Early Hotspot Detection in Photovoltaic Modules using Deep Learning Methods
Downloads
Photovoltaic (PV) energy systems have been widely used in energy production especially in recent years due to their clean, reliable, environmentally friendly and resource continuity. The electrical energy to be obtained must be uninterrupted and of high quality. For this reason, faults that may cause production losses in PV power plants should be detected quickly and accurately. In this study, an approach that can automatically detect hotspot fault in solar PV modules is presented. In the proposed approach, firstly, Jet colormap based colored image transformation process is applied to gray scale infrared image data. Then, using three different deep learning models such as MobilNetV2, ResNet-18, InceptionV3, both original grey scale data and Jet colormap data are detected and evaluation metric values are obtained. The importance of this research lies in the potential of deep learning-based effective detection, especially in the early and rapid diagnosis of PV hotspot faults.
Acikgoz, H. (2022). A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting. Applied Energy, 305, 117912.
Korkmaz, D. (2021). SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting. Applied Energy, 300, 117410.
Korkmaz, D., Acikgoz, H., & Yildiz, C. (2021). A novel short-term photovoltaic power forecasting approach based on deep convolutional neural network. International Journal of Green Energy, 18(5), 525-539.
Korkmaz, D., & Acikgoz, H. (2022). An efficient fault classification method in solar photovoltaic modules using transfer learning and multi-scale convolutional neural network. Engineering Applications of Artificial Intelligence, 113, 104959.
Haque, A., Bharath, K. V. S., Khan, M. A., Khan, I., & Jaffery, Z. A. (2019). Fault diagnosis of photovoltaic modules. Energy Science & Engineering, 7(3), 622-644.
Espinosa, A. R., Bressan, M., & Giraldo, L. F. (2020). Failure signature classification in solar photovoltaic plants using RGB images and convolutional neural networks. Renewable Energy, 162, 249-256.
Ali, M. U., Saleem, S., Masood, H., Kallu, K. D., Masud, M., Alvi, M. J., & Zafar, A. (2022). Early hotspot detection in photovoltaic modules using color image descriptors: An infrared thermography study. International Journal of Energy Research, 46(2), 774-785.
Ali, M. U., Khan, H. F., Masud, M., Kallu, K. D., & Zafar, A. (2020). A machine learning framework to identify the hotspot in photovoltaic module using infrared thermography. Solar Energy, 208, 643-651.
Dhimish, M. (2021). Defining the best-fit machine learning classifier to early diagnose photovoltaic solar cells hot-spots. Case Studies in Thermal Engineering, 25, 100980.
Su, B., Chen, H., Liu, K., & Liu, W. (2021). RCAG-Net: Residual channelwise attention gate network for hot spot defect detection of photovoltaic farms. IEEE Transactions on Instrumentation and Measurement, 70, 1-14.
Açıkgöz, H., Korkmaz, D., & Dandıl, Ç. (2022). Classification of hotspots in photovoltaic modules with deep learning methods. Turkish Journal of Science and Technology, 17(2), 211-221.
Dhimish, M., Mather, P., & Holmes, V. (2018). Evaluating power loss and performance ratio of hot-spotted photovoltaic modules. IEEE Transactions on Electron Devices, 65(12), 5419-5427.
Niazi, K. A. K., Akhtar, W., Khan, H. A., Yang, Y., & Athar, S. (2019). Hotspot diagnosis for solar photovoltaic modules using a Naive Bayes classifier. Solar Energy, 190, 34-43.
Pramana, P. A. A., & Dalimi, R. (2020, December). Hotspot detection method in large capacity photovoltaic (PV) Farm. In IOP Conference Series: Materials Science and Engineering (Vol. 982, No. 1, p. 012019). IOP Publishing.
Kim, K. A., Seo, G. S., Cho, B. H., & Krein, P. T. (2015). Photovoltaic hot-spot detection for solar panel substrings using AC parameter characterization. IEEE Transactions on Power Electronics, 31(2), 1121-1130.
Millendorf, M., Obropta, E., & Vadhavkar, N. (2020, April). Infrared solar module dataset for anomaly detection. In Proc. Int. Conf. Learn. Represent.
Deng, S., Zhang, Z., Ju, C., Dong, J., Xia, Z., Yan, X., ... & Xing, G. (2017). Research on hot spot risk for high-efficiency solar module. Energy Procedia, 130, 77-86.
Buiu, C., Danaila, V., & Raduta, C. (2020). MobileNetV2 ensemble for cervical precancerous lesions classification, Processes, 8, 595.
Kulkarni, U., Gurlahosur, S. V., Babar, P., Muttagi, S. I., Soumya, N., Jadekar, P. A., & Meena, S. M. (2023, April). Facial Key points Detection using MobileNetV2 Architecture. In 2023 IEEE 8th International Conference for Convergence in Technology (I2CT) (pp. 1-6). IEEE.
Çiftçi, S. Swin Tabanlı Dönüştürülmüş Görüntülerin Sınıflandırılması. Harran Üniversitesi Mühendislik Dergisi, 8(2), 108-115.
Yu, X., & Wang, S. H. (2019). Abnormality diagnosis in mammograms by transfer learning based on ResNet18. Fundamenta Informaticae, 168(2-4), 219-230.
Yüzgeç, E., & Talo, M. (2023). Alzheimer ve Parkinson Hastalıklarının Derin Öğrenme Teknikleri Kullanılarak Sınıflandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 35(2), 473-482.
Minarno, A. E., Aripa, L., Azhar, Y., & Munarko, Y. (2023). Classification of malaria cell image using inception-v3 architecture. JOIV: International Journal on Informatics Visualization, 7(2), 273-278.
Bhatia, Y., Bajpayee, A., Raghuvanshi, D., & Mittal, H. (2019, August). Image captioning using Google's inception-resnet-v2 and recurrent neural network. In 2019 Twelfth International Conference on Contemporary Computing (IC3) (pp. 1-6). IEEE.
Hossin, M., Sulaiman, M. N. (2015). A review on evaluation metrics for data classification evaluations. International journal of data mining & knowledge management process, 5(2), 1.