Investigation on the Pyrolysiskinetics and Mechanism of Date Stone Using Thermogravimetric Analysis
Downloads
The aim of this work was to investigate the physiochemical properties and thermal behavior of date stone in order to find an appropriate of these materials for energy production. The physiochemical properties such as proximate analysis, ultimate analysis, heating values and FTIR spectroscopy of date stone were investigated. The pyrolytic characteristics and kinetics was investigated by thermogravimetric analysis. The experiments were performed in 105-900 °C temperature range under nitrogen atmosphereat heating rates of 5, 10, 20 and 50 °C/min. Pyrolysis characteristics was accomplished at four stages which can mainly be attributed to decomposition of extractives, decomposition of hemicellulose, decomposition of cellulose, and decomposition of lignin, respectively. Pyrolysis characteristics and the thermal decomposition rate were significantly affected by variation in the heating rate. However, the temperature peaks at maximum weight loss rate changed within creasing heating rate. The activation energy was obtained by model free methods proposed by Friedman (FR), Flynn-Wall-Ozawa (FWO) and Vyazovkin (VYA), and the kinetic mechanism was deduced by master plots method. The masterplots method suggested that diffusion model was the most probable reaction mechanism to describe the pyrolysis of hemicellulose and the reaction model function was . The kinetic process for the decomposition process of cellulose can be described by reaction order model . The results suggested that the experimental results and kinetic parameters provided useful information for the design of pyrolytic processing system using date stone as useful source of energy, chemicals and activated carbons.
M. Esen, T. Yuksel, Experimental evaluation of using various renewable energy sources for heating a greenhouse, Energy Build. 65 (2013) 340–351. doi:10.1016/j.enbuild.2013.06.018.
Energy for the Future: Renewable Sources of Energy. White Paper for a Community Strategy and Action Plan. COM (97) 599 final, 26 November 1997 [follow-up to the Green Paper], (1997). http://aei.pitt.edu/1130/ (accessed November 12, 2016).
H.H. Sait, A. Hussain, A.A. Salema, F.N. Ani, Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis, Bioresour. Technol. 118 (2012) 382–389.
doi:10.1016/j.biortech.2012.04.081.
N. Grioui, K. Halouani, F.A. Agblevor, Bio-oil from pyrolysis of Tunisian almond shell: Comparative study and investigation of aging effect during long storage, Energy Sustain. Dev. 21 (2014) 100–112. doi:10.1016/j.esd.2014.05.006.
M. Jeguirim, J. Bikai, Y. Elmay, L. Limousy, E. Njeugna, Thermal characterization and pyrolysis kinetics of tropical biomass feedstocks for energy recovery, Energy Sustain. Dev. 23 (2014) 188–193. doi:10.1016/j.esd.2014.09.009.
M. Belhachemi, R.V.R.A. Rios, F. Addoun, J. Silvestre-Albero, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, Preparation of activated carbon from date pits: Effect of the activation agent and liquid phase oxidation, J. Anal. Appl. Pyrolysis. 86 (2009) 168–172.
doi:10.1016/j.jaap.2009.05.004.
M.U.H. Joardder, M.S. Uddin, M.N. Islam, The Utilization of Waste Date Seed as Bio-Oil and Activated Carbon by Pyrolysis Process, Adv. Mech. Eng. 4 (2015) 316806–316806.
doi:10.1155/2012/316806.
A. Aboulkas, T. Makayssi, L. Bilali, K. El harfi, M. Nadifiyine, M. Benchanaa, Co-pyrolysis of oil shale and plastics: Influence of pyrolysis parameters on the product yields, Fuel Process. Technol. 96 (2012) 209–213.
doi:10.1016/j.fuproc.2011.12.001.
A. Aboulkas, T. Makayssi, L. Bilali, K. El harfi, M. Nadifiyine, M. Benchanaa, Co-pyrolysis of oil shale and High density polyethylene: Structural characterization of the oil, Fuel Process. Technol. 96 (2012) 203–208.
doi:10.1016/j.fuproc.2011.12.003.
F. Mushtaq, T.A.T. Abdullah, R. Mat, F.N. Ani, Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber, Bioresour. Technol. 190 (2015) 442–450. doi:10.1016/j.biortech.2015.02.055.
J.E. Omoriyekomwan, A. Tahmasebi, J. Yu, Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell, Bioresour. Technol. 207 (2016) 188–196. doi:10.1016/j.biortech.2016.02.002.
S. Ceylan, Kinetic analysis on the non-isothermal degradation of plum stone waste by thermogravimetric analysis and integral Master-Plots method, Waste Manag. Res. 33 (2015) 345–352. doi:10.1177/0734242X15574590.
M.Y. Guida, H. Bouaik, A. Tabal, A. Hannioui, A. Solhy, A. Barakat, A. Aboulkas, K.E. Harfi, Thermochemical treatment of olive mill solid waste and olive mill wastewater, J. Therm. Anal. Calorim. 123 (2015) 1657–1666.
M. Jeguirim, S. Dorge, G. Trouvé, R. Said, others, Study on the thermal behavior of different date palm residues: characterization and devolatilization kinetics under inert and oxidative atmospheres, Energy. 44 (2012) 702–709.
A. Ounas, A. Aboulkas, K. El harfi, A. Bacaoui, A. Yaacoubi, Pyrolysis of olive residue and sugar cane bagasse: Non-isothermal thermogravimetric kinetic analysis, Bioresour. Technol. 102 (2011) 11234–11238.
E. Ozgur, S.F. Miller, B.G. Miller, M.V. Kok, Thermal analysis of co-firing of oil shale and biomass fuels, Oil Shale. 29 (2012) 190–202.
H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, J. Polym. Sci. Part C Polym. Symp. 6 (1964) 183–195. doi:10.1002/polc.5070060121.
J.H. Flynn, L.A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data, J. Polym. Sci. [B]. 4 (1966) 323–328. doi:10.1002/pol.1966.110040504.
J.H. Flynn, L.A. Wall, General treatment of the thermogravimetry of polymers, J Res Nat Bur Stand. 70 (1966) 487–523.
T. Ozawa, A New Method of Analyzing Thermogravimetric Data, Bull. Chem. Soc. Jpn. 38 (1965) 1881–1886. doi:10.1246/bcsj.38.1881.
T. Ozawa, Kinetic analysis of derivative curves in thermal analysis, J. Therm. Anal. Calorim. 2 (1970) 301–324. doi:10.1007/BF01911411.
C.D. Doyle, Kinetic analysis of thermogravimetric data, J. Appl. Polym. Sci. 5 (1961) 285–292. doi:10.1002/app.1961.070051506.
S. Vyazovkin, A.I. Lesnikovick, Transformation of “degree of conversion against temperature” into “degree of conversion against time” kinetic data, Russ J Phys Chem. 62 (1988) e7.
S. Vyazovkin, N. Sbirrazzuoli, Confidence intervals for the activation energy estimated by few experiments, Anal. Chim. Acta. 355 (1997) 175–180.
F.J. Gotor, J.M. Criado, J. Malek, N. Koga, Kinetic Analysis of Solid-State Reactions: The Universality of Master Plots for Analyzing Isothermal and Nonisothermal Experiments, J. Phys. Chem. A. 104 (2000) 10777–10782.
doi:10.1021/jp0022205.
J. Criado, L. Pérez-Maqueda, F. Gotor, J. Málek, N. Koga, A unified theory for the kinetic analysis of solid state reactions under any thermal pathway, J. Therm. Anal. Calorim. 72 (2003) 901–906. doi:10.1023/A:1025078501323.
A.K. Varma, P. Mondal, Physicochemical characterization and kinetic study of pine needle for pyrolysis process, J. Therm. Anal. Calorim. 124 (2016) 487–497.
A. Demirbas, Combustion characteristics of different biomass fuels, Prog. Energy Combust. Sci. 30 (2004) 219–230.
S. Naik, V.V. Goud, P.K. Rout, K. Jacobson, A.K. Dalai, Characterization of Canadian biomass for alternative renewable biofuel, Renew. Energy. 35 (2010) 1624–1631.
R. Briones, L. Serrano, R.B. Younes, I. Mondragon, J. Labidi, Polyol production by chemical modification of date seeds, Ind. Crops Prod. 34 (2011) 1035–1040.
C. Cao, Z. Yang, L. Han, X. Jiang, G. Ji, Study on in situ analysis of cellulose, hemicelluloses and lignin distribution linked to tissue structure of crop stalk internodal transverse section based on FTIR microspectroscopic imaging, Cellulose. 22 (2015) 139–149.
K.M. Dokken, L.C. Davis, Infrared imaging of sunflower and maize root anatomy, J. Agric. Food Chem. 55 (2007) 10517–10530.
H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel. 86 (2007) 1781–1788.
P. Giudicianni, G. Cardone, R. Ragucci, Cellulose, hemicellulose and lignin slow steam pyrolysis: Thermal decomposition of biomass components mixtures, J. Anal. Appl. Pyrolysis. 100 (2013) 213–222. doi:10.1016/j.jaap.2012.12.026.
A.N. Shebani, A.J. Van Reenen, M. Meincken, The effect of wood extractives on the thermal stability of different wood species, Thermochim. Acta. 471 (2008) 43–50.
M. Poletto, A.J. Zattera, R. Santana, Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis, J. Appl. Polym. Sci. 126 (2012).
http://onlinelibrary.wiley.com/doi/10.1002/app.36991/full (accessed October 26, 2016).
C. Quan, A. Li, N. Gao, Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes, Waste Manag. 29 (2009) 2353–2360.