Classification of Diabetic Retinopathy Using Efficientnet-B7 with Hyperparameter Optimization
Downloads
Diabetic Retinopathy (DR) is a microvascular complication of Diabetes Mellitus caused by retinal blood vessel damage, potentially leading to permanent blindness. Early detection is crucial to preventing disease progression. However, studies show that DR is often detected only in its advanced stages. This research classifies DR images using the EfficientNet-B7 Convolutional Neural Network (CNN) architecture with Hyperparameter Optimization (HPO) to achieve optimal results. Experiments were conducted with different data splits, dense layer configurations, and learning rates. The best training performance was achieved with a 90%-10% data split, 256 dense units, and a 0.01 learning rate, reaching 95.48% accuracy. The best testing performance was obtained with a 90%-10% data split, 32 dense units, and a 0.001 learning rate, achieving 95.81% accuracy. These results demonstrate that EfficientNet-B7, combined with optimized hyperparameters, enhances DR classification accuracy and provides a promising approach for early DR detection.
Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Umar, A. M., Linus, O. U., Arshad, H., Kazaure, A. A., Gana, U., & Kiru, M. U. (2019). Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition. IEEE Access, 7(February 2017), 158820–158846. https://doi.org/10.1109/ACCESS.2019.2945545
Adil, M., Ullah, R., Noor, S., & Gohar, N. (2020). Effect of number of neurons and layers in an artificial neural network for generalized concrete mix design. Neural Computing and Applications, 8, 1–9. https://doi.org/10.1007/s00521-020-05305-8
Aggarwal, C. C. (2018). Neural Networks and Deep Learning. In Neural Networks and Deep Learning. https://doi.org/10.1007/978-3-319-94463-0
Agus Febru Haryanto, S., Puspitaningrum, D., & Ernawati. (2015). Untuk Memprediksi Cuaca ( Studi Kasus : Kota Bengkulu ). Rekursif, 3(2), 82–94.
Aiello, L. P., Cahill, M. T., & Wong, J. S. (2001). Systemic considerations in the management of diabetic retinopathy. American Journal of Ophthalmology, 132(5), 760–776. https://doi.org/10.1016/S0002-9394(01)01124-2
American Optometric Associations. (2018). Edelman Intelligence. https://doi.org/10.1097/00006324-197308000-00020
Arcadu, F., Benmansour, F., Maunz, A., Willis, J., Haskova, Z., & Prunotto, M. (2019). Deep learning algorithm predicts diabetic retinopathy progression in individual patients. Npj Digital Medicine, 2(1). https://doi.org/10.1038/s41746-019-0172-3
Bhatia, K., Arora, S., & Tomar, R. (2016). Diagnosis of diabetic retinopathy using machine learning classification algorithm. Proceedings on 2016 2nd International Conference on Next Generation Computing Technologies, NGCT 2016, October, 347–351. https://doi.org/10.1109/NGCT.2016.7877439
Di, W., Bhardwaj, A., & Wei, J. (2018). Deep Learning Essentials (A. Singh (Ed.)). Packt Publishing.
Erlvira, & Suryawijaya, E. E. (2019). Retinopati Diabetes. Cermin Dunia Kedokteran, 46(3), 220–224.
Farley, T. F., Mandava, N., Prall, F. R., & Carsky, C. (2008). Accuracy of primary care clinicians in screening for diabetic retinopathy using single-image retinal photography. Annals of Family Medicine, 6(5), 428–434. https://doi.org/10.1370/afm.857
Flaxel, C. J., Adelman, R. A., Bailey, S. T., Fawzi, A., Lim, J. I., Vemulakonda, G. A., & Ying, G. Shuang. (2019). Diabetic Retinopathy Preferred Practice Pattern. In Ophthalmology (Vol. 127, Issue 1). https://doi.org/10.1016/j.ophtha.2019.09.025
Ganegedara, T. (2018). Natural Language Processing with TensorFlow (R. Atikar (Ed.); 1st ed.). Packt Publishing Ltd.
Hodnett, M., F. Wiley, J., Liu, Y., & Maldonado, P. (2019). Deep learning with R. In Deep Learning with R. https://doi.org/10.1007/978-981-13-5850-0
Jude Hemanth, D., & Vieira Estrela, V. (Eds.). (2017). Deep Learning for Image Processing Applications.
Marques, G., Agarwal, D., & de la Torre Díez, I. (2020). Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network. Applied Soft Computing Journal, 96, 106691. https://doi.org/10.1016/j.asoc.2020.106691
Menshawy, A. (2018). Deep Learning By Example: A hands-on guide to implementing advanced machine learning algorithms and neural networks.
Nikhil, M. N., & Angel Rose, A. (2019). Diabetic Retinopathy Stage Classification using CNN. International Research Journal of Engineering and Technology (IRJET), 06(05 May 2019), 5969–5974.
Nugroho, K. S. (2019). Confusion Matrix untuk Evaluasi Model pada Supervised Learning. Medium.
Patterson, J., & Gibson, A. (2017). Deep Learning a Practitioner’S Approach. Nature.
Putra, J. W. G. (2019). Pengenalan konsep pembelajaran mesin dan deep learning. Computational Linguistics and Natural Language Processing Laboratory, 4, 1–235. https://www.researchgate.net/publication/323700644
Reddy Bokka, K., Hora, S., Jain, T., & Wambugu, M. (2019). Deep Learning for Natural Language Processing. In Handbook of Statistics (Vol. 38). https://doi.org/10.1016/bs.host.2018.05.001
Rizal, S., Ibrahim, N., Pratiwi, N. K. C., Saidah, S., & Fu’adah, R. Y. N. (2020). Deep Learning untuk Klasifikasi Diabetic Retinopathy menggunakan Model EfficientNet. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 8(3), 693–705. https://doi.org/10.26760/elkomika.v8i3.693
Sahreni, S., Isramilda, & Ipaljri Saputra, A. (2020). Hubungan Durasi Terdiagnosis Diabetes Melitus Tipe 2 dan Kadar Gula Darah. 3(1), 2614–8064.
Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. 36th International Conference on Machine Learning, ICML 2019, 2019-June, 10691–10700.
Venkatesan, R., & Li, B. (2018). Convolutional Neural Networks in Visual Computing.
Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., & Deng, S. H. (2019). Hyperparameter optimization for machine learning models based on Bayesian optimization. Journal of Electronic Science and Technology, 17(1), 26–40. https://doi.org/10.11989/JEST.1674-862X.80904120
Yaqub, M., Jinchao, F., Zia, M. S., Arshid, K., Jia, K., Rehman, Z. U., & Mehmood, A. (2020). State-of-the-art CNN optimizer for brain tumor segmentation in magnetic resonance images. Brain Sciences, 10(7), https://doi.org/10.3390/brainsci10070427
Yu, T., & Zhu, H. (2020). Hyper-Parameter Optimization: A Review of Algorithms and Applications. ArXiv, 1–56.
Zafar, I., Tzanidou, G., Burton, R., Patel, N., & Araujo, L. (2018). Hands-On Convolutional Neural Networks with TensorFlow. In Hands-On Convolutional Neural Networks with TensorFlow.