is an important chemical unit operation. So, large numbers of published works were focused on batch crystallization modelization, simulation, optimization, control and parameter estimation. In this work, an optimization is made with the objective to obtain the optimal cooling temperature strategy of a batch crystallizer realized in our laboratory. The potassium hydrogenotartarate (cream of tartar) subject of our study is recovered from wine tartar, a solid byproduct of winemaking, using batch cooling crystallization. To determine the optimum cooling temperature profile with a maximum yield of cream of tartar, we used coupled population, material and energy balance model. This model can describe the dynamics of the batch crystallization process. Based on this model, an optimal cooling temperature profile is calculated, using method of moments and the solubility data of cream tartar in water.
Bakir, T. Estimation d’un procédé de cristallisation en batch. Thèse de doctorat de l’Université de Claude Bernard Lyon 1, 2006.
P.A. Larsen, D. B. Patience, J. B. Rawlings, Industrial crystallization process and control, IEEE control system magazine,.2006, 70-80
Q. Hu, S. Rohani, D. X. Wang, A. Jutan, Optimal control of a batch cooling seeded crystallizer, Powder Tech. 156,2005, 170-187
S.M. Miller and J. B. Rawings, Model identification and control strategies for batch cooling crystallizers, AIChEJ. 40,1994,1312-1323
Y. Lang, A. M. Cervantes, L. T. Biegler, Dynamic optimization of a batch cooling crystallization process, Ind. Eng. Chem. Res. .38. 1469-1485
C. B. Costa, A. C. Costa, R. M. Filho, Mathematical modeling and optimal control strategy development for an adipic acid crystallization process, Chem. Eng. Processing, 44,2005, 737-754
Serap Cesur, Cihan Yaylaci, Optimum Kinetic Parameters of Mefenamic Acid Crystallization by PBM, Journal of Crystallization Process and Technology. 2, 3, 2012
D. Shi, N. H. EI-Farra, M. Li, P. Mhaskar; P.D. Christofides, Predictive control of particle size distribution in particulate processes, Chem. Eng. Sci. vol.61,2006, 268-276
Jorg Worlitschek , Marco Mazzotti, Model-Based Optimization of Particle Size Distribution in Batch-Cooling Crystallization of Paracetamol, Crystal Growth & Design 2004, 4, 5, 891–903
G.P. Zhang, and S.Rohani, On-line optimal control of a seeded batch cooling crystallizer, Chem. Eng. Sci. 58, 2003, 1887-1899
N. Aziz, M.A. Hussain; I. M. Mujtaba, Performance of different types of controllers in tracking optimal temperature profiles in batch reactors, Comp. Chem. Eng., 24,2000, 1069-1085
J. X. Shen, M.S. Chiu, Q. G. Wang, A comparative study of model-based control techniques for batch crystallization process, J.Chem.Eng.Jpn.vol.32,1999, 456-472
A. Arpornwichanop, P. Kittisupakorn, and I. M. Mujtaba, On-line dynamic optimization and control strategy for improving the performance of batch reactors, Chem. Eng. Process, 44,2005, 101-122
A. Arpornwichanop, P. Kittisupakorn, and M.A. Hussain, “Model-based control strategies for a chemical batch reactor with exothermic reactions, Korean J. Chem. Eng. 19, 2002. 221-232
Do Yeon Kim, Michaella Paul, Jens-Uwe Rapke, Günter Wozny & Dae Ryook Yang . Modelling of crystallization process and optimization of the cooling strategy. Korean Journal of Chemical Engineering volume 26, pages1220–1225(2009)
F. Puel. Bilan de population pour deux tailles caractéristiques des particules : application à la cristallisation de l'hydroquinone, Thèse de doctorat en Sciences. Génie des procédés
Soutenue en 1994, à Lyon1.
Lewiner, F. (2000). Application de la spectroscopie irtf-atr in-situ au suivi en ligne de cristallisations discontinues. Th`ese de doctorat, Université Claude Bernard Lyon 1.
Caillet, A. (2006). Etude de la Transition de Phase en Solution d’un Hydrate Grace à un Suivi In-situ par Spectroscopie Raman et Acquisition d’Images. Th`ese de doctorat, Université Claude Bernard Lyon 1.
A. D. Randolph, M. A. Larson, Transient and steady state size distributions in continuous mixed suspension crystallizers, aich j., 8, 5, 639-645. https://doi.org/10.1002/aic.690080515
Aamir, E., Nagy, Z. K., Rielly, C. D., Kleinert, T. et Judat, B. (2009). Combined quadrature method of moments and method of characteristics approach for efficient solution of population balance models for dynamic modeling and crystal size distribution control of crystallization processes. Industrial & Engineering Chemistry Research, 48(18):8575–8584.
Canning T. F.; Randolph, A. D. (1967). Some aspects of crystallization theory : Systems that violate mccabe’s delta l law. AIChE Journal, 13(1):5–10.
P. L. Lee, G.R. Sulivan, Generic model control (GMC), Comp. Chem. Eng. Vol.12,1998, .573-562
Do Yeon Kim, Michaella Paul, Jens-Uwe Repke, Günter Wozny, and Dae Ryook Yang, Modelling of crystallization process and optimization of the cooling strategy. Korean J. Chem. Eng., 26(5), 1220-1225 (2009)
Younes Amini, M. Barzegar Gerdroodbary, Mahmoud Reza Pishvaie, Rasoul Moradi, S. Mahruz Monfared. Optimal control of batch cooling crystallizers by using genetic
Algorithm. Case Studies in Thermal Engineering 8 (2016) 300–310
Kherici S., Benouali D., Benyetou M., Ghidossi R., Lacampagne S. and Mietton-Peuchot. M., 2015. Study of Potassium Hydrogen Tartrate Unseeded Batch Crystallization for Tracking Optimum Cooling Mode. Oriental journal of chemistry, 31, 1, 249-255
Paula Sousa and Ana M. C. Lopes , Solubilities of Potassium Hydrogen Tartrate and Potassium Chloride in Water Ethanol Mixtures. J. Chem. Eng. Data 2001, 46, 1362 1364.