The Quality Study of Hydroxyapatite (HAp)-TiO2 Composites from Pokea (Batissa violacea var. celebensis) Shell Waste by Hydrothermal, Microwave and Precipitation Methods
Downloads
Research on the quality study of hydroxyapatite (HAp)-TiO2 composites from Pokea (batissa violacea var. celebensis) clamshell waste by hydrothermal, microwave and precipitation methods have been successfully conducted. This study aims to determine the characteristics and quality of HAp-TiO composites2 synthesized from Pokea clam shell using three different methods, namely hydrothermal, microwave and precipitation. FTIR characterization showed the absorption of PO4-3 functional groups in the wave number range 567-1091 cm-1, -OH and -NH groups at wave numbers 3444-3448 cm-1, and Ti-O groups at 567-632 cm-1. XRD analysis revealed a diffraction pattern at 2θ = 26.67o, with crystal sizes of HAp-TiO2 material of 80.20 nm, 71.47 nm, and 73.28 nm for hydrothermal, microwave and precipitation methods, respectively. The mechanical properties showed that the highest compressive strength of the HAp-TiO2 composite was obtained in the hydrothermal method (6.07 MPa), followed by the precipitation method (5.19 MPa) and microwave (5.08 MPa). The material density test results for the hydrothermal, microwave and precipitation methods were recorded at 2.27 MPa, 2.12 MPa, and 1.73 MPa. The test results showed the highest value in the hydrothermal method of 24.24 MPa, while the microwave and precipitation methods produced hardness of 18.61 and 18.83 MPa, respectively. Digital optical microscope analysis showed the surface morphology of the material to be uniform, refined grains with pores. The results in this study indicate that the hydrothermal method produces composites with better mechanical quality and crystal structure than other methods.
V. Murugesan et al., “Combinatorial anticancer effects of multi metal ion and drug substitute with hydroxyapatite coatings on surgical grade 316LSS stainless steel alloys towards biomedical applications,” Journal of Materials Research and Technology, vol. 27, pp. 7244–7258, Nov. 2023, doi: 10.1016/J.JMRT.2023.11.036.
X. Han et al., “Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review,” Colloids Surf B Biointerfaces, vol. 227, p. 113339, Jul. 2023, doi: 10.1016/J.colsurfb.2023.113339.
R. Jolly et al., “Bioactive Phoenix dactylifera seeds incorporated chitosan/hydroxyapatite nanoconjugate for prospective bone tissue engineering applications: A bio-synergistic approach,” Materials Science and Engineering: C, vol. 109, p. 110554, Apr. 2020, doi: 10.1016/J.MSEC.2019.110554.
S. López-Ortiz et al., “The pH Effect on the Growth of Hexagonal and Monoclinic Hydroxyapatite Synthesized by the Hydrothermal Method,” J Nanomater, vol. 2020, no. 1, p. 5912592, Jan. 2020, doi: 10.1155/2020/5912592.
E. Fiume, G. Magnaterra, A. Rahdar, E. Verné, and F. Baino, “Hydroxyapatite for Biomedical Applications: A Short Overview,” Ceramics 2021, Vol. 4, Pages 542-563, vol. 4, no. 4, pp. 542–563, Sep. 2021, doi: 10.3390/ceramics4040039.
J. Jeong, J. H. Kim, J. H. Shim, N. S. Hwang, and C. Y. Heo, “Bioactive calcium phosphate materials and applications in bone regeneration,” Biomater Res, vol. 23, no. 1, Jan. 2019, doi: 10.1186/S40824-018-0149-3.
S. V. Dorozhkin, “A detailed history of calcium orthophosphates from 1770s till 1950,” Materials Science and Engineering: C, vol. 33, no. 6, pp. 3085–3110, Aug. 2013,
doi: 10.1016/j.msec.2013.04.002.
L. A. Kadir et al., “Sintesis dan Karakterisasi Bionano Hidroksiapatit (HAp) Secara Insitu Dengan Metode Hidrotermal,” Cokroaminoto Journal of Chemical Science, vol. 4, no. 2, pp. 1–4, Jul. 2022, Accessed: Nov. 01, 2024. [Online]. Available: https://science.e-journal.my.id/cjcs/article/view/118
A. Salama, B. M. Kamel, T. A. Osman, and R. M. Rashad, “Investigation of mechanical properties of UHMWPE composites reinforced with HAP+TiO2 fabricated by solvent dispersing technique,” Journal of Materials Research and Technology, vol. 21, pp. 4330–4343, Nov. 2022,
doi: 10.1016/J.JMRT.2022.11.038.
R. Kumar and A. Agrawal, “Micro-hydroxyapatite reinforced Ti-based composite with tailored characteristics to minimize stress-shielding impact in bio-implant applications,” J Mech Behav Biomed Mater, vol. 142, p. 105852, Jun. 2023, doi: 10.1016/j.jmbbm.2023.105852.
N. A. S. Mohd Pu’ad, R. H. Abdul Haq, H. Mohd Noh, H. Z. Abdullah, M. I. Idris, and T. C. Lee, “Synthesis method of hydroxyapatite: A review,” Mater Today Proc, vol. 29, pp. 233–239, Jan. 2020, doi: 10.1016/j.matpr.2020.05.536.
J. Indira and K. S. Malathi, “Comparison of template mediated ultrasonic and microwave irradiation method on the synthesis of hydroxyapatite nanoparticles for biomedical applications,” Mater Today Proc, vol. 51, pp. 1765–1769, Jan. 2022, doi: 10.1016/j.matpr.2021.03.028.
Agusriyadin, Fahmiati, Faradissa, Armid, and L. A. Kadir, “Studi Sitoksisitas dan Sifat Mekanik Nano Hidroksiapatit Dari Cangkang Kerang Pokea (Batissa violacea var. celebensis, von Martens 1897),” BioWallacea: Jurnal Penelitian Biologi (Journal of Biological Research), vol. 10, no. 2, pp. 64–73, Dec. 2023, Accessed: Nov. 01, 2024. [Online]. Available:
https://biowallacea.uho.ac.id/index.php/journal/article/view/5
M. A. M. Castro et al., “Synthesis of hydroxyapatite by hydrothermal and microwave irradiation methods from biogenic calcium source varying pH and synthesis time,” Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 61, no. 1, pp. 35–41, Jan. 2022, doi: 10.1016/J.BSECV.2020.06.003.
I. A. Suci and Y. Dala Ngapa, “Sintesis Dan Karakterisasi Hidroksiapatit (Hap) Dari Cangkang Kerang Ale-Ale Menggunakan Metode Presipitasi Double Stirring,” 2020.
G. S. Hutabarat, D. T. Qodir, H. Setiawan, N. Akbar, and A. R. Noviyanti, “Sintesis Komposit Hidroksiapatit-Lantanum Oksida (HA-La2O3) dengan Metode Hidrotermal secara In-Situ dan Ex-Situ,” Alchemy Jurnal Penelitian Kimia, vol. 15, no. 2, pp. 287–301, Sep. 2019,
doi: 10.20961/ALCHEMY.15.2.32062.287-301.
P. Shi, M. Liu, F. Fan, C. Yu, W. Lu, and M. Du, “Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts,” Mater Sci Eng C Mater Biol Appl, vol. 90, pp. 706–712, Sep. 2018, doi: 10.1016/J.MSEC.2018.04.026.
B. Rajamannan, S. Mugundan, G. Viruthagiri, P. Praveen, and N. Shanmugam, “Linear and nonlinear optical studies of bare and copper doped TiO2 nanoparticles via sol gel technique,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 118, pp. 651–656, Jan. 2014, doi: 10.1016/J.SAA.2013.09.045.
M. Sari, P. Hening, Chotimah, I. D. Ana, and Y. Yusuf, “Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric Porogen for bone tissue engineering,” Biomater Res, vol. 25, no. 1, pp. 1–13, Dec. 2021, doi: 10.1186/S40824-021-00203-Z/FIGURES/10.