Opinion-Mining Technique on Generative Artificial Intelligence Topic Using Data Classification Algorithms
Downloads
The study employed an opinion-mining technique using data classification algorithms on the topic of Generative Artificial Intelligence (GenAI) to determine the sentiments of Twitter users. The researcher used a sentiment analysis framework to gather the datasets for dataset training and predict the results using Naïve Bayes, Random Forest, and SVM algorithms. The result shows that SVM and Random Forest algorithms had the same precision and recall of 1.000 indicating that the result has no false positive values. On the other hand, the Naïve Bayes algorithm garnered a .949 precision and .939 recall which means fewer false positive results on the trained models. The overall result shows that the trained datasets indicate a successful prediction with fewer false positive results. Moreover, the result of the sentiment analysis shows that more positive sentiments were drawn on the topic of generative artificial intelligence indicating the use and benefits of using AI. Furthermore, based on the result of the study, the research recommended the use of the sentiment analysis framework through an opinion-mining technique using data classification algorithms as it may help analyze different emotions of social media users.
Abbasi, A., Chen, H., & Salem, A. (2008). Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums. ACM Trans. Inf. Syst., 26(3). https://doi.org/10.1145/1361684.1361685
Abbasi, A., Javed, A. R., Chakraborty, C., Nebhen, J., Zehra, W., & Jalil, Z. (2021). ElStream: An Ensemble Learning Approach for Concept Drift Detection in Dynamic Social Big Data Stream Learning. IEEE Access, 9, 66408–66419. https://doi.org/10.1109/ACCESS.2021.3076264
Abbasi, A., Javed, A. R., Iqbal, F., Jalil, Z., Gadekallu, T. R., & Kryvinska, N. (2022). Authorship identification using ensemble learning. Scientific Reports, 12(1), 9537. https://doi.org/10.1038/s41598-022-13690-4
Adiguzel, T., Kaya, M. H., & Cansu, F. K. (2023). Revolutionizing education with AI: Exploring the transformative potential of ChatGPT. Contemporary Educational Technology, 15(3). https://doi.org/10.30935/cedtech/13152
Aggarwal, D. G. (2018). Sentiment Analysis An insight into Techniques, Application and Challenges. International Journal of Computer Sciences and Engineering, 6(5), 697–703. https://doi.org/10.26438/ijcse/v6i5.697703
Aized Amin Soofi, & Arshad Awan. (2017). Classification Techniques in Machine Learning: Applications and Issues. Journal of Basic & Applied Sciences, 13(August), 459–465. https://doi.org/10.6000/1927-5129.2017.13.76
Amanat, A., Rizwan, M., Javed, A. R., Abdelhaq, M., Alsaqour, R., Pandya, S., & Uddin, M. (2022). Deep Learning for Depression Detection from Textual Data. Electronics (Switzerland), 11(5), 1–13. https://doi.org/10.3390/electronics11050676
BAİDOO-ANU, D., & OWUSU ANSAH, L. (2023). Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. Journal of AI, 7(1), 52–62. https://doi.org/10.61969/jai.1337500
Bashir, M. F., Javed, A. R., Arshad, M. U., Gadekallu, T. R., Shahzad, W., & Beg, M. O. (2022). Context Aware Emotion Detection from Low Resource Urdu Language using Deep Neural Network. ACM Transactions on Asian and Low-Resource Language Information Processing, April. https://doi.org/10.1145/3528576
Bhattacharya, K., Bhattacharya, A. S., Bhattacharya, N., Yagnik, V. D., Garg, P., & Kumar, S. (2023). ChatGPT in Surgical Practice—a New Kid on the Block. Indian Journal of Surgery, 85(6), 1346–1349. https://doi.org/10.1007/s12262-023-03727-x
Bhukya, D. P., & Ramachandram, S. (2010). Decision Tree Induction: An Approach for Data Classification Using AVL-Tree. International Journal of Computer and Electrical Engineering, 2(4), 660–665. https://doi.org/10.7763/ijcee.2010.v2.208
Chen, H., & Zimbra, D. (2010). AI and Opinion Mining. IEEE Intelligent Systems, 25(3), 74–80. https://doi.org/10.1109/MIS.2010.75
Dave, K., Lawrence, S., & Pennock, D. M. (2003). Mining the peanut gallery: opinion extraction and semantic classification of product reviews. Proceedings of the 12th International Conference on World Wide Web, 519–528. https://doi.org/10.1145/775152.775226
Dictionary, C. (2021). Sentiment definition. https://dictionary.cambridge.org/dictionary/english/sentiment
Eggmann, F., Weiger, R., Zitzmann, N. U., & Blatz, M. B. (2023). Implications of large language models such as ChatGPT for dental medicine. Journal of Esthetic and Restorative Dentistry, 35(7), 1098–1102. https://doi.org/https://doi.org/10.1111/jerd.13046
Feng, S., & Shen, Y. (2023). ChatGPT and the Future of Medical Education. Academic Medicine, 98(8), 867–868. https://doi.org/10.1097/ACM.0000000000005242
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks. Advances in Neural Information Processing Systems, 3. https://doi.org/10.1145/3422622
Hina, M., Ali, M., Javed, A. R., Ghabban, F., Khan, L. A., & Jalil, Z. (2021). SeFACED: Semantic-Based Forensic Analysis and Classification of E-Mail Data Using Deep Learning. IEEE Access, 9, 98398–98411. https://doi.org/10.1109/ACCESS.2021.3095730
Hina, M., Ali, M., Javed, A. R., Srivastava, G., Gadekallu, T. R., & Jalil, Z. (2021). Email Classification and Forensics Analysis using Machine Learning. Proceedings - 2021 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Internet of People, and Smart City Innovations, SmartWorld/ScalCom/UIC/ATC/IoP/SCI 2021, 630–635. https://doi.org/10.1109/SWC50871.2021.00093
Hu, K. (2023). ChatGPT sets record for fastest-growing user base—analyst note. Reuters. https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 168–177. https://doi.org/10.1145/1014052.1014073
Isabelle, G., Maharani, W., & Asror, I. (2019). Analysis on Opinion Mining Using Combining Lexicon-Based Method and Multinomial Naïve Bayes. 2(IcoIESE 2018), 214–219. https://doi.org/10.2991/icoiese-18.2019.38
Kaur, G., . P., Kaur, A., & Khurana, M. (2022). A Review of Opinion Mining Techniques. ECS Transactions, 107(1), 10125. https://doi.org/10.1149/10701.10125ecst
Kesavaraj, G., & Sukumaran, S. (2013). A study on classification techniques in data mining. 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), 1–7.
Kheiri, K., & Karimi, H. (2023). SentimentGPT: Exploiting GPT for Advanced Sentiment Analysis and its Departure from Current Machine Learning. http://arxiv.org/abs/2307.10234
Kitamura, F. C. (2023). ChatGPT Is Shaping the Future of Medical Writing But Still Requires Human Judgment. Radiology, 307(2), e230171. https://doi.org/10.1148/radiol.230171
Krugmann, J. O., & Hartmann, J. (2024). Sentiment Analysis in the Age of Generative AI. Customer Needs and Solutions, 11(1). https://doi.org/10.1007/s40547-024-00143-4
Mathapati, P. M., Shahapurkar, A. S., & Hanabaratti, K. D. (2017). Sentiment Analysis using Naïve bayes Algorithm. International Journal of Computer Sciences and Engineering, 5(7), 75–77. https://doi.org/10.26438/ijcse/v5i7.7577
Mouthami, K., Devi, K. N., & Bhaskaran, V. M. (2013). Sentiment analysis and classification based on textual reviews. 2013 International Conference on Information Communication and Embedded Systems (ICICES), 271–276. https://doi.org/10.1109/ICICES.2013.6508366
Patacsil, F. F., Malicdem, A. R., & Fernandez, P. L. (2015). Estimating Filipino ISPs Customer Satisfaction Using Sentiment Analysis. Computer Science and Information Technology, 3(1), 8–13. https://doi.org/10.13189/csit.2015.030102
Pisani, S., Fioriti, D., Conte, M. P., Chiarini, F., Seganti, L., & Degener, A. M. (2002). Involvement of herpes simplex virus type 2 in modulation of gene expression of human papillomavirus type 18. International Journal of Immunopathology and Pharmacology, 15(1), 59–63. https://doi.org/10.1177/039463200201500108
Preotiuc-Pietro, D., Hopkins, D. J., Liu, Y., & Ungar, L. (2017). Beyond binary labels: Political ideology prediction of twitter users. ACL 2017 - 55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers), 1, 729–740. https://doi.org/10.18653/v1/P17-1068
Rachiraju, S. C., & Revanth, M. (2020). Feature Extraction and Classification of Movie Reviews using Advanced Machine Learning Models. 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), 814–817. https://doi.org/10.1109/ICICCS48265.2020.9120919
Rafat, K. F., Xin, Q., Javed, A. R., Jalil, Z., & Ahmad, R. Z. (2022). Evading obscure communication from spam emails. Mathematical Biosciences and Engineering, 19(2), 1926–1943. https://doi.org/10.3934/mbe.2022091
Razali, N. A. M., Malizan, N. A., Hasbullah, N. A., Wook, M., Zainuddin, N. M., Ishak, K. K., Ramli, S., & Sukardi, S. (2021). Opinion mining for national security: techniques, domain applications, challenges and research opportunities. Journal of Big Data, 8(1), 150. https://doi.org/10.1186/s40537-021-00536-5
Shah, P., Swaminarayan, P., & Patel, M. (2023). Sentiment Classification for Film Reviews in Gujarati Text Using Machine Learning and Sentiment Lexicons. Journal of ICT Research and Applications, 17(1), 1–16. https://doi.org/10.5614/itbj.ict.res.appl.2023.17.1.1
Simmering, P. F., & Huoviala, P. (2023). Large language models for aspect-based sentiment analysis. 2022, 1–12. http://arxiv.org/abs/2310.18025
Singh, M., Sharma, S., & Kaur, A. (2013). Performance Analysis of Decision Trees. International Journal of Computer Applications, 71, 10–14.
Surroop, K., Canoo, K., & Pudaruth, S. (2016). A Novel Position-based Sentiment Classification Algorithm for Facebook Comments. International Journal of Advanced Computer Science and Applications, 7(10), 261–268. https://doi.org/10.14569/ijacsa.2016.071035
Tang, H., Tan, S., & Cheng, X. (2009). A survey on sentiment detection of reviews. Expert Systems with Applications, 36(7), 10760–10773. https://doi.org/https://doi.org/10.1016/j.eswa.2009.02.063
Troussas, C., Virvou, M., Espinosa, K. J., Llaguno, K., & Caro, J. (2019). Sentiment analysis of Facebook statuses using Naive Bayes Classifier for language learning. IISA 2013 - 4th International Conference on Information, Intelligence, Systems and Applications, 198–205. https://doi.org/10.1109/IISA.2013.6623713
Wang, Z., Xie, Q., Feng, Y., Ding, Z., Yang, Z., & Xia, R. (2023). Is ChatGPT a Good Sentiment Analyzer? A Preliminary Study. http://arxiv.org/abs/2304.04339
Xu, F., Pan, Z., & Xia, R. (2020). E-commerce product review sentiment classification based on a naïve Bayes continuous learning framework. Information Processing & Management, 57(5), 102221. https://doi.org/https://doi.org/10.1016/j.ipm.2020.102221
Xu, H. (2018). Generate Faces Using Ladder Variational Autoencoder with Maximum Mean Discrepancy (MMD). Intelligent Information Management, 10(04), 108–113. https://doi.org/10.4236/iim.2018.104009
Zhang, C., Zuo, W., Peng, T., & He, F. (2008). Sentiment Classification for Chinese Reviews Using Machine Learning Methods Based on String Kernel. 2008 Third International Conference on Convergence and Hybrid Information Technology, 2, 909–914. https://doi.org/10.1109/ICCIT.2008.51