Effectiveness of CO2 - Sorbent Coated Membrane for Improving Dark Fermentative Hydrogen Production
Downloads
Dark fermentative hydrogen production (bioH2) could be greatly impaired by the build-up of bioH2 in the reactor headspace, as well as, its re-dissolution in the culture medium. This is because carbon dioxide (CO2) and reduced nicotinamide adenine dinucleotide in the medium could be used for succinate and fumarate production, which could impact negatively on the bioH2 production. Hence, prompt removal of headspace CO2 could prevent its re-dissolution in the culture medium and thereby creating potential for improved bioH2 yields. Therefore, this study investigated the bioH2 production effect of removing CO2 in the reactor headspace using calcium oxide (CaO) sorbent. The results showed that reactors with membrane impregnated with 1 M CaO produced 15.6% and 11.6 % hydrogen yields higher than non-impregnated membranes, and membranes impregnated with 2 M CaO, respectively. Besides, CO2 yield and loss in membrane storage modulus of 74.5 ml/ g VS and 40 %, respectively, were measured for reactors with 1 M CaO-impregnated membranes while CO2 yield and loss in membrane storage modulus of 79.9ml/ g VS and 28%, respectively, were measured for reactors with 2 M CaO-impregnated membranes. The results indicated that 1 M CaO-impregnated membranes were more efficient for CO2 adsorption than 2 M CaO-impregnated membranes. The improved yield using CaO-impregnated membranes justified the effectiveness of the membrane for headspace CO2 capture and the possible commercial application of the technique if improved upon. The research findings could contribute to the development of hydrogen energy technology.
Brar, K.K., Cortex, A.A., Pellegrini, V.O.A., Amulya, K., Polikarpov, I., Magdouli, S., Kumar, M., Yang, Y.H., Bhatia, S.K. & Brar, S.K. (2022). An overview on progress, advances, and future outlook for biohydrogen production technology. Int. J. Hydrogen Energy, 47, 37264 -37281.
Kotay, S.M. & Das, D. (2008). Biohydrogen as a renewable energy resource-prospects and potentials, Int J Hydrogen Energy 33, 258-263.
Alburquerque, M.M., Sartor, G. de-B., Martinez-Burgos, W. J., Scapini, T., Edwiges, T., Soccol, C. R. & Medeiros, A.B.P. (2024). Biohydrogen produced via dark fermentation: A Review. Methane 3 (3), 500 -532.
Zhao, Z.T.; Ding, J.; Wang, B.Y.; Bao, M.Y.; Liu, B.F.; Pang, J.W.; Ren, N.Q.; Yang, S.S. (2024). Advances in the Biomass Valorization in Dark Fermentation Systems: A Sustainable Approach for Biohydrogen Production. Chem. Eng. J. 481, 148444.
Arimi, M.M.; Knodel, J.; Kiprop, A.; Namango, S.S.; Zhang, Y.; Geißen, S.U. (2015). Strategies for Improvement of Biohydrogen Production from Organic-Rich Wastewater: A Review. Biomass Bioenergy 75, 101–118
Elbeshbishy, E.; Hafez, H.; Dhar, B.R.; Nakhla, G. (2011). Single and Combined Effect of Various Pretreatment Methods for Biohydrogen Production from Food Waste. Int. J. Hydrogen Energy 36, 11379–11387.
Luo, L.; Sriram, S.; Johnravindar, D.; Louis Philippe Martin, T.; Wong, J.W.C.; Pradhan, N. (2022). Effect of Inoculum Pretreatment on the Microbial and Metabolic Dynamics of Food Waste Dark Fermentation. Bioresour. Technol. 358, 127404.
Salem, A.H.; Brunstermann, R.; Mietzel, T.; Widmann, R. (2018). Effect of Pre-Treatment and Hydraulic Retention Time on Biohydrogen Production from Organic Wastes. Int. J. Hydrogen Energy 43, 4856–4865.
Taherzadeh, M.J. Karimi, K. (2008). Pretreatment of Lignocellulosic wastes to improve ethanol and biogas production: a review, International Journal of Molecular Sciences 9, 1621-1651.
Tanisho, S., Kuromoto, M. & Kadokura, N. (1998). Effect of CO2 removal on hydrogen production by fermentation, Int. J. Hydrogen Energy 23, 559-563.
Kim, B.K. & Daniels, L. (1991). Unexpected Errors in Gas Chromatographic Analysis of Methane Production by Thermophilic Bacteria, Appl Environ Microbiol 57, 1866–1869.
Caroll, J.J. (1999), "Henry's Law Revisted," Chem Eng. Progress 95, 49-56.
Regueira-Marcos, L., García-Depraect, O. & Muñoz, R. (2023). Elucidating the Role of pH and Total Solids Content in the Co-Production of Biohydrogen and Carboxylic Acids from Food Waste via Lactate-Driven Dark
Fermentation. Fuel 338, 127238.
Florin, N.H. & Harris, A.T. (2008). Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents, Chemical Engineering Science, 63, 287-316.
Kinoshita, C.M. & Turn, S.Q. (2003). Production of hydrogen from bio-oil using CaO as a CO2 sorbent., Int J Hydrogen Energy 28, 1065-1071.
Mahishi, M.R. & Goswami, D.Y. (2007). An experimental study of hydrogen production by gasification of biomass in the presence of a CO2 sorbent, Int J Hydrogen Energy 32, 2803-2808
Abanades, J.C. Rubin, E.S. & Anthony, E.J. (2004). Sorbent cost and performance in CO2 capture systems, Industrial and Engineering Chemistry Research 43, 3462-3466.
Li, J.-L., & Chen, B.-H. (2005). Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors, Separation and Purification Technology 41, 109–122.
Kumar, P.S., Hogendoorn, J.A., Feronb, P.H.M. & Versteeg, G.F. (2002). New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors, Chemical Engineering Science 57, 1639-1651.
Khoo, H.H. & Tan, R.B.H. (2006). Life cycle investigation of CO2 recovery and sequestration, Environ. Sci. Technol 40, 4016-4024.
Ren, J., Wang, R., Zhang, H.Y., Li, Z., Liang, D.T. & Tay, J.H. (2006). Effect of PVDF dope rheology on the structure of hollow fiber membranes used for CO2 capture, J. Mem.Sci 281, 334-344.
Atchariyawu, S., Freng, C., Wang, R., Jiraratananon, R. & Liang, D.T. (2006). Effect of membrane structure on mass-transfer in the membrane gas-liquid contacting process using microporous PVDF hollow fibers, J. Mem.Sci 285, 272-281.
Xu, A., Yang, A., Young, S., sdeMontigny, D. & Tontiwachwuthikul, P. (2008). Effect of internal coagulant on effectiveness of polyvinylidene fluoride membrane for carbon dioxide separation and absorption, J. Mem.Sci 311, 153-158.
Liu, F., Hashim, N.A., Liu, Y.T., Abed, M.R.M. & Li, K. (2011). Progress in the production and modification of PVDF membrane, J. Membr. Sc 375, 1–27.
Visser, T. & Wessling, M. (2007). When Do Sorption-Induced Relaxations in Glassy Polymers Set In?, Macromolecules 40, 4992–5000.
Wind, J.D., Paul, D.R. & Koros,W.J. (2004), Natural gas permeation in polyimide membranes, Journal of Membrane Science 228, 227–236.
Wind, J.D., Sirard, S.M., Paul, D.R., Green, P.F.. Johnston, K.P. & Koros, W.J. (2003). Relaxation Dynamics of CO2 Diffusion, Sorption, and Polymer Swelling for Plasticized Polyimide Membranes, Macromolecules 36, 6442–6448.
Angelidaki, I. & Sanders, W.T.M. (2004). Assessment of the anaerobic biodegradability of macro pollutants, Reviews in Environmental Science and Bio/Technology 3, 117-129.
Gerardi, M.H. (2003). The microbiology of Anaerobic Digesters, John Wiley & Sons,Inc., Hoboken,New Jersey,.
Baeyens, J.; Zhang, H.; Nie, J.; Appels, L.; Dewil, R.; Ansart, R.; Deng, Y. (2020), Reviewing the Potential of Bio-Hydrogen Production by Fermentation. Renew. Sustain. Energy Rev 131, 110023.
Sarangi, P.K.; Nanda, S. (2020). Biohydrogen Production Through Dark Fermentation. Chem. Eng. Technol. 43, 601–612
Jain, R.; Panwar, N.L.; Jain, S.K.; Gupta, T.; Agarwal, C.; Meena, S.S. (2022). Bio-Hydrogen Production through Dark Fermentation: An Overview. Biomass Convers. Biorefin. 14, 12699–12724
Sampath, P.; Brijesh; Reddy, K.R.; Reddy, C.V.; Shetti, N.P.; Kulkarni, R.V.; Raghu, A.V. (2020). Biohydrogen Production from Organic Waste—A Review. Chem. Eng. Technol. 43, 1240–1248.
Brar, K.K.; Cortez, A.A.; Pellegrini, V.O.A.; Amulya, K.; Polikarpov, I.; Magdouli, S.; Kumar, M.; Yang, Y.H.; Bhatia, S.K. & Brar, S.K. (2022). An Overview on Progress, Advances, and Future Outlook for Biohydrogen Production Technology. Int. J. Hydrogen Energy 47, 37264–3728.
Zheng, X.J. & H.Q. Yu. (2005). Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures, Journal of Environmental Management 1, 65-70.