Biofuel Resources Plan: Theoretical Case Assessment of Automotive Industries
Downloads
Crude oil exhaustion and greenhouse emissions have remained a global concern till date. Domestic production of biofuel blends and micro-emulsion as substitutes for conventional fuel in tackling greenhouse gas emission has challenges like feedstock inadequacy, fuel-energy content, compatibility, oxidation stability and other automotive fuel property issues. Strategies to address these issues are discussed in this study. Case study of Nigeria shows that an annual conversion rate of 6.9/3.3% (2.1: 1) of cassava wastes will meet its E10/E5 blend from local production capacity. An effort has been made to correlate existing ethanol and biodiesel yields, ƐѱE and ƐѱB with expected oil yield as a function of gasoline and diesel shares, αE and αB per hectare of cultivation, to generate total oil yield per desired short and medium term biofuel targets utilizing selected feedstock at applicable yield bounds. A typical E10 gasohol from cassava will need 16,133 and 28,543 hectares from cassava plantation to meet its annual short and medium term biofuel targets. The r2-square value of 0.6402 for CF/SPeel and 0.9044 for CF/SPulp is an indication that more litre/tonne volume of ethanol could be produced from CF/SPeel except for in consistency when ammonia extract and urea are used as nitrogen source. Specific energy for direct ethanol fuel cell (DEFC) from daily production capacity equivalence of E10 per annum is estimated at 2.34GWh/Kg. Biofuel and fuel cells are good alternatives to explore as replacement of fossil fuel in automotive application.
Gaurav, D., Jain, S., and Sharma, M.P. (2013). Diesel engine performance and emission analysis using biodiesel from various oil sources. Review. Journal of Material and Environment Science 4, (4): 434 – 447.
Rajput, R.K., Testing and performance of IC engines. (A Text Book of Automobile Engineering, Google Books.Books.google.co.in.,Laxmi Publications, 2005), 1-1004, ISBN 817008637X, 9788170086376.
OPEC Oil Reserve Data (2020). Annual Statistical Bulletin 2014: OORD 2012. Accessed April, 2020, http://www.opec.org/opecweb/en/datagraphs/330.htm
Enibe, S.O., and Odukwu, A.O. (1990). Pattern of energy consumption in Nigeria,” Energy Conversion and Management 30(2): 69 – 73. doi.org/10.1016/ 0196-8904(90)90015-Q.
Lashof, D.A. and Ahuja, D.R. (1990). Research needs for improving biofuel burning cook-stove technologies. Natural Resource Forum 12 (2): 25 – 134. doi:10.1111/j.1477-8947.1990.tb00378.x
Intergovernmental Panel on Climate Change, (2020).Mitigation of Climate Change, Contribution of Working Group III to the Fourth Assessment Report, Draft, IPCC 2007.Accessed May, 2020,
http://www.mnp.nl/ipcc/pages_media/AR4-chapters.html.
Sarin, A., Biodiesel: production and properties, (Royal Society of Chemistry (RSC) Publishing, 2012), doi.org/10.1039/9781849734721.
Albino, D.K., Bertrand, K.Z., and Bar-Yam, Y. (2012). Food for fuel: the price of ethanol. Accessed May 2020, http://necsi.edu/research/social/foodprice-s/foodforfuel.
Petroleum B, (2013).BP biofuels fact sheet 2013.AcessedApril, 2020,
http://www.bp.com/content/dam/bpalternate…/en/…/bp-biofuels-factsheet.pdf.
Govinda, R.T., and Ashish, S., (2010).Policy Research Working Paper on Biofuels – Markets, Targets and Impacts.Presentation at the World Bank Development Research Group Environment and Energy Team, Lisbon, Portugal, pp.1–49. July, 2010. doi: 10.1596/1813-9450-5364.
Demirbas, A. (2008).Comparison of trans-esterification methods for production of biodiesel from vegetable oils and fats. Energy Conversion Management 49 (1) (2008): 125–30. doi.org/10.1016/j.enconman.2007.05.002.
National Ethanol Vehicle CoalitionE85 (2008). Refueling location search. Number of stations in leading states complemented with search on. Accessed February, 2021.
www.ethanolproducers.com.
Michelle Kautz (2008). E85 Stations exceeds 1800. National Ethanol Vehicle Coalition. Accessed February, 2021.
Energy Information Administration (2014). Annual U.S. biodiesel production and consumption, selected states (2001-2018).
www.eia.gov/todayinenergy/detail.php?.Acessed May, 2021.
Farinelli, B., Carter, C.A., Lin, C.C., and summer, D.A. (2009). Important demand for Brazilian ethanol: a cross-country analysis. Journal of Cleaner Production, 17(1): 9–17.
doi:10.1016/j.jclepro.2009.05.008
Ohimain, E.I. (2013). Environmental impacts of smallholder ethanol production from cassava feedstock for the replacement of kerosene household cooking fuel in Nigeria. Energy Sources A, 35 (16): 1560–1565. doi: 10.1080/15567036.2019.529565.
Tuck, C.O., Perez, E., Horvath, I.T., Sheldon, R.A., and Poliakoff, M. (2012). Valorization of biomass: deriving more value from waste. Science, 337 (6095): 695-699. doi: 10.1126/science.1218930
Demirbas, A. (2008). New liquid biofuels from vegetable oils via catalytic pyrolysis. Energy Education Science and Technology, 21 (1-2): 1-59.
www.eia.gov (2014). U.S. Product supplied for crude oil for petroleum products. eia.gov. Acessed May, 2021.
Leong, B.S., Rus, M., Zafiah, A., and Hasan, S. (2013). Continuous biodiesel production using ultrasonic clamp on tubular reactor. Proceedings of the International Conference on Mechanical Engineering Research (ICMER), Kuantan, Pahang, Malaysia, pp. 1–10; July, 2013.
Energy Commission of Nigeria(2008). Communiqué of National workshop on sustainable Jatropha for energy development, ECN, 2008. 6-7th May, Mambayya house, Kano. Accessed April, 2020, www.energy.gov.ng.
Halim, S.F.A., Kamaruddin, A.H., and Fernando, W.J.N. (2009). Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: optimization using Response Surface Methodology (RSM) and mass transfer studies. Bioresource Technology, 100,(2): 710-716.
doi.org/10.1016/j.biortech.2008.07.031.
Galadima, A., Garba, Z.N., Ibrahim, B.M., Almustapha, M.N., Leke, L., and Adam, I.K. (2011). Biofuels Production in Nigeria. The Policy and Public Opinions Journal of Sustainable Development, 4(4): 22-31. doi:10.5539/jsd.v4n4p 22.
Ohimain, E.I. (2010). Emerging bio-ethanol projects in Nigeria: Their opportunities and challenges. Energy Policy, 38 (11): 7161–7168,
doi: 10.1016/j.enpol.2010.07.038.
Goering, C.E., and Fry, B. (1984). Engine durability screening test of a diesel/ soy oil/alcohol micro-emulsion fuel.Journal of American Oil Chemists Society, 61: 1638-1643. doi.org/10.1007/BF02541647.
Ziejewski, M., Kaufman, K.R., Schwab, A.W., and Pryde, E.H. (1984). Diesel engine evaluation of a nonionicsun flower oil-aqueous ethanol microemulsion. Journal of American Oil Chemist’s Society, 61: 1620-1626.
doi.org/10. 1007/BF02541646.
Zanuttini, M.S., Pisarello, M.L., and Querini, C.A. (2014). ButiaYatay coconut oil: Process development for biodiesel production and kinetics of esterification with ethanol. Energy Conversion and Management, 85: 407–16.
doi.org/10.1016/j.enconman.2014.05.080.
Tan, K.T., Lee, K.T., and Mohamed, A.R. (2011). Potential of waste palm cooking oil for catalyst free biodiesel production. Energy, 36 (4): 2085-2088. doi:10.1016/j.energy.2010.05.003.
Carraretto, C., Macor, A., Mirandola, S., Stoppato, A., and Tonon, S. (2004). Biodiesel as alternative fuel: experimental analysis and energetic evaluations. Energy, 29 (12): 2195–2211.
doi:10.1016/j.energy.2004.03.042
Uriarte, F.A. (2012). Biofuels from Plant Oils: A Book for Practitioners and Professionals Involved in Biofuels, to Promote a Better and More Accurate Understanding of the Nature, Production, and Use of Biofuels from Plant Oils,” (ASEAN Foundation, Indonesia), 1-166, ISBN 9791968411, 9789791968416
Schwab, A.W., Dykstra, G.J., Selke, E., Sorenson, S.C., and Pryde, E.H. (1988). Diesel fuel from thermal decomposition of soybean. Journal of American Oil Chemists’ Society, 65: 1781-1786.
doi:10.1007/BF02542382
Jain, S., and Sharma, M.P. (2010). Review of different test methods for the evaluation of stability of biodiesel. Renewable and Sustainable Energy Review, 14(7): 1937–47. doi.org/10.1016/j.rser.2010.04.011
Abila, N. (2011). Promoting Biofuels Adoption in Nigeria: A Review of Socio-economic Drivers and Incentives. Paper presented at World Renewable Energy Congress,LinkÖping, Sweden 359-364; May, 2011. doi: 10.3384/ecp1105 7359.
Clean Cities Coalition Network (2020).Energy Efficiency and Renewable Energy.Accessed February, 2020,
www.cleancities.energy.gov./accomplishments.
Ahmad, J., Yusup, S., AwaisBokhari, A., and Kamil, R. (2014). Study of fuel properties of rubber seed oil based biodiesel. Energy Conversion and Management, 78: 266–275.
doi: 10.1016/j.enconman.2013.10.056.
Organisation for Economic Cooperation and Development (2008). Biofuels Support Policies: An Economic Assessment, Paris, (OECD Publishing, 2008), 146. doi.org/10.1787/9789264050112-en.
Bruwer, J.J., Boschoff, B., Van, D., Hugo, F.J.C., Fuls, J., Hawkins, C., Van der Walt, A.N., Engelbrecht, A., du Plessis, L.M. (1980). Sunflower oil as extender for Diesel Fuel in Agricultural Tractors. Paper presented at South African Institute for Agricultural Engineers Symposium. June, 1980, pp. 1-7. South Africa.
Oyebanji, J.A., Okekunle, P.O., Lasode, O.A., and Oyedepo, S.O. (2017). Chemical composition of bio-oils produced by fast pyrolysis of two energy biomass.Biofuels,pp.1–10.doi: 10.1080/17597269.2017.1284473.
Audu, T.O.K., and Aluyor, E.O. (2012). Potential of bioenergy and biofuels technology development in Nigeria. Petroleum Technological Development Journal, 1: 1–7.
Sarin, R., Sharma, M., Sinharay, S., and Malhotra, R.K. (2007). Jatropha–palm biodiesel blends: an optimum mix for Asia. Fuel, 86 (10–11):1365–71. doi.org/10.1016/j.fuel.2006.11.040.
Knothe, G. (2007). Some aspects of biodiesel oxidative stability. Fuel Processing Technology 88 (7): 669–677. doi.org/10.1016/j.fuproc.2007.01.005.
Dunn, R.O. (2002). Effect of oxidation under accelerated conditions on fuel properties of methyl soyate. Journal of American Oil Chemist’s Society 79: 915–20. doi:10.1007/S11746-002-0579-2.
Knothe, G. (2008). Designer Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties. Energy and Fuels, 22(2): 1358-1364.
doi: 10.1021/ef700639e.
Thomas, E.W., Fuller, R.E., and Terauchi, K. (2007). Fluoroelastomer compatibility with biodiesel fuels.SAE Technical Paper 2007-01-40061.
doi.org/10.4271/2007-01-4061.
Mitra, S., Ghanbari-Siahkali, A., Kingshott, P., Rehmeier, H.K., Abildgaard, H., and Almdal, K. (2006). Chemical degradation of crosslinked ethylene-propylene-diene rubber in an acidic environment, part I: effect on accelerated sulphur crosslinks. Polymer Degradation and Stability, 91(1): 69-80.
doi.org/10.1016/ j.polymdegradstab.2005.04.032.
Xue, J., Grift, T.E., and Hansen, A.C. (2011).Effect of biodiesel on engine performances and emissions. Renewable and Sustainable Energy Reviews (15): 1098–1116. doi: 10.1016/j.rser.2010.11.016
PennState Extension (2016). Using-biodiesel-fuel-in-your-engine. Pennsylvania state University. Accessed June, 2016, https://extension.psu.edu.
Googin, J.M., Compere, A.L., and Griffith, W.L. (1983). Technical considerations in choosing alcohol fuels for less-developed countries.Energy Research, 3: 173u2013186.
Shu, Q., Wang, J., Peng, B., Wang, D., and Wang, G. (2008). Predicting surface tension of biodiesel by a mixture topological index method at 313 K. Fuel, 87: 3586–3590.doi: 10.1016/j.fuel.2008.07.007
Deng, P.P., Rhodes, J.I., and Lammers P.J. (2010). Conversion of waste cooking oil to biodiesel using ferric sulfate and supercritical methanol processes,” Fuel, 89 no. 2 (2010): 360–364.
doi: 10.1016/j.fuel.2009.05.024
Bagby, M.O., “Vegetable Oils: Precombustion Characteristics and Performance as Diesel Fuels,” American Chemical Society, Division of Petroleum Chemistry 31, no.1 (1986): 191.
doi.org/10.4271/2007-01-4061.
Adebowale, K.O., Adewuyi, A., and Ajulo, K.D. (2012). Examination of fuel properties of the bimethyl esters of Thevetiaperuviana seed oil. International Journal of Green Energy, 9 (3): 297-307.
doi.org/10.1080/ 15435075.2011.621480
Adebowale, K.O., and Adedire, C.O. (2006). Chemical composition and insecticidal properties of the underutilized Jatrophacurcas seed oil. African Journal of Biotechnology 5, (10): 901-906.
doi.org/10.5897/AJB05.424.
Benjumea, P., Agudelo, J.R., and Agudelo, A.F. (2011). Effect of the degree of unsaturation of biodiesel fuels on engine performance, combustion characteristics and emissions Energy. Fuels, 25 (1): 77–85. doi.org/ 10.1021/ef101096x
Lapuerta, M., Armas, O., Rodríguez, J. (2008). Effect of biodiesel fuels on diesel engine emissions. Progress in Energy and Combustion Science 34 (2): 198-223. doi.org/10.1016/j.pecs.2007.07.001.
Nabi, Md.NS.,Akhter, Md.S., Shahadat, M.M.Z. (2006). Improvement of engine emissions with conventional diesel fuel and diesel-biodiesel blends. Bioresource Technology, 97(3): 372–378. doi: 10.1016/j.biortech.2005.01.013.
Chiu, C.W., Schumacher, L.G., and Suppes, G.J. (2004). Impact of cold flow improvers on soybean biodiesel blend. Biomass Bioenergy, 27 (5): 485–91. doi: 10.1016/j.biombioe.2004.04.006.
Ejikeme, P.M., Anyaogu, I.D., Ejikeme, C.L., Nwafor, N.P., Egbuonu, C.A.C.,Ukogu, K., and Ibemesi, J.A., (2010). Catalysis in biodiesel production bytransesterification processes. An insight. E-Journal of Chemistry, 7 (4): 1120–1132.
doi:10.1155/2010/689051
Le, T.T., Okitsu, K., Luu, V.B., and Maeda, Y. (2012). Catalytic technologies for biodiesel fuel production and utilization of glycerol: A review. Catalysts, 2 (4): 191–222. doi: 10.3390/cata2010191.
Romano, S.D., and Sorichetti, P.A. (2011). Introduction to biodiesel production, in: Dielectric spectroscopy in biodiesel production and characterization,” Green Energy and Technology, Springer: pp. 7–27.doi:10.1007/978-1-84996-519-4_2.
Shahzad, K., Nizami, A.S., Sagir, M., Rehan, M., Maier, S., Khan, M.Z., Ouda, M., Ismail, L.M.I., and BaFail, A.O. (2017). Biodiesel production potential from fat fraction of municipal waste in Makkah.PLoS ONE, 12(2): e0171297: 1-14.
doi:10.1371/journal.pone.0171297
Voca, N., Krieka, T., Janu, V., Ana, J., and Darko, M. (2008). Fuel properties of biodiesel produced from different raw materials in Croatia,” Journal of Mechanical Engineering, 54 (3): 232–244.
Azocar, L., Ciudad, G., Heipieper, H.J., and Navia, R. (2010). Biotechnological processes for biodiesel production using alternative oils. Application of Microbiology and Biotechnology, 88: 621–636. doi: 10.1007/s00253-010-2804-z
Fjerbaek, L., Christensen, K.V., and Norddahl, B. (2009). A review of the current state of biodiesel production using enzymatic transesterification. Biotechnology and Bioengineering, 102 (5): 1298–1315. doi:10.1002/bit.22256.
Ademiluyi, F.T., and Mepba, H.D. (2013). Yield and Properties of Ethanol Biofuel Produced from Different Whole Cassava Flours.ISRN Biotechnology, 916481: 1-6.
doi.org/10.5402/2013/916481
American Society of Agricultural and Biological Engineers (2011). Terminology and definition for biomass production, harvesting and collection, storage, processing, conversion and utilization: (ANSI/ASABE S593.1. 821-824). Acessed January, 2020.
https://standards.globalspec.com/std/9981020/asabe-s593.
Wan Omar, W.N.N., and Saidina Amin, N.A. (2011). Optimization of heterogeneous biodiesel production from waste cooking palm oil via response surface methodology. Biomass and Bioenergy, 35 (3): 1329-1338. doi.org/10.1016/j.biombioe.2010.12.049.
Yaakob, Z., Mohammad, M., Alherbawi, M., Alam, Z., and Sopian, K. (2013). Overview of the production of biodiesel from waste cooking oil. Renewable and Sustainable Energy Reviews, 18: 184-193. doi:10.1016/j.rser.2012.10.016
Chen, Y., Xiao, B., Chang, J., Fu, Y., Lv, P., and Wang, X. (2009). Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor,” Energy Conversion and Management, 50 (3): 668-673,
doi.org/10.1016/j.enconman.2008.10.011.
Mahmood, T., and Hussain, S.T. (2010). Nanobiotechnology for the production of biofuels from spent tea. African Journal of Biotechnology, 9(6) (2010): 858-868. doi:10.5897/AJB09.1555.
Papanikolaou, S., Dimou, A., Fakas, S., Diamantopoulou, P., Philippoussis, A., Galiotou-Panayotou, M., and Aggelis, G. (2011). Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. Journal of Applied Microbiology, 110(5): 1138-1150,
doi: 10.1111/j.1365-2672.2011.04961.x.
Pleissner, D., Lam, W.C., Sun, Z., and Lin, C.S.K. (2013). Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresource Technology, 137: 139-146.
doi.org/10.1016/j.biortech.2013.03.088.
Sambo, A.S. (2009). The challenges of sustainable energy development in Nigeria. Paper presented at the Nigerian Society of Engineers Forum, Shehu Musa Yar’Adua Centre, Abuja, Nigeria; April, 2009.
Melikoglu, M., Lin, C.S.K., and Webb, C. (2013). Analysing global food waste problem: pinpointing the facts and estimating the energy content. Central European Journal of Engineering, 3 (2): 157-164, doi.org/10.2478/s13531-012-0058-5.
Katami, T., Yasuhara, A., and Shibamoto, T. (2004). Formation of dioxins from incineration of foods found in domestic garbage. Environmental Science and Technology, 38 (4): 1062-1065,
doi:10.1021/es030606y.
Adhikari, B.K., Barrington, S., and Martinez, J. (2009). Urban food waste generation: challenges and opportunities. International Journal of Environment and Waste Management, 3 (1/2): 4-21,
doi:10.1504/IJEWM.2009.024696
Lin, C.S.K, Pfaltzgraff, L.A., Herrero-Davila, L., Mubofu, E.B., Abderrahim, S., Clark, J.H., Koutinas, A.A., Kopsahelis, N., Stamatelatou, K., Dickson, F., Thankappan, S., Mohamed, Z., Brocklesby, R., and Luque, R. (2013). Food waste as a valuable resource for the production of chemicals, materials and fuels: Current situation and global perspective. Energy & Environmental Science, 6 (2): 426-464, doi:10.1039/C2EE23440H
Tjell, J.C. (2005). Editorial: Is the ‘waste hierarchy’ sustainable?,” Waste Management and Research, 23 (3): 173-174, doi:10.1177/0734242X05023 00301.
Food and Agriculture Organization of the United Nations (2014b). Food Wastage Footprint: Impacts on Natural Resources. Accessed June 2020 http://www.fao.org/docrep/018/i3347e/i3347e.pdf.
Macedo, I.C., Seabra, J.E.A., and Silva, J.E.A.R. (2008). Greenhouse gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass and Bioenergy, 32(7): 582-595, doi:10.1016/j.biombioe.2007.12.006
Doornbosch, R., and Steenblik, R. (2007). Biofuels: Is the cure worse than the disease?,” Paper presented at the 20th meeting of the OECD Round Table on Sustainable Development, Paris, France, September , 2007.
Fischer, G., Eva, H., Sylvia, P.,Mahendra, S., and Harrij, V. (2009). Biofuels and Food Security. Paper prepared by the International Institute for Applied Systems Analysis (IIASA) for OPEC Fund for International Development (OFID), pp. 1 – 223, May, 2009.
Fritsche, U.R., Hennenberg, K.J., and Wiegmann, K. (2008). Bioenergy and Biodiversity: Potential for Sustainable Use of Degraded Lands. Briefing Paper for the Information Event at CBD-COP9 2008, Darmstadt, May, 2008.
Krzyzanowski, M., Kunna-Dibbert, B., and Schneider, J. (2005). Health effects of transport-related air pollution. World Health Organization – Geneva, Europe, pp. 190; 2005.ISBN 92-890-1375-3.
Schwela, D., Haq, G., Huizenga, C., Han, W., Fabian, H., and Ajero, M. (2006). Urban Air Pollution in Asian Cities: Status, Challenges and Management, 1st ed. (Earthscan Publications, 2006), 276,
doi.org/10.4324/9781849773676.
Beer, T., Grant, T., Williams, D., and Watson, H. (2002). Fuel cycle greenhouse gas emissions from alternative fuels in Australian heavy vehicles,” Atmospheric Environment, 36 (4): 753-763. doi: 10.1016/S1352-2310(01)00514-3
Morris, R.E., Pollack, A.K., Mansell, G.E., Lindhjem, C., Jia, Y., Wilson, G. (2003). Impact of biodiesel fuels on air quality and human health,” Summary report of National Renewable Energy Laboratory. ENVIRON International Corporation Novato 2003, California. Accessed May, 2020
http://www.nrel.gov/vehicles andfuels/npbf/pdfs/33793.
Russi, D. (2008). An integrated assessment of a large-scale biodiesel production in Italy: Killing several birds with one stone?. Energy Policy, 36 (3): 1169–1180. doi:1016/j.enpol.2007.11.016
Koh, L.P., and Ghazoul, J. (2008). Biofuels, biodiversity, and people: understanding the conflicts and finding opportunities. Biological Conservation 14 (10): 2450-2460.
doi.org/10.1016/j.biocon.2008.08.005.
FAO. (2003). World Agriculture: Towards 2015/2030.An FAO perspective. Edited by J. Bruinsma. Earthscan Publications Ltd., 2003, ISBN:92 5 104835 5.
Simonyan, K.J., and Fasina, O. (2013). Biomass resources and bioenergy potentials in Nigeria. African Journal of Agricultural Research, 8(40):4975-4989.doi: 10.5897/ajar2013.6726.
Organisation for Economic Cooperation and Development (2006). Agricultural Market Impact of Future Growth in the Production of Biofuels: (OECD, 2006). Acessed February, 2020. https://www.oecd-ilibrary.org/economics/agricultural-market-impacts-of-future-growth-in-the-production-of-biofuels_oecd_papers-v6-art1en.
European Commission (2006). Communication from the Commission to the Council and the European Parliament: Renewable Energy Road Map, Renewable energies in the 21st century: building a more sustainable future.COM 848 final. Brussels. Belgium. 2006.
Gurgel, A., Reilly, J.M., and Paltsev, S. (2007). Potential Land Use Implications of a Global Biofuels Industry. Journal of Agricultural and Food Industrial Organization, 5 (2): Article 9.
Nowicki P, Meijl H, van Knierim A, Banse M, Helming J, Margraf O, Matzdorf B, Mnatsakanian R, Reutter M, Terluin I, Overmars K, Verhoog D, Weeger C, Westhoek H. (2007). Scenar 2020 - Scenario study on agriculture and the rural world. Contract No. 30 - CE - 0040087/00-08. European Commission, Directorate-General Agriculture and Rural Development, Brussels. 2007.
Food and Agricultural Policy Research Institute (2008).US and world agricultural outlook. (FAPRI Staff Report 08-FSR 1 ISSN 1534-4533). Iowa State University and University of Missouri-Columbia, Ames, IO. 2008.
Food and Agriculture Organisation (2008).Climate Change, Biofuels and Land, Info sheet for the High-level Conference on World Food Security: the Challenges of Climate Change and Bioenergy. Rome, June, 2008.
Ravindranath, N.H., Manuvie, R., Fargione, J., Canadell, J.G., Berndes, G., Woods, J., Watson, H., and Sathaye, J. (2008). Greenhouse gas implications of land use and land conversion to biofuel crops.Pp. 111- 125, in R.W. Howarth and S. Bringezu, editors. Biofuels: Environmental Consequences and Interactions with Changing Land Use. Proceedings of the Scientific Committee on Problems of the Environment (SCOPE) International Biofuels Project Rapid Assessment, Gummersbach Germany.Cornell University, Ithaca NY, USA. September, 2008.
Ozdemir, E.D., Marlies, H., and Ludger, E. (2009).Land substitution effects of biofuel side products and implications on the land area requirement for EU 2020 biofuel targets. Energy Policy, 37: 2986–2996. doi.org/10.1016/j.enpol. 2009.03.051.
OECD/FAO. (2018). OECD-FAO Agricultural Outlook: OECD Agriculture statistics (database). OECD, 2018.Accessed March, 2020.
https://www.oecd-ilibrary.org /agriculture-and-food/data/oecd-agriculture-statistics_agr-data-en.doi:dx.doi.org /10.1787/agr-outl-data-en. 22.
Ogbonna, J.C., Ndubuisi, I.A., Murata, Y., and Omae, H. (2018).Production of Ethanol from Cassava Processing Wastes in Nigeria. Paper presented at the 8thsession of the International Renewable Energy Agency (IRENA) Assembly. Abu Dhabi, UAE. January, 2018. Accessed December 2019.
Wang, W. (2002).Cassava production for industrial utilization in China – Present and future perspectives: Cassava Research and Development in Asia: Exploring New Opportunities for an Ancient Crop. Paper presented at the 7th regional cassava workshop; Bangkok, Thailand, Oct. 28 – Nov. 1 2002, 1-673.
Bin, A., and Ghazali, Y. (2015).Bio-based products from rubber, jatropha and sunflower oil. ([S.l.]: [S.n.], 2015: 197, ISBN 978-90-367-7644-8.
Jansson, C., Westerbergh, A., Zhang, J., Hu, X., and Sun, C. (2009).Cassava, a potential biofuel crop in china. Applied Energy, 86 (1): 95-95.
doi.org/10.1016/j.apenergy.2009.05.011
Calais, P., Clark, A.R. (2007).Vegetable Oil as a Diesel Replacement Fuel. Environmental Science, Murdoch University and Western Australian Renewable Fuels Association Incorporated, Perth, Australia.Accessed January 2020,
<http://www.shortcircuit.com.au/warfa/paper/paper.
Leibig, R. (2008).Comparison of energy-saving and cost-efficient technology for ethanol production. Accessed January 2020.
www.biofuelsukraine.com/.2008 /Biofuels_Ukraine_Leibig_Eng.pdf.
Mobius, L.L.C. (2007).What is biodiesel: the long explanation.Acessed January, 2020.
www.mobiusbiofuels.com/biodiesel.htm./2007.
Food and Agriculture Organisation (2009).FAOStat database on world crop production.(FAO, 2009). Accessed February 2020, http://faostat.fao.org/site /567/ default.aspx#ancor.
Food and Agriculture Organization of the United Nations.FAOSTAT Statiscal database, statiscal Division, Rome (2019).Accessed January 2020, http://www.fao.org/statistics/en/.
Penyarat, S. and Bordindech, J. (2017). Study on the Performance of the Micro Direct Ethanol Fuel Cell (Micro-DEFC) for Applying with the Portable Electronic Devices. International Conference on Alternative Energy in Developing Countries and Emerging Economies 2017 AEDCEE, May 2017, Bangkok, Thailand. Energy Procedia, 138: 187–192.
Korbitz, W. (1999).Biodiesel production in europe and north america, an encouraging prospect. Renewable energy, 1699: 1078–1083.
doi.org/10.1016/S0960-1481 (98)00406-6.