Review: Deep Learning and Fuzzy Logic Applications
Downloads
The modeling and prediction field bosses a variety of practical applications, deep learning is a powerful tool used in this field. It has been proved that deep learning is a useful technique for extracting extremely accurate predictions from complex data sources, and also Recursive neural networks have demonstrated their usefulness in language translation and caption production, but convolutional neural networks remain the dominant solution for image classification tasks. In addition, deep learning, also known as deep neural networks, involves training models with multiple layers of interconnected artificial neurons. The primary idea of deep learning is to learn data representations through raising levels of abstraction. These strategies are effective, but they don't explain how the result is produced. Without knowing how a solution is arrived at using deep learning. In the field of artificial intelligence, deep learning and fuzzy logic are two powerful techniques. In addition, fuzzy logic combines deep learning will help deep learning select the desired features and work without supervision, this will make it possible to develop reliable systems with rich DL information even in the absence of hand-labeled data. Fuzzy logic that interpreted these features will subsequently provide explanations for the system's choice of classification label. This survey highlights the various applications which use fuzzy logic to improve deep learning.
Mu, R., & Zeng, X. (2019). A review of deep learning research. KSII Transactions on Internet and Information Systems (TIIS), 13(4), 1738-1764.
Shinde, P. P., & Shah, S. (2018, August). A review of machine learning and deep learning applications. In 2018 Fourth international conference on computing communication control and automation (ICCUBEA) (pp. 1-6). IEEE.
Yang, C. H., Moi, S. H., Hou, M. F., Chuang, L. Y., & Lin, Y. D. (2020). Applications of deep learning and fuzzy systems to detect cancer mortality in next-generation genomic data. IEEE Transactions on Fuzzy Systems, 29(12), 3833-3844.
Price, S. R., Price, S. R., & Anderson, D. T. (2019, June). Introducing fuzzy layers for deep learning. In 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1-6). IEEE.
Sierra-Garcia, J. E., & Santos, M. (2021). Deep learning and fuzzy logic to implement a hybrid wind turbine pitch control. Neural Computing and Applications, 1-15.
Reddy, M. A., Stephen, M. J., & Reddy, P. P. (2021). Analysis of COVID-19 Complications Using Deep Learning-Based Neuro-Fuzzy Classification Approach. Int J Cur Res Rev| Vol, 13(20), 85.
El Hatri, C., & Boumhidi, J. (2018). Fuzzy deep learning based urban traffic incident detection. Cognitive systems research, 50, 206-213.
Averkin, A., & Yarushev, S. (2021). Fuzzy rules extraction from deep neural networks. In Proceedings of the of the XXIII International Conference" Enterprise Engineering and Knowledge Management", Moscow, Russia.
Craven, M. W., & Shavlik, J. W. (1994). Using sampling and queries to extract rules from trained neural networks. In Machine learning proceedings 1994 (pp. 37-45). Morgan Kaufmann.
Deng, W. J., & Pei, W. (2009). Fuzzy neural based importance-performance analysis for determining critical service attributes. Expert Systems with Applications, 36(2), 3774-3784.
Ünal, Z., & Çetin, E. İ. (2022). Fuzzy logic and deep learning integration in likert type data. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(1), 112-125.
Yalcinkaya, F., & Erbas, A. (2021). Convolutional Neural Network and Fuzzy Logic-based Hybrid Melanoma Diagnosis System. Elektronika ir Elektrotechnika, 27(2), 55-63.
Pomponiu, V., Nejati, H., & Cheung, N. M. (2016, September). Deepmole: Deep neural networks for skin mole lesion classification. In 2016 IEEE International Conference on Image Processing (ICIP) (pp. 2623-2627). IEEE.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge. International journal of computer vision, 115, 211-252.
Mohammed, H. R., & Hussain, Z. M. (2021). Hybrid mamdani fuzzy rules and convolutional neural networks for analysis and identification of animal images. Computation, 9(3), 35.
Chow, Z. S., Ooi, M. P. L., Kuang, Y. C., & Demidenko, S. (2012). Automated visual inspection system for mass production of hard disk drive media. Procedia Engineering, 41, 450-457.
Enciso-Aragón, C. J., Pachón-Suescún, C. G., & Jimenez-Moreno, R. (2018). Quality control system by means of CNN and fuzzy systems. Int J Appl Eng Res, 13(16), 12846-12853.
Berka, P., Rauch, J., & Zighed, D. A. (Eds.). (2009). Data mining and medical knowledge management: cases and applications: cases and applications. IGI Global.
Bodyanskiy, Y., Deineko, A., Pliss, I., & Chala, O. (2021). Adaptive Probabilistic Neuro-Fuzzy System and its Hybrid Learning in Medical Diagnostics Task. The Open Bioinformatics Journal, 14(1).
Kim, J., & Yu, S. C. (2016, November). Convolutional neural network-based real-time ROV detection using forward-looking sonar image. In 2016 IEEE/OES Autonomous Underwater Vehicles (AUV) (pp. 396-400). IEEE.
Mäkiö, J., Glukhov, D., Bohush, R., Hlukhava, T., & Zakharava, I. (2019, September). Fuzzy Logic Approximation and Deep Learning Neural Network for Fish Concentration Maps. In International Conference on Digital Technologies in Logistics and Infrastructure (ICDTLI 2019) (pp. 479-484). Atlantis Press.
Uma, K. K., & Meenakshisundaram, K. (2020). Optimization based fuzzy deep learning classification for sentiment analysis. Int J Sci Technol Res, 9(3), 7.
Pustokhina, I. V., Pustokhin, D. A., Kumar Pareek, P., Gupta, D., Khanna, A., & Shankar, K. (2021). Energy‐efficient cluster‐based unmanned aerial vehicle networks with deep learning‐based scene classification model. International Journal of Communication Systems, 34(8), e4786.
Alzenad, M., El-Keyi, A., Lagum, F., & Yanikomeroglu, H. (2017). 3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage. IEEE Wireless Communications Letters, 6(4), 434-437.
Huang, K., Zhang, Y., Cheng, H. D., Xing, P., & Zhang, B. (2021). Semantic segmentation of breast ultrasound image with fuzzy deep learning network and breast anatomy constraints. Neurocomputing, 450, 319-335.
Xian, M., Zhang, Y., Cheng, H. D., Xu, F., Huang, K., Zhang, B., ... & Wang, Y. (2018). A benchmark for breast ultrasound image segmentation (BUSIS). Infinite Study.
Amin, M., Ullah, K., Asif, M., Waheed, A., Haq, S. U., Zareei, M., & Biswal, R. R. (2022). ECG-Based Driver’s Stress Detection Using Deep Transfer Learning and Fuzzy Logic Approaches. IEEE Access, 10, 29788-29809.
de Naurois, C. J., Bourdin, C., Stratulat, A., Diaz, E., & Vercher, J. L. (2019). Detection and prediction of driver drowsiness using artificial neural network models. Accident Analysis & Prevention, 126, 95-104.
Nayak, R., Pati, U. C., & Das, S. K. (2021). A comprehensive review on deep learning-based methods for video anomaly detection. Image and Vision Computing, 106, 104078
Khosravi, M. R., Rezaee, K., Moghimi, M. K., Wan, S., & Menon, V. G. (2023). Crowd emotion prediction for human-vehicle interaction through modified transfer learning and fuzzy logic ranking. IEEE Transactions on Intelligent Transportation Systems.
Ali, M. F., Jayakody, D. N. K., & Li, Y. (2022). Recent trends in underwater visible light communication (UVLC) systems. IEEE Access, 10, 22169-22225.
Rajalakshmi, R., Pothiraj, S., Mahdal, M., & Elangovan, M. (2023). Adaptive Fuzzy Logic Deep-Learning Equalizer for Mitigating Linear and Nonlinear Distortions in Underwater Visible Light Communication Systems. Sensors, 23(12), 5418.
Sahnoun, I., Ansari, I. S., Abdallah, M., & Qaraqe, K. (2017, September). Performance analysis of adaptive modulation in underwater visible light communications. In 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM) (pp. 1-6). IEEE.
Singh, S. K., Abolghasemi, V., & Anisi, M. H. (2023). Fuzzy logic with deep learning for detection of skin cancer. Applied Sciences, 13(15), 8927.
Mi, X., Yu, C., Liu, X., Yan, G., Yu, F., & Shang, P. (2022). A dynamic ensemble deep deterministic policy gradient recursive network for spatiotemporal traffic speed forecasting in an urban road network. Digital Signal Processing, 129, 103643.
Yazdinejad, A., Dehghantanha, A., Parizi, R. M., & Epiphaniou, G. (2023). An optimized fuzzy deep learning model for data classification based on nsga-ii. Neurocomputing, 522, 116-128.
Mohamed, S. M., & Nyongesa, H. (2002, May). Automatic fingerprint classification system using fuzzy neural techniques. In 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No. 02CH37291) (Vol. 1, pp. 358-362). IEEE.
Ezhilmaran, D., & Adhiyaman, M. (2017). Fingerprint matching and correlation checking using level 2 features. International Journal of Computational Vision and Robotics, 7(4), 472-487.
Sharma, P., & Singh, K. (2017). Multimodal biometric system fusion using fingerprint and face with fuzzy logic. International Journal, 7(5).
Sharma, P., & Singh, K. (2017). Multimodal biometric system fusion using fingerprint and face with fuzzy logic. International Journal, 7(5).
Mohammed, H. R., & Hussain, Z. M. (2021). Hybrid mamdani fuzzy rules and convolutional neural networks for analysis and identification of animal images. Computation, 9(3), 35.
Sharma, T., Singh, V., Sudhakaran, S., & Verma, N. K. (2019, June). Fuzzy based pooling in convolutional neural network for image classification. In 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1-6). IEEE.
Popko, E. A., & Weinstein, I. A. (2016, August). Fuzzy logic module of convolutional neural network for handwritten digits recognition. In Journal of Physics: Conference Series (Vol. 738, No. 1, p. 012123). IOP Publishing.
Xi, Z., & Panoutsos, G. (2018, September). Interpretable machine learning: convolutional neural networks with RBF fuzzy logic classification rules. In 2018 International conference on intelligent systems (IS) (pp. 448-454). IEEE.
Subhashini, L. D. C. S., Li, Y., Zhang, J., & Atukorale, A. S. (2022). Integration of fuzzy logic and a convolutional neural network in three-way decision-making. Expert Systems with Applications, 202, 117103.
Das, R., Sen, S., & Maulik, U. (2020). A survey on fuzzy deep neural networks. ACM Computing Surveys (CSUR), 53(3), 1-25.
Yazdanbakhsh, O., & Dick, S. (2019). A deep neuro-fuzzy network for image classification. arXiv preprint arXiv:2001.01686.
Diamantis, D. E., & Iakovidis, D. K. (2020). Fuzzy pooling. IEEE Transactions on Fuzzy Systems, 29(11), 3481-3488.
Bhalla, K., Koundal, D., Sharma, B., Hu, Y. C., & Zaguia, A. (2022). A fuzzy convolutional neural network for enhancing multi-focus image fusion. Journal of Visual Communication and Image Representation, 84, 103485.
Talpur, N., Abdulkadir, S. J., Alhussian, H., Hasan, M. H., Aziz, N., & Bamhdi, A. (2022). A comprehensive review of deep neuro-fuzzy system architectures and their optimization methods. Neural Computing and Applications, 1-39.
Kamthan, S., Singh, H., & Meitzler, T. (2022). Hierarchical fuzzy deep learning for image classification. Memories-Materials, Devices, Circuits and Systems, 2, 100016.dd
Yang, C. H., Moi, S. H., Hou, M. F., Chuang, L. Y., & Lin, Y. D. (2020). Applications of deep learning and fuzzy systems to detect cancer mortality in next-generation genomic data. IEEE Transactions on Fuzzy Systems, 29(12), 3833-3844.
Seongsoo, E, Young ,(2020). Analysis, Processing, and Applications of Fuzzy System and Deep Learning. Tech science press.
Ieracitano, C., Mammone, N., Versaci, M., Varone, G., Ali, A. R., Armentano, A., ... & Morabito, F. C. (2022). A fuzzy-enhanced deep learning approach for early detection of Covid-19 pneumonia from portable chest X-ray images. Neurocomputing, 481, 202-215.
Sideratos, G., Ikonomopoulos, A., & Hatziargyriou, N. D. (2020). A novel fuzzy-based ensemble model for load forecasting using hybrid deep neural networks. Electric Power Systems Research, 178, 106025.
Yang, C. H., Moi, S. H., Hou, M. F., Chuang, L. Y., & Lin, Y. D. (2020). Applications of deep learning and fuzzy systems to detect cancer mortality in next-generation genomic data. IEEE Transactions on Fuzzy Systems, 29(12), 3833-3844.