Chalcogenide Nanocomposites for Energy Materials
Downloads
This conversation explores various aspects of chalcogenide nanocomposites for energy applications, delving into synthesis methods, environmental concerns, and performance optimization strategies. Discussions highlight the significance of sustainable synthesis techniques like hydrothermal and UV-assisted methods, emphasizing their advantages in terms of economic feasibility and environmental impact. Additionally, attention is drawn to challenges such as limited cycle life and suboptimal efficiency, prompting exploration of solutions including enhanced conductivity, electrode design optimization, and understanding degradation mechanisms. The conversation underscores the importance of interdisciplinary research efforts in addressing these challenges and advancing the field of chalcogenide nanocomposites for sustainable energy technologies. Through collaboration and innovation, researchers aim to harness the full potential of these materials, paving the way towards a greener and more efficient energy future.
Y. Huang et al., “Multifunctional Energy Storage and Conversion Devices,” Adv. Mater., vol. 28, no. 38, pp. 8344–8364, 2016,
doi: 10.1002/adma.201601928.
S. Yuan et al., “Recent progress on transition metal oxides as advanced materials for energy conversion and storage,” Energy Storage Mater., vol. 42, no. June, pp. 317–369, 2021, doi: 10.1016/j.ensm.2021.07.007.
C. Liu, F. Li, M. Lai-Peng, and H. M. Cheng, “Advanced materials for energy storage,” Adv. Mater., vol. 22, no. 8, pp. 28–62, 2010, doi: 10.1002/adma.200903328.
S. Yadav, S. R. Yashas, and H. P. Shivaraju, “Transitional metal chalcogenide nanostructures for remediation and energy: a review,” Environ. Chem. Lett., vol. 19, no. 5, pp. 3683–3700, 2021, doi: 10.1007/s10311-021-01269-w.
H. Yuan, L. Kong, T. Li, and Q. Zhang, “A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion,” Chinese Chem. Lett., vol. 28, no. 12, pp. 2180–2194, 2017, doi: 10.1016/j.cclet.2017.11.038.
Y. Dahiya, M. Hariram, M. Kumar, A. Jain, and D. Sarkar, “Modified transition metal chalcogenides for high performance supercapacitors: Current trends and emerging opportunities,” Coord. Chem. Rev., vol. 451, p. 214265, 2022, doi: https://doi.org/10.1016/j.ccr.2021.214265.
S. E. Sheela, R. Sekar, D. K. Maurya, M. Paulraj, and S. Angaiah, “Progress in transition metal chalcogenides-based counter electrode materials for dye-sensitized solar cells,” Mater. Sci. Semicond. Process., vol. 156, p. 107273, 2023,
doi: https://doi.org/10.1016/j.mssp.2022.107273.
Y. Shi, C. Sturm, and H. Kleinke, “Chalcogenides as thermoelectric materials,” J. Solid State Chem., vol. 270, pp. 273–279, 2019,
doi: 10.1016/j.jssc.2018.10.049.
Y. Zhang, L. Zhang, T. Lv, P. K. Chu, and K. Huo, “Two-Dimensional Transition Metal Chalcogenides for Alkali Metal Ions Storage,” ChemSusChem, vol. 13, no. 6, pp. 1114–1154, 2020,
doi: 10.1002/cssc.201903245.
J. J. and S.-H. Y. Min-Rui Gao, Yun-Fei Xu, “Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices,” Chem Soc Rev, 2013, doi: 10.1039/c2cs35310e.
Y. Zhang, Q. Zhou, J. Zhu, Q. Yan, S. X. Dou, and W. Sun, “Nanostructured Metal Chalcogenides for Energy Storage and Electrocatalysis,” vol. 1702317, pp. 1–34, 2017, doi: 10.1002/adfm.201702317.
A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses : a review,” vol. 330, pp. 1–12, 2003,
doi: 10.1016/j.jnoncrysol.2003.08.064.
M. Frumar, J. Jedelsk, B. Frumarov, and M. Hrdli, “Optically and thermally induced changes of structure , linear and non-linear optical properties of chalcogenides thin films,” vol. 327, pp. 399–404, 2003, doi: 10.1016/S0022-3093(03)00446-0.
T. Heine, “Transition Metal Chalcogenides: Ultrathin Inorganic Materials with Tunable Electronic Properties,” 2014.
C. Florida, Thermal properties of chalcogenide glasses 4. 2014.
K. Sarkar, A. S. Verma, S. Sharma, and S. K. Kundu, “First-principles calculations of the structural , phonon and thermal properties of ZnX ( X = S , Se , Te ) chalcogenides,” vol. 075704,
doi: 10.1088/0031-8949/89/7/075704.
W. Jaegermann and H. Tributsch, “INTERFACIAL PROPERTIES OF SEMICONDUCTING TRANSITION METAL CHALCOGENIDES,” vol. 29, no. 112, pp. 1–167, 1988.
E. S. P. B. V and F. Jellinek, “Transition metal chalcogenides. relationship between chemical composition, structure and physical properties crystal,” vol. 5, pp. 323–339, 1988.
Y. L. Huang and A. T. S. Wee, “Two ‐ dimensional magnetic transition metal chalcogenides,” no. April, pp. 1–15, 2021, doi: 10.1002/smm2.1031.
M. X. M. Ni, “The mechanical , electronic and optical properties,” vol. 1, no. c, pp. 13518–13525, 2019, doi: 10.1039/c9tc04933a.
Shreya, A. Yadav, R. Khatri, N. Jain, A. Bhandari, and N. K. Puri, “Double Zone Thermal CVD and Plasma Enhanced CVD Systems for Deposition of Films/Coatings with Eminent Conformal Coverage BT - Advances in Manufacturing Technology and Management,” in Advances in Manufacturing Technology and Management, R. M. Singari, P. K. Jain, and H. Kumar, Eds. Singapore: Springer Nature Singapore, 2023, pp. 273–283.
A. Yadav, Shreya, and N. K. Puri, “Preliminary Observations of Synthesized WS2 and Various Synthesis Techniques for Preparation of Nanomaterials,” in Advances in Manufacturing Technology and Management, Springer Science and Business Media Deutschland GmbH, 2023, pp. 546–556.
W. Stucke, “Erfahrungen mit dem Antidepressivum Nortrilen.,” Medizinische Welt, vol. 51, no. 6, pp. 2881–2882, 1965.
K. Mitchell and J. A. Ibers, “Rare-earth transition-metal chalcogenides,” Chem. Rev., vol. 102, no. 6, pp. 1929–1952, 2002, doi: 10.1021/cr010319h.
Y. Zhao et al., “Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting,” Chem. Eng. J., vol. 421, no. P1, p. 129645, 2021, doi: 10.1016/j.cej.2021.129645.
P. Phogat, Shreya, R. Jha, and S. Singh, “Electrochemical analysis of thermally treated two dimensional zinc sulphide hexagonal nano-sheets with reduced band gap,” Phys. Scr., vol. 98, no. 12, p. 125962, 2023, doi: 10.1088/1402-4896/ad0d93.
Shreya, P. Phogat, R. Jha, and S. Singh, “Elevated Refractive Index of MoS2 Amorphous Nanoparticles with a Reduced Band Gap Applicable for Optoelectronics BT - Recent Advances in Mechanical Engineering,” in Recent Advances in Mechanical Engineering, B. Sethuraman, P. Jain, and M. Gupta, Eds. Singapore: Springer Nature Singapore, 2023, pp. 431–439.
S. Patil, S. Raut, R. Gore, and B. Sankapal, “One-dimensional cadmium hydroxide nanowires towards electrochemical supercapacitor,” New J. Chem., vol. 39, no. 12, pp. 9124–9131, 2015,
doi: 10.1039/C5NJ02022K.
X. Yang et al., “Preparation of flower-like ZnO@ZnS core-shell structure enhances photocatalytic hydrogen production,” Int. J. Hydrogen Energy, vol. 45, no. 51, pp. 26967–26978, 2020, doi: 10.1016/j.ijhydene.2020.07.027.
Z. Wang, S. W. Cao, S. C. J. Loo, and C. Xue, “Nanoparticle heterojunctions in ZnS-ZnO hybrid nanowires for visible-light-driven photocatalytic hydrogen generation,” CrystEngComm, vol. 15, no. 28, pp. 5688–5693, 2013, doi: 10.1039/c3ce40523k.
J. Jiang, G. Wang, Y. Shao, J. Wang, S. Zhou, and Y. Su, “Step-scheme ZnO@ZnS hollow microspheres for improved photocatalytic H2 production performance,” Chinese J. Catal., vol. 43, no. 2, pp. 329–338, 2022, doi: 10.1016/S1872-2067(21)63889-5.
R. Bhardwaj, R. Jha, and M. Bhushan, “Improved electrocatalytic performance with enlarged surface area and reduced bandgap of caterpillar and cabbage-like nickel sulphide nanostructures,” Appl. Nanosci., vol. 10, no. 10, pp. 3757–3772, 2020, doi: 10.1007/s13204-020-01488-7.
R. Bhardwaj, R. Jha, M. Bhushan, and R. Sharma, “Comparative study of the electrochemical properties of mesoporous 1-D and 3-D nano- structured rhombohedral nickel sulfide in alkaline electrolytes,” J. Phys. Chem. Solids, vol. 144, no. April, p. 109503, 2020, doi: 10.1016/j.jpcs.2020.109503.
M. Bhushan, R. Jha, R. Bhardwaj, and R. Sharma, “Graphene-doped ZnS nanoparticles synthesized via hydrothermal route for enhanced electrocatalytic performance,” Int. J. Appl. Ceram. Technol., vol. 18, no. 5, pp. 1510–1526, 2021,
doi: 10.1111/ijac.13801.
M. Bhushan, R. Jha, R. Bhardwaj, and R. Sharma, “Visible light emission and enhanced electrocatalytic activity of pure ZnS nanoparticles synthesized via thermal decomposition route,” Bull. Mater. Sci., vol. 44, no. 4, 2021, doi: 10.1007/s12034-021-02546-8.
J. Venkatesan et al., “Hydroxyapatite from Cuttlefish Bone : Isolation , Characterizations , and Applications,” vol. 393, pp. 383–393, 2018, doi: 10.1007/s12257-018-0169-9.
A. Nady et al., “Passively Q-switched erbium-doped fibre laser using cobalt oxide nanocubes as a saturable absorber,” J. Mod. Opt., vol. 64, no. 13, pp. 1315–1320, 2017,
doi: 10.1080/09500340.2017.1286398.
S. Sharma, P. Phogat, R. Jha, and S. Singh, “Electrochemical and Optical Properties of Microwave Assisted MoS 2 Nanospheres for Solar Cell Application,” Int. J. Smart Grid Clean Energy Prospect., vol. 12, no. 3, pp. 66–72, 2023, doi: 10.12720/sgce.12.3.66-72.
M. B. Zakaria et al., “Layer-by-Layer Motif Heteroarchitecturing of N,S-Codoped Reduced Graphene Oxide-Wrapped Ni/NiS Nanoparticles for the Electrochemical Oxidation of Water,” ChemSusChem, vol. 13, no. 12, pp. 3269–3276, 2020, doi: 10.1002/cssc.202000159.
L. Ding, D. Li, H. Shen, X. Qiao, H. Shen, and W. Shi, “2D β-NiS as electron harvester anchors on 2D ZnIn2S4 for boosting photocatalytic hydrogen production,” J. Alloys Compd., vol. 853, 2021, doi: 10.1016/j.jallcom.2020.157328.
C. Zhu et al., “Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater,” Appl. Catal. B Environ., vol. 242, pp. 178–185, 2019, doi: 10.1016/j.apcatb.2018.09.096.
H. Sekiyama, N. Kosugi, H. Kuroda, and T. Ohta, “ Sulfur K-Edge Absorption Spectra of Na 2 SO 4 , Na 2 SO 3 , Na 2 S 2 O 3 , and Na 2 S 2 O x ( x =5–8) ,” Bull. Chem. Soc. Jpn., vol. 59, no. 2, pp. 575–579, 1986, doi: 10.1246/bcsj.59.575.
G. O. Rabell, M. R. A. Cruz, and I. Juárez-Ramírez, “Hydrogen production of ZnO and ZnO/Ag films by photocatalysis and photoelectrocatalysis,” Mater. Sci. Semicond. Process., vol. 134, no. June, 2021, doi: 10.1016/j.mssp.2021.105985.
M. J. Sampaio et al., “Photocatalytic performance of Au/ZnO nanocatalysts for hydrogen production from ethanol,” Appl. Catal. A Gen., vol. 518, pp. 198–205, 2016, doi: 10.1016/j.apcata.2015.10.013.
X. H. Huang et al., “Morphology effect on the electrochemical performance of NiO films as anodes for lithium ion batteries,” J. Power Sources, vol. 188, no. 2, pp. 588–591, 2009, doi: 10.1016/j.jpowsour.2008.11.111.
J. Feng, S. Xiong, Y. Qian, and L. Yin, “Synthesis of nanosized cadmium oxide (CdO) as a novel high capacity anode material for Lithium-ion batteries: Influence of carbon nanotubes decoration and binder choice,” Electrochim. Acta, vol. 129, pp. 107–112, 2014, doi: 10.1016/j.electacta.2014.02.085.
A. R. Weshahy et al., “Selective Recovery of Cadmium, Cobalt, and Nickel from Spent Ni–Cd Batteries Using Adogen® 464 and Mesoporous Silica Derivatives,” Int. J. Mol. Sci., vol. 23, no. 15, 2022, doi: 10.3390/ijms23158677.
Y. Wang, Q. Zhu, L. Tao, and X. Su, “Controlled-synthesis of NiS hierarchical hollow microspheres with different building blocks and their application in lithium batteries,” J. Mater. Chem., vol. 21, no. 25, pp. 9248–9254, 2011, doi: 10.1039/c1jm10271k.
Y. Zeng et al., “An Ultrastable and High-Performance Flexible Fiber-Shaped Ni–Zn Battery based on a Ni–NiO Heterostructured Nanosheet Cathode,” Adv. Mater., vol. 29, no. 44, pp. 1–8, 2017, doi: 10.1002/adma.201702698.
T. F. M. Moreira, I. L. Santana, M. N. Moura, S. A. D. Ferreira, M. F. F. Lelis, and M. B. J. G. Freitas, “Recycling of negative electrodes from spent Ni-Cd batteries as CdO with nanoparticle sizes and its application in remediation of azo dye,” Mater. Chem. Phys., vol. 195, pp. 19–27, 2017, doi: 10.1016/j.matchemphys.2017.04.009.
E. Rudnik and M. Nikiel, “Hydrometallurgical recovery of cadmium and nickel from spent Ni-Cd batteries,” Hydrometallurgy, vol. 89, no. 1–2, pp. 61–71, 2007, doi: 10.1016/j.hydromet.2007.05.006.
C. Jin, L. Zhou, L. Fu, J. Zhu, D. Li, and W. Yang, “The acceleration intermediate phase (NiS and Ni3S2) evolution by nanocrystallization in Li/NiS2 thermal batteries with high specific capacity,” J. Power Sources, vol. 352, pp. 83–89, 2017, doi: 10.1016/j.jpowsour.2017.03.119.
T. S. Sonia et al., “Nano/micro-hybrid NiS cathodes for lithium ion batteries,” Ceram. Int., vol. 40, no. 6, pp. 8351–8356, 2014,
doi: 10.1016/j.ceramint.2014.01.041.
X. Wang, H. Huang, B. Liang, Z. Liu, D. Chen, and G. Shen, “ZnS nanostructures: Synthesis, properties, and applications,” Crit. Rev. Solid State Mater. Sci., vol. 38, no. 1, pp. 57–90, 2013,
doi: 10.1080/10408436.2012.736887.
M. Bhushan, R. Jha, and R. Bhardwaj, “Reduced band gap and diffusion controlled spherical n-type ZnS nanoparticles for absorption of UV-Vis region of solar spectrum,” J. Phys. Chem. Solids, vol. 135, 2019, doi: 10.1016/j.jpcs.2019.05.018.
P. PHOGAT, Shreya, R. JHA, and S. Singh, “Diffusion Controlled Features of Microwave Assisted ZnS/ZnO Nanocomposite with Reduced Band Gap,” ECS J. Solid State Sci. Technol., vol. 12, no. 3, p. 034004, 2023, doi: 10.1149/2162-8777/acc426.
R. Goel, R. Jha, and C. Ravikant, “Synergistic effect of Urea and Potassium Sulphate during hydrothermal synthesis of NiO nanospheres with reduced crystallite size and enhanced electrical conductivity,” Inorg. Chem. Commun., vol. 141, p. 109563, 2022,
doi: https://doi.org/10.1016/j.inoche.2022.109563.
R. Goel, R. Jha, M. Bhushan, R. Bhardwaj, and C. Ravikant, “Hydrothermally synthesized nickel oxide (NiO) nano petals,” Mater. Today Proc., vol. 48, pp. 687–689, 2022,
doi: https://doi.org/10.1016/j.matpr.2021.08.094.
S. B. Qadri, M. Kuno, C. R. Feng, B. B. Rath, and M. Yousuf, “High temperature structural studies of HgS and HgSe quantum dots,” Appl. Phys. Lett., vol. 83, no. 19, pp. 4011–4013, 2003,
doi: 10.1063/1.1625433.
G. Gurumoorthy, “Synthesis and Characterization of α - and β -HgS nanoparticles from Hg ( II ) dithiocarbamate Complexes,” no. 2, pp. 2291–2293, 2020.
R. A. Wagh, A. N. Kulkarni, P. B. Baviskar, H. M. Pathan, and R. S. Patil, “Fabrication of titanium dioxide (TiO2) and mercury sulfide (HgS) heterojunction for photoelectrochemical study,” Mater. Renew. Sustain. Energy, vol. 7, no. 3, pp. 1–7, 2018, doi: 10.1007/s40243-018-0119-7.
R. Jha, M. Bhushan, and R. Bhardwaj, Studies on Synthesis and Various Characteristics of Green Materials for Energy Conversion Applications. Springer International Publishing, 2020.
T. Kumar, Shreya, P. Phogat, V. Sahgal, and R. JHA, “Surfactant-Mediated Modulation of Morphology and Charge Transfer Dynamics in Tungsten Oxide Nanoparticles,” Phys. Scr., vol. 98, no. 8, p. 085936, 2023, doi: 10.1088/1402-4896/ace566.
P. Phogat, Shreya, R. Jha, and S. Singh, “Optical and Microstructural Study of Wide Band Gap ZnO@ZnS Core--Shell Nanorods to be Used as Solar Cell Applications,” in Recent Advances in Mechanical Engineering, 2023, pp. 419–429.
W. A. A. Mohamed, H. T. Handal, I. A. Ibrahem, H. R. Galal, H. A. Mousa, and A. A. Labib, “Recycling for solar photocatalytic activity of Dianix blue dye and real industrial wastewater treatment process by zinc oxide quantum dots synthesized by solvothermal method,” J. Hazard. Mater., vol. 404, no. PB, p. 123962, 2021,
doi: 10.1016/j.jhazmat.2020.123962.
D. M. Cunha and F. L. Souza, “Facile synthetic route for producing one-dimensional zinc oxide nanoflowers and characterization of their optical properties,” J. Alloys Compd., vol. 577, pp. 158–164, 2013, doi: 10.1016/j.jallcom.2013.04.126.
S. Ashoka, P. Chithaiah, K. V. Thipperudraiah, and G. T. Chandrappa, “Nanostructural zinc oxide hollow spheres: A facile synthesis and catalytic properties,” Inorganica Chim. Acta, vol. 363, no. 13, pp. 3442–3447, 2010,
doi: 10.1016/j.ica.2010.06.048.
J. Kennedy, P. P. Murmu, J. Leveneur, A. Markwitz, and J. Futter, “Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment,” Appl. Surf. Sci., vol. 367, pp. 52–58, 2016, doi: 10.1016/j.apsusc.2016.01.160.
R. Chaudhari, D. Landge, and C. J. Bhongale, “A new insight into the adsorption-dissolution growth mechanism of zinc oxide hollow hexagonal nanotowers,” RSC Adv., vol. 9, no. 36, pp. 20728–20732, 2019, doi: 10.1039/c9ra03499d.
S. Khaja Hussain and J. Su Yu, “Cobalt-doped zinc manganese oxide porous nanocubes with controlled morphology as positive electrode for hybrid supercapacitors,” Chem. Eng. J., vol. 361, pp. 1030–1042, 2019, doi: 10.1016/j.cej.2018.12.152.
S. Jamil, M. R. S. A. Janjua, T. Ahmad, T. Mehmood, S. Li, and X. Jing, “Zinc oxide hollow micro spheres and nano rods: Synthesis and applications in gas sensor,” Mater. Chem. Phys., vol. 147, no. 1–2, pp. 225–231, 2014, doi: 10.1016/j.matchemphys.2014.04.033.
Q. Huang, D. Zeng, H. Li, and C. Xie, “Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites,” Nanoscale, vol. 4, no. 18, pp. 5651–5658, 2012, doi: 10.1039/c2nr31131c.
I. M. Garcia, V. C. B. Leitune, F. Visioli, S. M. W. Samuel, and F. M. Collares, “Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin,” J. Dent., vol. 73, no. April, pp. 57–60, 2018, doi: 10.1016/j.jdent.2018.04.003.
D. Haranath, S. Sahai, and P. Joshi, “Tuning of emission colors in zinc oxide quantum dots,” Appl. Phys. Lett., vol. 92, no. 23, 2008,
doi: 10.1063/1.2944142.
G. Bhanjana, N. Dilbaghi, R. Kumar, and S. Kumar, “Zinc Oxide Quantum Dots as Efficient Electron Mediator for Ultrasensitive and Selective Electrochemical Sensing of Mercury,” Electrochim. Acta, vol. 178, pp. 361–367, 2015,
doi: 10.1016/j.electacta.2015.07.113.
V. Vinoth, G. Subramaniyam, S. Anandan, H. Valdés, and P. Manidurai, “Non-enzymatic glucose sensor and photocurrent performance of zinc oxide quantum dots supported multi-walled carbon nanotubes,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 265, no. March 2020, 2021, doi: 10.1016/j.mseb.2020.115036.
C. Yan and D. Xue, “Morphosynthesis of hierarchical hydrozincite with tunable surface architectures and hollow zinc oxide,” J. Phys. Chem. B, vol. 110, no. 23, pp. 11076–11080, 2006, doi: 10.1021/jp060357a.
G. Bhanjana, N. Dilbaghi, N. K. Singhal, K. H. Kim, and S. Kumar, “Zinc oxide nanopillars as an electrocatalyst for direct redox sensing of cadmium,” J. Ind. Eng. Chem., vol. 53, pp. 192–200, 2017, doi: 10.1016/j.jiec.2017.04.025.
Y. J. Zhai et al., “Preparation of cadmium-doped zinc oxide nanoflowers with enhanced photocatalytic activity,” Mater. Sci. Semicond. Process., vol. 26, no. 1, pp. 225–230, 2014, doi: 10.1016/j.mssp.2014.04.023.
P. Phogat, Shreya, R. Jha, and S. Singh, “Impedance Study of Zinc Sulphide Quantum Dots via One Step Green Synthesis,” Mater. Sci. Forum, vol. 1099, pp. 119–125, 2023, doi: 10.4028/p-G1CCxq.
A. Azevedo, H. A. Oliveira, and J. Rubio, “Treatment and water reuse of lead-zinc sulphide ore mill wastewaters by high rate dissolved air flotation,” Miner. Eng., vol. 127, pp. 114–121, 2018, doi: https://doi.org/10.1016/j.mineng.2018.07.011.
G. G. Roberts and R. Zallen, “Quenching of photoconductivity and luminescence in natural crystals of mercury sulphide,” J. Phys. C Solid State Phys., vol. 4, no. 13, pp. 1890–1897, 1971, doi: 10.1088/0022-3719/4/13/040.
A. Goudarzi, G. M. Aval, R. Sahraei, and H. Ahmadpoor, “Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells,” Thin Solid Films, vol. 516, no. 15, pp. 4953–4957, 2008,
doi: 10.1016/j.tsf.2007.09.051.
L. Zhang, H. Rao, Z. Pan, and X. Zhong, “ZnSxSe1- x Alloy Passivation Layer for High-Efficiency Quantum-Dot-Sensitized Solar Cells,” ACS Appl. Mater. Interfaces, vol. 11, no. 44, pp. 41415–41423, 2019, doi: 10.1021/acsami.9b14579.
M. Nguyen et al., “ZnS buffer layer for Cu2ZnSn(SSe)4 monograin layer solar cell,” Sol. Energy, vol. 111, pp. 344–349, 2015, doi: 10.1016/j.solener.2014.11.006.
R. Sekar, R. Sivasamy, B. Ricardo, and P. Manidurai, “Ultrasonically synthesized TiO2/ZnS nanocomposites to improve the efficiency of dye sensitized solar cells,” Mater. Sci. Semicond. Process., vol. 132, no. May, 2021, doi: 10.1016/j.mssp.2021.105917.
D. Ma et al., “Au decorated hollow ZnO@ZnS heterostructure for enhanced photocatalytic hydrogen evolution: The insight into the roles of hollow channel and Au nanoparticles,” Appl. Catal. B Environ., vol. 244, pp. 748–757, 2019, doi: 10.1016/j.apcatb.2018.12.016.
H. X. Sang, X. T. Wang, C. C. Fan, and F. Wang, “Enhanced photocatalytic H2 production from glycerol solution over ZnO/ZnS core/shell nanorods prepared by a low temperature route,” Int. J. Hydrogen Energy, vol. 37, no. 2, pp. 1348–1355, 2012, doi: 10.1016/j.ijhydene.2011.09.129.
A. Brayek et al., “Structural and optical properties of ZnS/ZnO core/shell nanowires grown on ITO glass,” Mater. Lett., vol. 129, pp. 142–145, 2014, doi: 10.1016/j.matlet.2014.04.192.
J. Chang et al., “Electrochemical capacitive properties of cadmium oxide films,” Electrochim. Acta, vol. 53, no. 2, pp. 695–699, 2007, doi: https://doi.org/10.1016/j.electacta.2007.07.056.
R. Hernández Castillo et al., “Study of ZnS/CdS structures for solar cells applications,” Optik (Stuttg)., vol. 148, pp. 95–100, 2017, doi: 10.1016/j.ijleo.2017.09.002.
S. Kumar, S. Khanchandani, M. Thirumal, and A. K. Ganguli, “Achieving enhanced visible-light-driven photocatalysis using type-II NaNbO3/CdS core/shell heterostructures,” ACS Appl. Mater. Interfaces, vol. 6, no. 15, pp. 13221–13233, 2014, doi: 10.1021/am503055n.
J. Cao, J. Z. Sun, J. Hong, H. Y. Li, H. Z. Chen, and M. Wang, “Carbon Nanotube/CdS Core-Shell Nanowires Prepared by a Simple Room-Temperature Chemical Reduction Method,” Adv. Mater., vol. 16, no. 1, pp. 84–87, 2004, doi: 10.1002/adma.200306100.
H. Sun et al., “Synthesis and characterization of multiwalled carbon nanotube/CdS core/shell heterostructures,” Solid State Commun., vol. 150, no. 17–18, pp. 820–823, 2010,
doi: 10.1016/j.ssc.2010.02.015.
B. M. Saidzhonov, V. F. Kozlovsky, V. B. Zaytsev, and R. B. Vasiliev, “Ultrathin CdSe/CdS and CdSe/ZnS core-shell nanoplatelets: The impact of the shell material on the structure and optical properties,” J. Lumin., vol. 209, no. November 2018, pp. 170–178, 2019,
doi: 10.1016/j.jlumin.2019.01.052.
A. Haile, “Fourier transform infrared spectroscopy (ftir) study of cadmium sulfide (cds) thin film prepared by chemical rute,” vol. 11, no. 9, pp. 1539–1554, 2020.
H. Li et al., “One-dimensional CdS nanostructures: A promising candidate for optoelectronics,” Adv. Mater., vol. 25, no. 22, pp. 3017–3037, 2013, doi: 10.1002/adma.201300244.
E. S. Jung et al., “Improved CdS quantum dot distribution on a TiO2 photoanode by an atomic-layer-deposited ZnS passivation layer for quantum dot-sensitized solar cells,” Sol. Energy Mater. Sol. Cells, vol. 218, no. August, p. 110753, 2020, doi: 10.1016/j.solmat.2020.110753.
J. Van Embden, J. Jasieniak, D. E. Gómez, P. Mulvaney, and M. Giersig, “Review of the synthetic chemistry involved in the production of core/shell semiconductor nanocrystals,” Aust. J. Chem., vol. 60, no. 7, pp. 457–471, 2007,
doi: 10.1071/CH07046.
R. Goel, R. Jha, and C. Ravikant, “Investigating the structural, electrochemical, and optical properties of p-type spherical nickel oxide (NiO) nanoparticles,” J. Phys. Chem. Solids, vol. 144, p. 109488, 2020, doi: https://doi.org/10.1016/j.jpcs.2020.109488.
R. Sharma et al., “Controlled growth of α-MoO3 nanostructures with enhanced optical and electrochemical properties without capping agents,” Ceram. Int., vol. 46, no. 14, pp. 23084–23097, 2020, doi: 10.1016/j.ceramint.2020.06.085.
K. Gomathi, S. Padmanathan, A. M. Ali, and A. T. Rajamanickam, “Construction of Ni doped MoO3 nanostructures and their application as counter electrode in dye-sensitized solar cells,” Inorg. Chem. Commun., vol. 135, p. 109079, 2022, doi: https://doi.org/10.1016/j.inoche.2021.109079.
Y. Gong, Y. Dong, B. Zhao, R. Yu, S. Hu, and Z. Tan, “Diverse applications of MoO3 for high performance organic photovoltaics: fundamentals{,} processes and optimization strategies,” J. Mater. Chem. A, vol. 8, no. 3, pp. 978–1009, 2020, doi: 10.1039/C9TA12005J.
J. Mu, Y. Zhang, and Y. Wang, “Growth and characterization of β-HgS thin films by annealing Hg2+-dithiol self-assembled multilayers,” J. Dispers. Sci. Technol., vol. 26, no. 5, pp. 641–644, 2005, doi: 10.1081/DIS-200057692.
J. S. Waples, K. L. Nagy, G. R. Aiken, and J. N. Ryan, “Dissolution of cinnabar (HgS) in the presence of natural organic matter,” Geochim. Cosmochim. Acta, vol. 69, no. 6, pp. 1575–1588, 2005, doi: 10.1016/j.gca.2004.09.029.
J. Zhu, S. Liu, O. Palchik, Y. Koltypin, and A. Gedanken, “A novel sonochemical method for the preparation of nanophasic sulfides: Synthesis of HgS and PbS nanoparticles,” J. Solid State Chem., vol. 153, no. 2, pp. 342–348, 2000, doi: 10.1006/jssc.2000.8780.
S. S. Kale and C. D. Lokhande, “Preparation and characterization of HgS films by chemical deposition,” Mater. Chem. Phys., vol. 59, no. 3, pp. 242–246, 1999, doi: 10.1016/S0254-0584(99)00048-6.
M. D. Tabak and G. G. Roberts, “Electron-drift mobility in single-crystal HgS,” J. Appl. Phys., vol. 39, no. 10, pp. 4873–4874, 1968, doi: 10.1063/1.1655873.
X. Y. Yu, L. Yu, and X. W. Lou, “Metal Sulfide Hollow Nanostructures for Electrochemical Energy Storage,” Adv. Energy Mater., vol. 6, no. 3, pp. 1–14, 2016, doi: 10.1002/aenm.201501333.
X. Rui, H. Tan, and Q. Yan, “Nanostructured metal sulfides for energy storage,” Nanoscale, vol. 6, no. 17, pp. 9889–9924, 2014, doi: 10.1039/c4nr03057e.
H. Li, Y. Su, W. Sun, and Y. Wang, “Carbon Nanotubes Rooted in Porous Ternary Metal Sulfide@N/S-Doped Carbon Dodecahedron: Bimetal-Organic-Frameworks Derivation and Electrochemical Application for High-Capacity and Long-Life Lithium-Ion Batteries,” Adv. Funct. Mater., vol. 26, no. 45, pp. 8345–8353, 2016, doi: 10.1002/adfm.201601631.
K. Zhang et al., “Urchin-Like CoSe2 as a High-Performance Anode Material for Sodium-Ion Batteries,” Adv. Funct. Mater., vol. 26, no. 37, pp. 6728–6735, 2016, doi: 10.1002/adfm.201602608.
Y. Wu and X. Li, “Effect of dihedral angle of bridge unit on the performance of dye-sensitized solar cell,” Chinese Chem. Lett., vol. 27, no. 6, pp. 927–932, 2016, doi: 10.1016/j.cclet.2016.04.010.
S. L. Yang et al., “Sub-100 nm hollow SnO2@C nanoparticles as anode material for lithium ion batteries and significantly enhanced cycle performances,” Chinese Chem. Lett., vol. 26, no. 10, pp. 1293–1297, 2015,
doi: 10.1016/j.cclet.2015.05.051.
C. Zhu, P. Kopold, W. Li, P. A. van Aken, J. Maier, and Y. Yu, “A General Strategy to Fabricate Carbon-Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High-Performance Lithium and Sodium Ion Batteries,” Adv. Sci., vol. 2, no. 12, pp. 1–8, 2015, doi: 10.1002/advs.201500200.
N. Mahmood, C. Zhang, and Y. Hou, “Nickel sulfide/nitrogen-doped graphene composites: Phase-controlled synthesis and high performance anode materials for lithium ion batteries,” Small, vol. 9, no. 8, pp. 1321–1328, 2013,
doi: 10.1002/smll.201203032.
C. Wu, J. Maier, and Y. Yu, “Generalizable Synthesis of Metal-Sulfides/Carbon Hybrids with Multiscale, Hierarchically Ordered Structures as Advanced Electrodes for Lithium Storage,” Adv. Mater., vol. 28, no. 1, pp. 174–180, 2016, doi: 10.1002/adma.201503969.
H. Peng, “Chem Soc Rev A review of flexible lithium – sulfur and analogous alkali metal – chalcogen rechargeable batteries,” Chem. Soc. Rev., 2017, doi: 10.1039/C7CS00139H.
R. Fang, S. Zhao, Z. Sun, D. Wang, and H. Cheng, “More Reliable Lithium-Sulfur Batteries : Status , Solutions and Prospects,” vol. 1606823, pp. 1–25, 2017, doi: 10.1002/adma.201606823.
H. Peng et al., “Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life : The Spatial Heterogeneity Control Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life : The Spatial Heterogeneity Control,” 2017, doi: 10.1021/jacs.6b12358.
L. À. S. Batteries et al., “Catalytic Self-Limited Assembly at Hard Templates : A Mesoscale Approach to Graphene Nanoshells for,” no. 11, pp. 11280–11289, 2014.
P. Zhai et al., “Scaled-up fabrication of porous-graphene-modified separator for high-capacity lithium−sulfur batteries,” Energy Storage Mater., no. 16, 2016, doi: 10.1016/j.ensm.2016.12.004.
J. Lu et al., “A lithium–oxygen battery based on lithium superoxide,” Nature, pp. 1–7, 2016, doi: 10.1038/nature16484.
Z. Chang, J. Xu, and X. Zhang, “Recent Progress in Electrocatalyst for Li-O 2 Batteries,” vol. 1700875, pp. 1–21, 2017, doi: 10.1002/aenm.201700875.
C. Wu, C. Liao, L. Li, and J. Yang, “Ethylene sulfite based electrolyte for non-aqueous lithium oxygen batteries,” Chinese Chem. Lett., 2016, doi: 10.1016/j.cclet.2016.03.023.
L. Battery, Z. Peng, S. A. Freunberger, Y. Chen, and P. G. Bruce, “A Reversible and Higher-Rate Li-O 2 Battery,” vol. 337, no. August, pp. 563–566, 2012.
X. Guo et al., “3D Nanoporous Nitrogen-Doped Graphene with Encapsulated RuO 2 Nanoparticles for Li – O 2 Batteries,” pp. 6137–6143, 2015, doi: 10.1002/adma.201503182.
K. Song, D. A. Agyeman, M. Park, and J. Yang, “High-Energy-Density Metal – Oxygen Batteries : Lithium – Oxygen Batteries vs Sodium – Oxygen Batteries,” vol. 1606572, pp. 1–31, 2017, doi: 10.1002/adma.201606572.
C. Zhao, C. Yu, S. Liu, J. Yang, X. Fan, and H. Huang, “3D Porous N-Doped Graphene Frameworks Made of Interconnected Nanocages for Ultrahigh-Rate and Long-Life Li – O 2 Batteries,” Adv. Funct. Mater., vol. 25, pp. 6913–6920, 2015, doi: 10.1002/adfm.201503077.
H. Hu, Z. Pei, and C. Ye, “Recent advances in designing and fabrication of planar micro-supercapacitors for on-chip energy storage,” Energy Storage Mater., vol. 1, pp. 82–102, 2015, doi: 10.1016/j.ensm.2015.08.005.
H. Wu, Y. Zhang, L. Cheng, L. Zheng, and Y. Li, “Graphene based architectures for electrochemical capacitors,” Energy Storage Mater., vol. 5, pp. 8–32, 2016, doi: 10.1016/j.ensm.2016.05.003.
Q. Ming-xian et al., “Zinc tartrate oriented hydrothermal synthesis of microporous carbons for high performance supercapacitor electrodes,” Chinese Chem. Lett., pp. 1–6, 2016, doi: 10.1016/j.cclet.2015.12.026.
P. Zhang, B. Y. Guan, X. Wen, and D. Lou, “Facile Synthesis of Multi-shelled ZnS-CdS Cages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion Facile Synthesis of Multi-shelled ZnS-CdS Cages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion,” pp. 162–173,
doi: 10.1016/j.chempr.2017.10.018.
R. Wang, Y. Luo, Z. Chen, M. Zhang, and T. Wang, “The effect of loading density of nickel-cobalt sulfide arrays on their cyclic stability and rate performance for supercapacitors,” no. August, 2016, doi: 10.1007/s40843-016-5074-y.
A. Wang et al., “Controlled synthesis of nickel sulfide/graphene oxide nanocomposite for high-performance supercapacitor,” Appl. Surf. Sci., vol. 282, pp. 704–708, 2013,
doi: https://doi.org/10.1016/j.apsusc.2013.06.038.
J. Yan, G. Lui, R. Tjandra, X. Wang, L. Rasenthiram, and A. Yu, “α-NiS grown on reduced graphene oxide and single-wall carbon nanotubes as electrode materials for high-power supercapacitors,” RSC Adv., vol. 5, no. 35, pp. 27940–27945, 2015, doi: 10.1039/C5RA02996A.
B. Qu, Y. Chen, M. Zhang, L. Hu, D. Lei, and B. Lu, “PAPER b -Cobalt sul fi de nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors,” pp. 7810–7816, 2012, doi: 10.1039/c2nr31902k.
S. R. and Q. Y. Shengjie Peng, Linlin Li, Chengchao Li, Huiteng Tan, Ren Cai, Hong Yu, Subodh Mhaisalkar, Madhavi Srinivasan, “In situ growth of NiCo 2 S 4 nanosheets on graphene for high-performance supercapacitors †,” pp. 10178–10180, 2013, doi: 10.1039/c3cc46034g.
W. Du et al., “Facile synthesis and superior electrochemical performances of CoNi2S4/ graphene nanocomposite suitable for supercapacitor electrodes,” pp. 9613–9619, 2014, doi: 10.1039/c4ta00414k.
and J. Q. Juan Yang, Chang Yu, Xiaoming Fan, Suxia Liang, a Shaofeng Li, Huawei Huang, Zheng Ling, Ce Hao, “Electroactive Edge Site-Enriched Nickel-Cobalt Sulfide into Graphene Frameworks for High-performance Asymmetric Supercapacitors,” 2016, doi: 10.1039/C5EE03633J.
X. Z. Hao Tong, Wenlong Bai, Shihong Yue, Zhenzhen Gao, Liang Lu, Laifa Shen, Shengyang Dong, Jiajia Zhu, Jianping He, “Zinc Cobalt Sulfide Nanosheets Grown on Nitrogen-Doped Graphene/Carbon Nanotube Film as High-performance Electrode for Supercapacitors,” 2016, doi: 10.1039/C6TA02249A.
C.-H. Jiang, C.-B. Yao, L.-Y. Wang, X. Wang, Z.-M. Wang, and H.-T. Yin, “Interface engineering of modified ZnO@MoS2 heterostructure to efficiently enhance charge transfers and carrier regulation,” J. Lumin., vol. 255, p. 119546, 2023, doi: https://doi.org/10.1016/j.jlumin.2022.119546.
S. Maruthasalamoorthy, K. Aishwarya, R. Thenmozhi, R. Nirmala, C. Nagarajan, and R. Navamathavan, “Superior cyclic stability and electrochemical performance of La supported Bi2S3@g-C3N4//rGO heterostructure composite for asymmetric supercapacitor devices,” J. Alloys Compd., vol. 967, p. 171696, 2023, doi: https://doi.org/10.1016/j.jallcom.2023.171696.
K. Sathiyamoorthy, A. Silambarasan, M. Navaneethan, and S. Harish, “Boosting the performance of LaCoO3/MoS2 perovskite interface for sustainable decontaminants under visible light-driven photocatalysis,” Chemosphere, vol. 348, p. 140575, 2024, doi:
https://doi.org/10.1016/j.chemosphere.2023.140575
N. Jaiswal, D. Kumari, R. Shukla, and S. Kumar, “Design and Performance Optimization of Eco ‑ friendly Cs 2 AgBiBr 6 Double Perovskite Solar Cell,” J. Electron. Mater., vol. 52, no. 12, pp. 7842–7849, 2023, doi: 10.1007/s11664-023-10705-2.
Shreya, P. Phogat, R. Jha, and S. Singh, “Microwave-synthesized γ-WO3 nanorods exhibiting high current density and diffusion characteristics,” Transit. Met. Chem., vol. 48, no. 3, pp. 167–183, 2023, doi: 10.1007/s11243-023-00533-y.
W. Zheng, Y. Jiang, X. Hu, H. Li, Z. Zeng, and X. Wang, “Light Emission Properties of 2D Transition Metal Dichalcogenides : Fundamentals and Applications,” vol. 1800420, pp. 1–29, 2018, doi: 10.1002/adom.201800420.
M. Wu et al., “Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics,” InfoMat, vol. 3, no. 4, pp. 362–396, Apr. 2021,
doi: https://doi.org/10.1002/inf2.12161.
Y. Jannot, V. Felix, and A. Degiovanni, “A centered hot plate method for measurement of thermal properties of thin insulating materials,” Meas. Sci. Technol., vol. 21, no. 3, p. 35106, 2010, doi: 10.1088/0957-0233/21/3/035106.
L. Menéndez, A. Lastra, A. Hidalgo, and A. Baamonde, “Unilateral hot plate test: a simple and sensitive method for detecting central and peripheral hyperalgesia in mice,” J. Neurosci. Methods, vol. 113, no. 1, pp. 91–97, 2002, doi: https://doi.org/10.1016/S0165-0270(01)00483-6.
J. Natsuki and T. Natsuki, “Silver Nanoparticle/Carbon Nanotube Hybrid Nanocomposites: One-Step Green Synthesis, Properties, and Applications,” Nanomaterials, vol. 13, no. 8. 2023, doi: 10.3390/nano13081297.
X. Zhang, Y. Tang, Y. Wang, L. Shen, A. Gupta, and N. Bao, “Simple one-pot synthesis of Cu4SnS4 nanoplates and temperature-induced phase transformation mechanism,” CrystEngComm, vol. 22, no. 7, pp. 1220–1229, 2020, doi: 10.1039/C9CE01772K.
X. Zhang et al., “Facile synthesis of nano-sized CuFe2S3: morphology and diverse functional tuning and crystal growth mechanism exploring,” Regen. Biomater., vol. 4, no. 4, pp. 223–231, Aug. 2017, doi: 10.1093/rb/rbx006.
Dipti, P. Phogat, Shreya, D. Kumari, and S. Singh, “Fabrication of tunable band gap carbon based zinc nanocomposites for enhanced capacitive behaviour,” Phys. Scr., vol. 98, no. 9, p. 95030, Aug. 2023, doi: 10.1088/1402-4896/acf07b.
W. E. Teo and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies,” Nanotechnology, vol. 17, no. 14, p. R89, 2006, doi: 10.1088/0957-4484/17/14/R01.
N. Bhardwaj and S. C. Kundu, “Electrospinning: A fascinating fiber fabrication technique,” Biotechnol. Adv., vol. 28, no. 3, pp. 325–347, 2010, doi: https://doi.org/10.1016/j.biotechadv.2010.01.004.
R. R. Gonzales, M. J. Park, L. Tijing, D. S. Han, S. Phuntsho, and H. K. Shon, “Modification of Nanofiber Support Layer for Thin Film Composite Forward Osmosis Membranes via Layer-by-Layer Polyelectrolyte Deposition,” Membranes, vol. 8, no. 3. 2018, doi: 10.3390/membranes8030070.
M. Saeed, Y. Alshammari, S. A. Majeed, and E. Al-Nasrallah, “Chemical Vapour Deposition of Graphene—Synthesis, Characterisation, and Applications: A Review,” Molecules, vol. 25, no. 17. 2020, doi: 10.3390/molecules25173856.
R. Sharma, A. Sarkar, R. Jha, A. Kumar Sharma, and D. Sharma, “Sol-gel–mediated synthesis of TiO2 nanocrystals: Structural, optical, and electrochemical properties,” Int. J. Appl. Ceram. Technol., vol. 17, no. 3, pp. 1400–1409, 2020, doi: 10.1111/ijac.13439.
R. F. Cienfuegos-Pelaes, A. E. Correa, R. A. Salazar, L. Chavez-Guerrero, and M. Hinojosa, “Influence of the index metallic salts - Complexing agent in a sol-gel process to obtain nanoscaled zirconium substituted yttrium (YSZ) to electrolyte application in solid oxide fuel cell (SOFC),” Mater. Res. Soc. Symp. Proc., vol. 1386, pp. 1–6, 2012, doi: 10.1557/opl.2012.4.
K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, and W. F. Hsieh, “Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method,” Chem. Phys. Lett., vol. 409, no. 4–6, pp. 208–211, 2005, doi: 10.1016/j.cplett.2005.05.027.
H. Liu, G. Cui, L. Li, Z. Zhang, X. Lv, and X. Wang, “Polypyrrole chains decorated on CoS spheres: A core-shell like heterostructure for high-performance microwave absorption,” Nanomaterials, vol. 10, no. 1, 2020, doi: 10.3390/nano10010166.
M. Najim, G. Modi, Y. K. Mishra, R. Adelung, D. Singh, and V. Agarwala, “Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures,” Phys. Chem. Chem. Phys., vol. 17, no. 35, pp. 22923–22933, 2015,
doi: 10.1039/c5cp03488d.
C. Sun, C. Chang, H. L. J. Zhou, J. Wang, and T. Sham, “Microwave-Assisted Synthesis of a Core-Shell MWCNT / GONR Heterostructure for the Electrochemical Detection of Ascorbic Acid , Dopamine , and Uric Acid Intensity ( a . u .) Wavenumber,” pp. 1–12, 2000.
P. Wu, J. Zhu, and Z. Xu, “Template-Assisted Synthesis of Mesoporous Magnetic Nanocomposite Particles,” Adv. Funct. Mater., vol. 14, no. 4, pp. 345–351, Apr. 2004,
doi: https://doi.org/10.1002/adfm.200305455.
A. Kaur, B. Bajaj, A. Kaushik, A. Saini, and D. Sud, “A review on template assisted synthesis of multi-functional metal oxide nanostructures: Status and prospects,” Mater. Sci. Eng. B, vol. 286, p. 116005, 2022,
doi: https://doi.org/10.1016/j.mseb.2022.116005.
H. Kangarlou and S. Asgary, “Effect of Deposition Time On Optical Properties of Chemical Bath Deposited Mercury Sulde Thin Layers,” pp. 1–13, 2021, [Online]. Available:
https://doi.org/10.21203/rs.3.rs-875077/v1.
C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci., vol. 46, no. 1, pp. 1–184, 2001, doi: https://doi.org/10.1016/S0079-6425(99)00010-9.