Detection of Cyber-Physical Attacks in Additive Manufacturing: An LSTM-Based Autoencoder Method Utilizing Reconstruction Error Analysis from Side-Channel Monitoring

Deep Learning (DL), Discrete Wavelet Transform (DWT), Particle Swarm Optimization (PSO), Long-short Term Memory-autoencoder (LSTM-A).

Authors

October 29, 2024

Downloads

To identify cyber-physical threats in additive manufacturing systems, this study proposes an advanced technique utilizing data from side-channel monitoring. The method combines several key approaches for preprocessing, analyzing, and classifying time-series data, ensuring robust attack detection capabilities. A predefined Window Sliding (FWS) preprocessing method segments continuous time-series data into manageable windows of specified size, making analysis more efficient. Next, we employ Discrete Wavelet Transform (DWT) to extract features from each window, capturing essential information across various frequency bands. Particle Swarm Optimization (PSO) is then used to refine the DWT coefficients, isolating the most valuable features to enhance classification performance by focusing on the most informative characteristics. The optimal feature set is used to train a deep learning (DL) model capable of identifying anomalies through reconstruction errors, specifically an LSTM-A autoencoder. Our results demonstrate that this approach can distinguish between normal and attack scenarios with an accuracy rate of 99% when applied to side-channel attack detection in additive manufacturing. This method provides a scalable and adaptable solution to safeguard cyber-physical systems against sophisticated cyberattacks while improving detection accuracy.