Comparative Analysis of Metamaterial Substrate and Fabric Substrate
Downloads
Fractal structures have the property ofself-similarity and ease of repetitiveness; they remain less used in planar patterned metamaterial structures. A fractal antenna is design based on the metamaterial for multiband applications. The Fractal Antenna design is consist a metamaterial layer with FR4 substrate with .The proposed antenna consists of a octagonal radiating patch and a partial ground plane. The substrate of the proposed antenna is made of Dacron fabric with permittivity 3.The dimension of the proposed antenna substrate is 40×34×1.7 and the bandwidth 10.969 GHz starting from 38.965 GHz to 49.9333 GHz for return loss less than -10 dB. The gain variation is from 3.2 dB to 11.2147 dB.
Bikash Ranjan Behera “Effect of Substrates on Metamaterial Based Antenna Design and Analysis of Antenna using Different Substrates ” , IEEE WiSp NET , PP 665 -669 , 2016.
G.K Pandey et.al “Metamaterial based UWB antenna” IEEE Microwave Electronic Letter, Vol 50, issue 18 pp1266-1268, 28 Aug 2014.
Balamati Choudhury et.al “Particle Swarm Optimization for Multiband Metamaterial Fractal Antenna” Hindawi Publishing Corporation Journal of Optimization , Volume 5 , pp 15-22 , July 2013.
R.-B. Hwang, H.-W.Liu, and C.-Y. Chin “A Metamaterial based E – Plane Horn Antenna” Progress In Electromagnetics Research, PIER 93, pp 275-289, 2009.
Siddharth Bhat, Rashmi Pattoo “Design and Simulation of Wide Band Fish Shaped UWB Antenna”, IOSR Journal of Electrical and Electronics Engineering, Volume 9, Issue 3 Ver. V , June 2014.
Zuhura Juma Ali “A Miniaturized Ultra Wideband (UWB) Antenna Design for Wireless Communications”, International Journal of Scientific and Research Publications, Volume 4, Issue 7, pp 1-5 , July 2014.
Jingtao Zhu “Gain Enhancement for Planar Quasi-Yagi Antenna with Zero-Index Metamaterial” IEEE conference of recent microwave research, pp 212-214 , 2016
M. I. Ahmed “A Novel Wearable Metamaterial Fractal Antenna for Wireless Applications” IEEE Conference of Electromagnetic research, pp 119-124 , 2016
Karthikeya G S “mm Wave Metamaterial Inspired Coaxial-Fed Microstrip Antenna Array for Femtosat” Loughborough Antennas & Propagation Conference (LAPC), pp 783-788 , 2016
Natalya N. Kisel, “The Modeling of Characteristics of the Patch Antenna with Non-uniform Substrate Metamaterial” , IEEE Conference of Wireless Communication , pp 165-169 ,2016
Udaykumar “Improvement of performance parameters of rectangular patch antenna using metamaterial” , IEEE International Conference On Recent Trends In Electronics Information Communication Technology , pp 1011-1015 , 2016
Zain Bin Khalid “Design of a Metamaterial Inspired Single-Cell Zeroth Order Resonant(ZOR) Antenna”, IEEE Conference of millimeter waves , pp 42-48 , 2016
Chen, W.L., Wang, G.M., and Zhang, C.X. “Bandwidth enhancementof a microstrip-line-fed printed wide-slot antenna with a fractal-shapedslot”, IEEE Trans. Antennas Propagation., Vol 7, pp. 2176–2179 , 2009.
Matin, M.A., Sharif, B.S., and Tsimenidis, “Probe fed stackedpatch antenna for wideband applications”, IEEE Trans. Antennas Propag.,Vol 8 pp. 2385–2388 ,2009
Yousefi, L., Iravani, B.M., and Ramahi, O.M.: “Enhanced bandwidthartificial magnetic ground plane for low-profile antennas”, IEEEAntennas Wirel. Propag.Letter.,Vol 6, pp. 289–292 , 2007
Li, L.W., Li, Y.N., Yeo, T.S., Mosig, J.R., and Martin, O.J.F.: ‘A broadbandand high-gain metamaterial microstrip antenna’, Appl. Phys. Lett., Vol 96, pp. 1–3 , 2010
Han, X., Song, H.J., Yi, Z.Q., and Lin, J.D.: “Compact ultra-widebandmicrostrip antenna with metamaterials”, Chin. Phys. Lett., Vol 11, pp. 1–3 , 2012
Xiong, H., Hong, J.S., and Peng, Y.H.: “Impedance bandwidth and gainimprovement for microstrip antenna using metamaterials”, Radio Eng., Vol 4, pp. 993–998 , 2012.
Ansoft High Frequency structure Simulator (HFSS), [Online]. Available at
Koohestani, M., Pires, N., Skrivervik, A.K., and Moreira, “Time-domain performance of patch-loaded band-reject UWBantenna”, Electron. Letter.,Vol 49 , pp. 385–386 ,2013.
T. Zasowski, F. Althaus, M. Stäger, A. Wittneben, and G. Tröster, “UWB for noninvasive wireless body area networks: Channelmeasurements and results,” presented at the IEEE Ultra Wideband Syst.Technol. Conf. (UWBST 2003), Reston, VA, Nov. 2003.
First Report and Order, “Revision of part 15 of the commission’s ruleregarding ultra-wideband transmission system FCC 02-48”, Federal Communications Commission, 2002.
G. A. Conway and William G. Scanlon, “Antennas for over-bodysurfacecommunication at 2.45GHz,” IEEE Transactions on Antennasand Propagation, vol. 57, no. 4, pp. 844-855, April 2009.
S. Zhu and R. J. Langley, “Dual-Band Wearable Textile Antennas on AnEBG Substrate,” IEEE Transactions on Antennas and Propagation, Vol.57, No.4, Apr 2009.
Mai A. R. Osman, “The Investigation of Flannel Fabric Layers”,2010 International Symposium on Antennas and Propagations,Macao, China, 23-26 November 2010.
Y. Chen, S. Yang, S. He, and Z.-P. Nie, "Design and analysis ofwideband planar monopole antennas using the multilevel fast multipole algorithm," Progress In Electromagnetics Research B, Vol. 15,95-112, 2009.
ShuvashisDey, NanditaSaha and SubrataBiswas.“Design andperformance analysis of UWB circular disc monopole textile antennaand bending consequences."The 5th European Conference on Antennaand Propagation, 2011, April 2011, Rome, Italy.
Mahmud MS, Jabri FJJ, Mahjabeen B. “Compact UWB Wearableantenna on leather material for wireless applications,” IEEE Antennasand Propagation Society International Symposium (APSURSI).Orlando, FL; July 2013.
M. Klemm and G. Troester, “Textile UWB antennas for wireless bodyarea networks,” IEEE Trans. Antennas Propag., Vol. 54, no. 11, pp.3192-3197, Nov. 2006.
Chahat N., “Design and Characterization of an UWB WearableAntenna”, 2010 Loughborough Antennas and Propagation Conference(LAPC), 2010, pp. 461-464.
Ray, K. P., Tiwary, S. “Ultra Wide Band Printed Hexagonal MonopoleAntennas”, IET Microwaves, Antennas and Propagation, 2010, vol. 4,no. 4, p. 437-445.
Mondal T, Das S. “UWB printed hexagonal monopole antennaswith WLAN band rejection,” IEEE Antenna Week (IAW). Kolkata, India; 2011.
Lodi, G. A., R. I. Zafar, and M. Bilal. "A novel goblet shaped patch antenna for ultra wide band applications." Communication Technology(ICCT), 2010 12th IEEE International Conference on.IEEE, 2010.
“IEEE standard for safety levels with respect to human exposure toradiofrequency electromagnetic fields, 3 kHz to 300 GHz,” IEEE Standard C95.1 (1999).
Kahrizi, M., T. Sarkar, and Z. Maricevic, “Analysis of a wideradiating slot in the ground plane ofa microstrip line,” IEEE Trans. Microwave Theory Tech., Vol. 41, 29–37, January 1993.
Chair, R., A. A. Kishk, and K. F. Lee, “Ultrawide-band coplanarWaveguide-fed rectangular slot antenna,” IEEE Antennas and Wireless Propagation Lett., Vol. 3, 227–229, 2004.
Sze, J. and K. Wong, “Bandwidth enhancement ofa microstripline-fed printed wide-slot antenna,” IEEE Trans. Antennas andPropagation, Vol. 49, 1020–1024, July 2001.
Sharma, S. K., L. Shafai, and N. Jacob, “Investigation of widebandmicrostrip slot antenna,” IEEE Trans. Antenna and Propagation,Vol. 52, No. 3, 865–872, March 2004.
Latif, S. I., L. Shafai, and S. K. Sharma, “Bandwidth enhancementand size reduction ofmicrostrip slot antenna,” IEEE Trans.Antenna and Propagation, Vol. 53, No. 3, 994–1003, March 2005.
Behdad, N. and K. Sarabnadi, “A multiresonant singleelement wideband slot antenna,” IEEE Antennas and Wireless Propagation Lett., Vol. 3, 5–8, 2004.