Reduction of Work in Process in Manufacturing Systems by Means of a Theory of Constraints Approach and Discrete Event Simulation
Downloads
In the manufacturing companies, within their main requirements, it is considered the introduction of strategies and tools to improve the management of resources and production processes, in order to generate higher revenues, meet the needs of the client and increase their level of competitiveness. The high WIP and low income caused by inadequate management of its constraint resources are one of the situations that occur in companies that prevent its optimal development. This article proposes a methodology based on continuous improvement programming systems known as DBR and simulation of discrete events using ProModel® software. Through the application of these principles, we seek to reduce the level of WIP, applying mainly the technique for the development of successful simulation projects such as the authors Harrell, Ghosh, and Bowden, altering the variables of production and identifying constraint resources in the system. In this work it is possible to identify the constraints of a system, harmonizing each of the operations at the demanded rate by the bottleneck with the help of a simulation scenario, resulting in a reduction in the WIP, a reduction in the inventory costs and with it, an increase in throughput.
Breyfogle III., F. W., 2003. Implementing six sigma: smarter solutions using statistical methods, John Wiley & Sons.
Chase, R. B., and Jacobs, F. R., 2010. Administración de operaciones: producción y cadena de suministros, McGraw Hill México.
Cox, J., and Goldratt, E. M., 2005. La Meta, North Riverpress México.
García Dunna, E., García Reyes, H., and Cárdenas Barrón, L. E., 2013. Simulación y análisis de sistemas con ProModel, Estado de México: Pearson E ducación de México, S. A. de C.V.
García, G., Vázquez, P., Albertón, E., and Jaime, J., 2010. Teoría de las restricciones aplicada en la planificación de la producción en una planta de terminación de cueros, Tecnología del Cuero N° 74 vol. 22, 30-37.
García-Velázquez, A., Pineda-Domínguez, D., and Andrade-Vallejo, M. A., 2015. Las capacidades tecnológicas para la innovación en empresas de manufactura, Universidad & Empresa, Bogotá, 17(29), 257-278.
Goldratt, E. M., 1990. Theory of Constraints: What is this thing called the Theory of Constraints and how should it be implemented, Croton-on-Hudson: North River, New York.
Golmohammadi, D.,2015. A study of scheduling under the theory of constraints. International Journal of Production Economics, 165, 38-50.
Harrell, C., Ghosh, B., and Bowden, R., 2000. Simulation using ProModel, United States of America: McGraw-Hill Education.
Herrera, O. J., and Becerra, L. A.,2014. Diseño General de las Etapas de Simulación de Procesos con Énfasis en el Análisis de Entrada, Obtenido de http://www. laccei. org/LACCEI2014Guayaquil/ RefereedPapers/RP152.pdf.
Herrera-Vidal, G., Campo-Juvinao, J., Bernal-Hernandez, J., and Tilves-Martinez, R., 2018. Modelo de teoría de restricciones con consideraciones de optimización y simulación – Un caso de estudio, Revista Espacios, 39(3), 10-27.
Kissani, I., andBouya, W., 2014. Analysis of WIP Inventory Control and Simulation of KANBAN System within Wiring Harness Company, International Conference on Industrial Engineering and Operations Management, 2489-2499.
Mohammadi, A., and Eneyo, E. S., 2012. Application of Drum-Buffer-Rope Methodology in Scheduling of Healthcare System. POMS 23rd Annual Conference. Chicago, Illinois, U.S.A.
Palma, R. R., and Forradellas, R., 15 de mayo 2009. Propuesta para optimización de sistemas productivos modelados con simulación por eventos discretos, Recuperado el 1 de mayo de 2018, de http://hdl.handle.net/10915/19694.
Pergher, I., and Roehe Vaccaro, G. L.,2014. Work in process level definition: a method based on computer simulation and electre tri, Production, 24(3), 536-547.
Saraswat, P., Kumar, D., and Kumar Sain, M., 2015. Reduction of work in process inventory and production lead time in a bearing industry using value stream mapping tool, International Journal of Managing Value and Supply Chains (IJMVSC), 6(2), 27-35.
Schragwnheim, E., and Ronen, B., 1990. Drum-Buffer-Rope Shop floor control, Production and inventory Management Journal(Third Quarter), 18-22.
Steele, D. C., Philipoom, P. R., Malhotra, M. K., and Fry, T. D., 2005. Comparisons between drum–buffer–rope and material requirements planning: a case study, International Journal of Production Research, 3181–3208.
Thürer, M., Stevenson, M., Silva, C., and Qu, T.,2017. Drum-buffer-rope and workload control in High-variety flow and job shops with bottlenecks: an assessment by simulation, International Journal of Production Economics 188, 116–127.
Watson, K. J., and Patti, A., 2008. A comparison of JIT and TOC buffering philosophies on system performance with unplanned machine downtime, International Journal of Production Research, Vol. 46(No. 7), 1869–1885.