Lignocellulosic Materials for Green Packaging: The Prospects and Challenges
Downloads
The use of lignocellulosic materials as green packaging materials has garnered attention due to their abundance and renewability. This paper reviews the recent advances in the use of lignocellulosic materials for green packaging by examining the relevant literature published mainly in the last 10 years. Literature search was performed by entering keywords such as biopolymers, lignocellulosic materials and green packaging into scholarly databases, namely Scopus, the Web of Science and Science Direct. This review shows that numerous lignocellulosic materials such as wheat straw, rice straw, pineapple crown and palm fibers have desirable properties as biomaterials. Lignocellulosic materials are versatile and can be used as films, filler in composites, coating and reinforcements in biodegradable foam. They can be converted to cellulose nanofibers which are basically cellulose fibrils incorporated into a learning matrix to provide tensile and flexural properties, as well as cellulose nanocrystals via treatment of cellulosic fiber with acid followed by sonification. Nonetheless, other inherent properties of lignocellulosic materials such as high moisture absorption and incompatibility with other biomaterials limit their use as packaging materials. These limitations prompt the reinforcement of lignocellulosic materials through adding bio-reinforcing agents such as nanoparticles and nanoclay.
Abreu, A. S., Oliveira, M., de Sá, A., Rodrigues, R. M., Cerqueira, M. A., Vicente, A. A., & Machado, A. V. (2015). Antimicrobial nanostructured starch based films for packaging. Carbohydrate Polymers, 129, 127–134.
https://doi.org/https://doi.org/10.1016/j.carbpol.2015.04.021
AL-Oqla, F. M., Hayajneh, M. T., & Fares, O. (2019). Investigating the mechanical thermal and polymer interfacial characteristics of Jordanian lignocellulosic fibers to demonstrate their capabilities for sustainable green materials. Journal of Cleaner Production, 241, 118256.
https://doi.org/https://doi.org/10.1016/j.jclepro.2019.118256
Bandyopadhyay-Ghosh, S., Ghosh, S. B., & Sain, M. (2015). 19 - The use of biobased nanofibres in composites (O. Faruk & M. B. T.-B. R. in C. M. Sain, Eds.). https://doi.org/https://doi.org/10.1533/9781782421276.5.571
Bhagwat, G., Gray, K., Wilson, S. P., Muniyasamy, S., Vincent, S. G. T., Bush, R., & Palanisami, T. (2020). Benchmarking Bioplastics: A Natural Step Towards a Sustainable Future. Journal of Polymers and the Environment, 28(12), 3055–3075. https://doi.org/10.1007/s10924-020-01830-8
Bharimalla, A. K., Deshmukh, S. P., Vigneshwaran, N., Patil, P. G., & Prasad, V. (2017). Nanocellulose-Polymer Composites for Applications in Food Packaging: Current Status, Future Prospects and Challenges. Polymer-Plastics Technology and Engineering, 56(8), 805–823.
https://doi.org/10.1080/03602559.2016.1233281
Campos-Requena, V. H., Rivas, B. L., Pérez, M. A., Figueroa, C. R., Figueroa, N. E., & Sanfuentes, E. A. (2017). Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries − In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biology and Technology, 129, 29–36.
https://doi.org/https://doi.org/10.1016/j.postharvbio.2017.03.005
Choong, W. S., Hadibarata, T., & Tang, D. K. H. (2020). Abundance and Distribution of Microplastics in the Water and Riverbank Sediment in Malaysia–A Review. Biointerface Research in Applied Chemistry, 11(4), 11700–11712.
de Castro, D. O., Bras, J., Gandini, A., & Belgacem, N. (2016). Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydrate Polymers, 137, 1–8. https://doi.org/https://doi.org/10.1016/j.carbpol.2015.09.101
Eichhorn, S. J. (2011). Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter, 7(2), 303–315.
https://doi.org/10.1039/C0SM00142B
El-Rehim, H. A., Kamal, H., Hegazy, E.-S. A., Soliman, E.-S., & Sayed, A. (2018). Use of gamma rays to improve the mechanical and barrier properties of biodegradable cellulose acetate nanocomposite films. Radiation Physics and Chemistry, 153, 180–187.
https://doi.org/https://doi.org/10.1016/j.radphyschem.2018.08.007
Ferreira, A. R. V, Alves, V. D., & Coelhoso, I. M. (2016). Polysaccharide-Based Membranes in Food Packaging Applications. Membranes , Vol. 6. https://doi.org/10.3390/membranes6020022
Fortunati, E., Peltzer, M., Armentano, I., Torre, L., Jiménez, A., & Kenny, J. M. (2012). Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydrate Polymers, 90(2), 948–956.
https://doi.org/https://doi.org/10.1016/j.carbpol.2012.06.025
Fortunati, E., Puglia, D., Luzi, F., Santulli, C., Kenny, J. M., & Torre, L. (2013). Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: Part I. Carbohydrate Polymers, 97(2), 825–836.
https://doi.org/https://doi.org/10.1016/j.carbpol.2013.03.075
Gilbert, M. (2017). Chapter 22 - Cellulose Plastics (M. B. T.-B. P. M. (Eighth E. Gilbert, Ed.). https://doi.org/https://doi.org/10.1016/B978-0-323-35824-8.00022-0
Hao, Y., Liu, H., Chen, H., Sha, Y., Ji, H., & Fan, J. (2019). What affect consumers’ willingness to pay for green packaging? Evidence from China. Resources, Conservation and Recycling, 141, 21–29. https://doi.org/https://doi.org/10.1016/j.resconrec.2018.10.001
Helanto, K. E., Matikainen, L., Talja, R., & Rojas, O. J. (2019). Bio-based Polymers for Sustainable Packaging and Biobarriers: A Critical Review. BioResources; Vol 14, No 2 (2019). Retrieved from https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_14_2_Review_Helanto_Bio_Based_Polymer_Sustainble_Packaging
Huang, W. (2018). Chapter 5 - Cellulose Nanopapers. In W. B. T.-N. Huang (Ed.), Micro and Nano Technologies (pp. 121–173).
https://doi.org/https://doi.org/10.1016/B978-0-323-48019-2.00005-0
Karan, H., Funk, C., Grabert, M., Oey, M., & Hankamer, B. (2019). Green Bioplastics as Part of a Circular Bioeconomy. Trends in Plant Science, 24(3), 237–249.
https://doi.org/https://doi.org/10.1016/j.tplants.2018.11.010
Karmee, S. K. (2018). A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Waste Management, 72, 240–254.
https://doi.org/https://doi.org/10.1016/j.wasman.2017.10.042
Lavoine, N., Desloges, I., Khelifi, B., & Bras, J. (2014). Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper. Journal of Materials Science, 49(7), 2879–2893.
https://doi.org/10.1007/s10853-013-7995-0
Li, C., Ding, S., Yang, L., Wang, Y., Ren, M., Chen, M., … Lichtfouse, E. (2019). Diffusive gradients in thin films: devices, materials and applications. Environmental Chemistry Letters, 17(2), 801–831. https://doi.org/10.1007/s10311-018-00839-9
Liu, B., Xu, H., Zhao, H., Liu, W., Zhao, L., & Li, Y. (2017). Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohydrate Polymers, 157, 842–849.
https://doi.org/https://doi.org/10.1016/j.carbpol.2016.10.067
Liu, Y., Ahmed, S., Sameen, D. E., Wang, Y., Lu, R., Dai, J., … Qin, W. (2021). A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends in Food Science & Technology, 112, 532–546.
https://doi.org/https://doi.org/10.1016/j.tifs.2021.04.016
Moustafa, H., Youssef, A. M., Darwish, N. A., & Abou-Kandil, A. I. (2019). Eco-friendly polymer composites for green packaging: Future vision and challenges. Composites Part B: Engineering, 172, 16–25. https://doi.org/https://doi.org/10.1016/j.compositesb.2019.05.048
Muller, J., González-Martínez, C., & Chiralt, A. (2017). Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials , Vol. 10. https://doi.org/10.3390/ma10080952
Park, G., & Park, H. (2018). Structural design and test of automobile bonnet with natural flax composite through impact damage analysis. Composite Structures, 184, 800–806.
https://doi.org/https://doi.org/10.1016/j.compstruct.2017.10.068
Piergiovanni, L., & Limbo, S. (2016). Cellulosic packaging materials. In Food packaging materials (pp. 23–31). Springer.
Ramos, Ó. L., Pereira, R. N., Cerqueira, M. A., Martins, J. R., Teixeira, J. A., Malcata, F. X., & Vicente, A. A. (2018). Chapter 8 - Bio-Based Nanocomposites for Food Packaging and Their Effect in Food Quality and Safety. In A. M. Grumezescu & A. M. B. T.-F. P. and P. Holban (Eds.), Handbook of Food Bioengineering (pp. 271–306). https://doi.org/https://doi.org/10.1016/B978-0-12-811516-9.00008-7
Rydz, J., Musioł, M., Zawidlak-Węgrzyńska, B., & Sikorska, W. (2018). Chapter 14 - Present and Future of Biodegradable Polymers for Food Packaging Applications. In A. M. Grumezescu & A. M. B. T.-B. for F. D. Holban (Eds.), Handbook of Food Bioengineering (pp. 431–467).
https://doi.org/https://doi.org/10.1016/B978-0-12-811449-0.00014-1
Su, Yanqun, Yang, B., Liu, J., Sun, B., Cao, C., Zou, X., … He, Z. (2018). Prospects for Replacement of Some Plastics in Packaging with Lignocellulose Materials: A Brief Review. BioResources; Vol 13, No 2 (2018). Retrieved from
Su, Ying, Burger, C., Ma, H., Chu, B., & Hsiao, B. S. (2015). Exploring the Nature of Cellulose Microfibrils. Biomacromolecules, 16(4), 1201–1209. https://doi.org/10.1021/bm501897z
Tang, K., & Angela, J. (2019). Phytoremediation of crude oil-contaminated soil with local plant species. IOP Conference Series: Materials Science and Engineering, 495, 12054.
https://doi.org/10.1088/1757-899x/495/1/012054
Tang, K. H. D. (2019). Phytoremediation of Soil Contaminated with Petroleum Hydrocarbons: A Review of Recent Literature. Global Journal of Civil and Environmental Engineering, 1(December), 33–42. https://doi.org/10.36811/gjcee.2019.110006
Tang, K. H. D. (2020a). Ecotoxicological Impacts of Micro and Nanoplastics on Marine Fauna. Examines in Marine Biology and Oceanography, 3(2), 1–5.
https://doi.org/10.31031/EIMBO.2020.03.000563
Tang, K. H. D. (2020b). Effects of Microplastics on Agriculture: A Mini-review. Asian Journal of Environment & Ecology, 13(1), 1–9.
https://doi.org/10.9734/ajee/2020/v13i130170
Tang, K. H. D. (2020c). Municipal Solid Waste Management in the Sarawak State of Malaysia and the Way Forward. Asian Journal of Environment & Ecology, 12(2), 38–55.
Tang, K. H. D. (2020d). Hydroelectric dams and power demand in Malaysia: A planning perspective. Journal of Cleaner Production, 252, 119795. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.119795
Tang, K. H. D. (2020e). A comparative overview of the primary Southeast Asian safety and health laws. International Journal of Workplace Health Management, 13(6), 601-632. https://doi.org/10.1108/IJWHM-10-2019-0132
Tang, K. H. D., & Al Qahtani, H. M. S. (2020). Sustainability of oil palm plantations in Malaysia. Environment, Development and Sustainability, 22(6), 4999–5023. https://doi.org/10.1007/s10668-019-00458-6
Van den Oever, M., Molenveld, K., van der Zee, M., & Bos, H. (2017). Bio-based and biodegradable plastics: facts and figures: focus on food packaging in the Netherlands. Wageningen Food & Biobased Research.
Van Hai, L., Son, H. N., & Seo, Y. B. (2015). Physical and bio-composite properties of nanocrystalline cellulose from wood, cotton linters, cattail, and red algae. Cellulose, 22(3), 1789–1798. https://doi.org/10.1007/s10570-015-0633-z
Wong, J. K. H., Lee, K. K., Tang, K. H. D., & Yap, P.-S. (2020). Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Science of The Total Environment, 719, 137512.
https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.137512
Wu, Y., Li, Q., Zhang, X., Li, Y., Li, B., & Liu, S. (2019). Cellulose-based peptidopolysaccharides as cationic antimicrobial package films. International Journal of Biological Macromolecules, 128, 673–680. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.01.172
Xie, J., Wang, Z., Zhao, Q., Yang, Y., Xu, J., Waterhouse, G. I. N., … Jin, G. (2018). Scale-Up Fabrication of Biodegradable Poly(butylene adipate-co-terephthalate)/Organophilic–Clay Nanocomposite Films for Potential Packaging Applications. ACS Omega, 3(1), 1187–1196.