Optimization of Work in Process through Design of Experiments and Simulation Scenarios
Downloads
This study aims to minimize the work in process through design of experiments and simulation scenarios. In the literature it is possible to find publications related to reducing work in process through inventory control tools and methodologies applied in areas of production management: forecasts, inventory theory, lean manufacturing tools, just in time, discrete simulation, among others.
However, the approach in the present investigation consists of three main tools; lean manufacturing philosophy, discrete event simulation and design of experiments. About lean manufacturing philosophy, the focus of the tools applied to the improvement of flow of materials within the production lines was taken, where its main objective is to create a continuous flow by reducing inventories and process balance. Simulation as a basis for conducting experiments and avoiding submitting the real system to look for a plant distribution and ensuring a continuous flow of material throughout the model. Design of experiments is aimed at identifying the significant factors in the model that affect work in process, which simplifies obtaining information about which variables have the greatest impact on the response.
With this, a lean system capable of integrating three tools was created, developing a methodology that served for the construction of the ideal model and it was observed that it is not necessary for a productive system to have large amounts of work in process to function correctly. The excess of work in process generates expenses in materials and their storage, thus it is possible to be said that the new system manages to diminish expenses like costs of work in process (WIP) and cost of total production by means of optimizing the work in process.
Valenzuela, J. & Palacios, J. Reducir el tiempo de preparación utilizando el sistema SMED en una máquina de producción por medio de la metodológia DMAIC. in Ingenieria Vertice 2010 13–24 (2014).
Sanchez, P. A., Ceballos, F. & Torres, G. S. A dressmaking factory production process analysis modeling and simulation. Cienc. e Ing. Neogranadina 25, 137–150 (2015).
Blanco, L. E., Romero, E. & Páez, J. A. Conwip un sistema de control de producción. Fourth LACCEI Int. Lat. Am. Caribb. Conf. Eng. Technol. 21–27 (2006).
Dinas, J. A., Franco, P. & Rivera, L. A. Aplicación de herramientas de pensamiento sistémico para el aprendizaje de Lean Manufacturing. Sist. Telemat. 7, 109–144 (2009).
Sundar, R., Balaji, A. N. & SatheeshKumar, R. M. A review on lean manufacturing implementation techniques. Procedia Eng. 97, 1875–1885 (2014).
García, E., García, H. & Cárdenas, L. E. Simulación y análisis de sistemas con ProModel. (Pearson Educación de México, S.A. de C.V., 2013).
Ilzarbe, L., Tanco, M., Viles, E. & Álvarez, M. J. El diseño de experimentos como herramienta para la mejora de los procesos. Aplicación de la metodología al caso de una catapulta. Tecnura 10, 127–138 (2007).
Ceballos, J. A., Restrepo, E. D. & Fernández, J. D. Aplicación De Un Modelo De Simulación Discreta En El Sector Del Servicio Automotor. Rev. Ing. Ind. UPB 01, 51–61 (2013).
Pergher, I. & Vaccaro, G. L. R. Work in process level definition: a method based on computer simulation and electre tri. Production 24, 536–547 (2013).
Jayaprakash, J., Kumar, K. M. & Ambedkar, P. Simulation of Mixed Model Assembly Line Sequencing Using Pro-Model Software. Int. J. Appl. Eng. Res. 10, 854–856 (2015).
Bernal, M. E., Cock, G. & Rastrepo, J. H. Productividad en una celda de manufactura flexible simulada en promodel utilizando path networks type crane. Tectura 19, 133–144 (2015).
Coss, R. Simulación un enfoque práctico. (Limusa Noriega Editores, 2002).
Menéndez, G., Bonavetti, V. L. & Irassar, E. F. Los Diseños de Experimentos y la Tecnología del Hormigón. Rev. la Construcción 7, 94–104 (2008).
Hillier, F. S. & Lieberman, G. J. Introduccón a la investigacíon de operaciones. 3, (The McGraw-Hill Companies, Inc, 2010).
Herrera, O. J. & Becerra, L. A. Diseño general de las etapas de simulación de procesos con énfasis en el análisis de entrada. in Twelfth LACCEI Latin American and Caribbean Conference for Engineering and Technology 10 (Excellence in Engineering To Enhance a Country’s Productivity, 2014).
Garza, J. Aplicacion de diseno de experimentos para el analisis de secado de un producto (Experiment design application for analysis of the drying a product). Innovaciones de Negocios 10, 145–158 (2013).
Pérez, G., Arango, M. D. & Agudelo, Y. Aplicación del diseño de experimentos para el análisis del proceso de doblado. Rev. EIA 11, 145–156 (2009).
Ekren, B. Y. & Ornek, A. M. A simulation based experimental design to analyze factors affecting production flow time. Simul. Model. Pract. Theory 16, 278–293 (2008).
Eswaran, P., Sivakumar, K. & Subramaniyan, M. Minimizing error on circularity of FDM manufactured part. Mater. Today Proc. 5, 6675–6683 (2018).