Thermochemical Behaviour of Red Algae: Kinetics and Mechanism of the Pyrolysis
Downloads
The present work assesses a possible process for treating red algal in an environmentally friendly way. It is based on the pyrolysis of these algals for energetic valorization to evaluate its bioenergy potential. The pyrolytic and kinetic characteristics of red algal as a model for algal biomass were evaluated and compared at heating rates of 5, 10,20 and50°C min-1 from 0 to900 °C in an inert atmosphere. The DTG curves showed three distinct stages of degradation; dehydration, devolatilization, and residual decomposition. The kinetic analysis was established by the isoconversional methods of Friedman (FR), Flynn-Wall-Ozawa (FWO), and Vyazovkin (VYA) methods) to estimate activation energy, the master-plot methods were introduced to establish kinetic models. Activation energy values were shown to be 227± 8, 214 ± 2 and224,2 ± 3 kJ mol-1as calculated by FR, FWO, and VYA methods, respectively. The devolatilization stage of redalgal could be described by the Third-order equation (n = 3). It is shown that the isoconversional kinetic methods provide reliable kinetic information suitable for adequately choosing the kinetic model which best describes the thermal decomposition of red algal. The composite differential method was used to obtain the following kinetic triplet: g(x)= Ea=221,6kj/mol, R=0.99.
J. M. Amezaga, D. Neil, and J. A. Hazelton, “ScienceDirect The future of bioenergy and rural development policies in Africa and Asia,” Biomass and Bioenergy, vol. 59, pp. 137–141, 2013.
O. K. Lee and E. Y. Lee, “Biomass and Bioenergy Sustainable production of bioethanol from renewable brown algae biomass,” Biomass and Bioenergy, vol. 92, pp. 70–75, 2016.
A. Aboulkas, A. Tabbal, H. Bouaik, M. El Achaby, K. El Harfi, and A. Barakat, “Thermochemical behaviour of Algal Waste: Kinetics and Mechanismof the Pyrolysis,” Eng. Technol. J., 2018.
T. Ainane, “Valorisation de la biomasse algale du Maroc : Potentialités pharmacologiques et Applications environnementales , cas des algues brunes Cystoseira tamariscifolia et Bifurcaria bifurcata Tarik Ainane To cite this version : HAL Id : tel-00637002,” 2011.
N. Hanif, M. Chbani, and T. Naoki, “L ’ exploitation des algues rouges Gelidium dans la région d ’ El -Jadida : aspects socio-économiques et perspectives Abstract,” vol. 10, no. 1, pp. 103–126, 2014.
A. Mouradi-givernaud, L. A. Hassani, T. Givernaud, and Y. Lemoine, “Biology and agar composition of Gelidium sesquipedale harvested along the Atlantic coast of Morocco,” pp. 391–395, 1999.
F. Length, “Biotransformation of algal waste by biological fermentation,” vol. 5, no. July, pp. 1233–1237, 2006.
E. Fuente, R. R. Gil, and B. Ruiz, “Journal of Analytical and Applied Pyrolysis Pyrolysis characteristics of a macroalgae solid waste generated by the industrial production of Agar – Agar,” J. Anal. Appl. Pyrolysis, vol. 105, pp. 209–216, 2014.
E. Fuente and B. Ruiz, “Sustainable activated carbons of macroalgae waste from the Agar-Agar industry. Prospects as adsorbent for gas storage at high pressures,” Chem. Eng. J., 2014.
M. V. Kok and E. Ozgur, “Energy Sources , Part A : Recovery , Utilization , and Characterization of lignocellulose biomass and model compounds by thermogravimetry,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 39, no. 2, pp. 134–139, 2017.
G. MY et al., “Utilization of Starink Approach and Avrami Theory to Evaluate the Kinetic Parameters of the Pyrolysis of Olive Mill Solid Waste and Olive Mill Wastewater,” J. Adv. Chem. Eng., 2017.
K. Wu et al., “Bioresource Technology Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer,” Bioresour. Technol., vol. 163, pp. 18–25, 2014.
H. Bouaik, A. Tabal, A. Aboulkas, K. El harfi, and C. A. Authors Aboulkas, “Investigation of the Pyrolysis Behaviour of Marine Macroalgae Biomass Using the Thermogravimetric Analysis,” Eng. Technol. J., vol. 1, no. 09, pp. 2456–3358, 2018.
A. Galadima and O. Muraza, “In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review,” Energy Conversion and Management. 2015.
A. Ounas, A. Aboulkas, K. El harfi, A. Bacaoui, and A. Yaacoubi, “Pyrolysis of olive residue and sugar cane bagasse: Non-isothermal thermogravimetric kinetic analysis,” Bioresour. Technol., 2011.
A. Aboulkas, K. El harfi, and A. El Bouadili, “Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms,” Energy Convers. Manag., 2010.
M. Y. Guida et al., “Thermochemical treatment of olive mill solid waste and olive mill wastewater: Pyrolysis kinetics,” J. Therm. Anal. Calorim., 2016.
H. L. Friedman, “Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic,” J. Polym. Sci. Part C Polym. Symp., 2007.
H. E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis,” Anal. Chem., vol. 29, no. 11, pp. 1702–1706, 1957.
A. Aboulkas, A. Tabbal, H. Bouaik, M. El Achaby, K. El Harfi, and A. Barakat, “Thermochemical behaviour of Algal Waste: Kinetics and Mechanismof the Pyrolysis,” Eng. Technol. J., vol. 3, no. 3, pp. 2456–3358, 2018.
N. Sbirrazzuoli, “Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way,” Thermochim. Acta, vol. 564, pp. 59–69, 2013.
A. Cadenato, J. M. Morancho, X. Fernández-Francos, J. M. Salla, and X. Ramis, “Comparative kinetic study of the non-isothermal thermal curing of bis-GMA/TEGDMA systems,” J. Therm. Anal. Calorim., vol. 89, no. 1, pp. 233–244, 2007.
A. Aboulkas et al., “Investigation on the Pyrolysiskinetics and Mechanism of Date Stone Using Thermogravimetric Analysis,” Eng. Technol. J., vol. 3, no. 3, pp. 2456–3358, 2018.
G. I. Senum and R. T. Yang, “Rational approximations of the integral of the Arrhenius function,” J. Therm. Anal., vol. 11, no. 3, pp. 445–447, 1977.
T. R. K. C. Doddapaneni, J. Konttinen, T. I. Hukka, and A. Moilanen, “Influence of torrefaction pretreatment on the pyrolysis of Eucalyptus clone: A study on kinetics, reaction mechanism and heat flow,” Ind. Crops Prod., 2016.
S. Kim, H. Vu, J. Kim, J. Hyung, and H. Chul, “Bioresource Technology Thermogravimetric characteristics and pyrolysis kinetics of Alga Sagarssum sp . biomass,” Bioresour. Technol., vol. 139, pp. 242–248, 2013.
R. K. Muktham and S. Bankupalli, “on ICTAC recommendations Pyrolysis characteristics and kinetics of algal biomass using tga analysis based on ICTAC recommendations,” no. January 2016, 2015.
J. Hyung, S. Kim, H. Vu, J. Kim, and H. Chul, “Biomass and Bioenergy Effects of water-washing Saccharina japonica on fast pyrolysis in a bubbling fl uidized-bed reactor,” Biomass and Bioenergy, vol. 98, pp. 112–123, 2017.
S. Ceylan, Y. Topcu, and Z. Ceylan, “Bioresource Technology Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis,” Bioresour. Technol., vol. 171, pp. 193–198, 2014.