Characteristics of Seawall Design for Coastal Protection At Laompo Beach, Indonesia
Downloads
This research presents an evaluation of the design and stability of a seawall at Laompo Beach, Sulawesi, Indonesia, to protect a nearby highway from coastal erosion. Preliminary dimensions with some secondary data on wind, tidal, and soil bathymetric data have been carried out. This includes a wall height of 4 m, foundation width of 2.8 m, foundation height of 0.7 m, and top embankment width of 1 m. The stability analyses using the limit equilibrium method indicate that the embankment satisfies the safety criteria under static, dynamic, and scour conditions. The research highlights the importance of precise design considerations, including wave forecasting and stability analysis, for constructing durable seawalls. This paper emphasizes overall coastal engineering to reduce the effects of erosion on critical infrastructure and the need for high-quality construction and maintenance to ensure the long-term efficacy of these structures, providing valuable guidance for developing safe and effective coastal protection measures. This work is singular, as the advanced geotechnical analysis tools have been implemented in the context of a real-world coastal protection scenario in a developing region
Agustan, Try Sugiyarto Soeparyanto, Sulha, Uniadi Mangidi, La Welendo, & Ridwan Syah Nuhun. (2024). Understanding the Conceptual Boundaries of Ocean Engineering Nomenclature in Civil Engineering: A Literature Review. International Journal of Dynamics in Engineering System, 1(2), 43–49. https://doi.org/10.55679/ijdes.v1i2.6
Alisa, Baranskaya., Anna, Novikova., N.N., Shabanova., N.G., Belova., Stepan, V., Maznev., Stanislav, Ogorodov., Benjamin, M., Jones. (2021). The role of thermal denudation in the erosion of ice-rich permafrost coasts in an enclosed bay (Gulf of Kruzenstern, western Yamal, Russia). Frontiers in Earth Science, doi: 10.3389/FEART.2020.566227
Bishop, A. W. (1955). The use of the Slip Circle in the Stability Analysis of Slopes. Géotechnique, 5(1), 7–17.
Das, B. M., & Ramana, G. V. (2011). Principle of Soil Dynamics (2nd ed.). Cengage Learning.
Gianluigi, Di, Paola., Germán, Rodríguez., Carmen, Maria, Rosskopf. (2023). Shoreline Dynamics and Beach Erosion. Geosciences, doi: 10.3390/geosciences13030074
Hamid, N., Setyowati, D. L., Juhadi, Priyanto, A. S., Hardati, P., Soleh, M., Wijayanti, N. R., & Aroyandini, E. N. (2021). The Effect of Human Activities Towards Coastal Dynamics and Sustainable Coastal Management. International Journal of Sustainable Development and Planning, 16(8), 1479–1493. https://doi.org/10.18280/ijsdp.160809
Hosseinzadeh, N., Ghiasian, M., Andiroglu, E., Lamere, J., Rhode-Barbarigos, L., Sobczak, J., Sealey, K. S., & Suraneni, P. (2021). Concrete Seawalls: Load Considerations, Ecological Performance, Durability, and Recent Innovations. Engineering Archive. https://doi.org/10.31224/osf.io/h6zt8
Janbu, N. (1973). Slope Stability Computations: In Embankment-dam Engineering. John Wiley and Sons, 47–86.
Margarita, Stancheva., Hristo, Stanchev., Robert, S., Young., Georgi, Parlichev. (2021). Coastal erosion driven Land-Sea Interactions in Maritime Spatial Planning - a case of Bulgaria. Journal of Coastal Conservation, doi: 10.1007/S11852-021-00841-4
Maryam, Sadat, Seyedpour., Ali, Derakhshani. (2023). (6) Probabilistic stability analysis of anchored cantilever sheet pile walls using fuzzy set theory. Applied Ocean Research, doi: 10.1016/j.apor.2022.103454
Morgenstern, N. R., & Price, V. E. (1965). The Analysis of the Stability of General Slip Surfaces. Géotechnique, 15, 79–93.
Mohit, Kumar., A., Chatterjee. (2022). (1) Seismic Stability Analysis of Caissons under Earthquake Forces Considering 3D Log-Spiral Failure Surface. Natural Hazards Review, doi: 10.1061/(ASCE)nh.1527-6996.0000588
Nayono, S. E., Prabowo, Y. B., Wibowo, D. E., & Purwantoro, D. (2020). Protecting Riverbank’s Environment Towards Scour with Combined Reinforcement of Gabion and Tetrapod: a Laboratory Model Study. Journal of Physics: Conference Series, 1625(1), 12064. https://doi.org/10.1088/1742-6596/1625/1/012064
Nima, Hosseinzadeh., Mohammad, Ghiasian., E., Andiroglu., J, Lamere., Landolf, Rhode-Barbarigos., James, Sobczak., Kathleen, Sullivan, Sealey., Prannoy, Suraneni. (2022). Concrete seawalls: A review of load considerations, ecological performance, durability, and recent innovations. Ecological Engineering, doi: 10.1016/j.ecoleng.2022.106573
Ngii, E., Minmahddun, A., & Kudus, F. N. R. (2023). Rainfall Infiltration Impact on Road Embankment Stability. Brilliant Engineering, 4(2), 1–4. https://doi.org/10.36937/ben.2023.4832
Raswitaningrum, T. R. (2019). Analisis Tanggul Pelindung Pantai Reklamasi Terhadap Gelombang Laut. Jurnal Konstruksia, 10(2), 115–128.
Ruby, Vallarino., Vicente, Negro, Valdecantos., José, María, Del, Campo. (2023). Understanding the impact of hydrodynamics on coastal erosion in Latin America: a systematic review. Frontiers in Environmental Science, doi: 10.3389/fenvs.2023.1267402.
Spencer, E. (1967). A Method of The Analysis of The Stability of Embankments Assuming Parallel Interslice Forces. Géotechnique, 17(1), 11–26.
S. Alberti., Michael, J., Olsen., James, Allan., Ben, Leshchinsky. (2022). Feedback thresholds between coastal retreat and landslide activity. Engineering Geology, doi: 10.1016/j.enggeo.2022.106620
Triatmodjo, B. (2001). Teknik pantai. Beta Offset.