Application of Artificial Neural Networks in the Identification of Heart Abnormalities Based on ECG: Literature Review
Downloads
In recent years, a lot of research on Biomedicine is mainly related to heart defects. The recognition and detection of heart defects using an electrocardiogram (ECG) is numerous. This article aims to explain ECG research trends using the artificial neural networks (ANN) approach in the last twelve years. We reviewed journals with the keyword title "ANN ECG" and published from 2011 to 2022. Articles classified by the most frequently discussed topics include: data sets, case studies, pre-processing, feature extraction, and classification/identification methods. Data collection from articles obtained some of them use data banks such as PhysioNet, European Society of Cardiology (ESC), UCI Repository, as well as data collection directly from patients. The pre-processing stage of the total number of journals used 23% uses this stage, while in characteristic extraction almost 25% of papers are used. This research is very interesting because only a few researchers focus on researching about it. This article will provide further explanation of the most widely used algorithms for ECG research with the ANN approach. At the end of this article, critical aspects of ECG research can be carried out in the future, and the use of deep learning becomes a huge opportunity for researchers.
Grande-Fidalgo, A., Calpe, J., Redón, M., Millán-Navarro, C., and Soria-Olivas, E., “Lead Reconstruction Using Artificial Neural Networks for Ambulatory ECG Acquisition”, Sensors, 21, 5542, 2021, https://doi.org/10.3390/s21165542.
Al-Saffar, B., Ali, Y.H., Muslim, A.M., and Ali, H.A., “ECG Signal Classification Based on Neural Network”, Proceedings of the 2nd International Conference on Emerging Technologies and Intelligent Systems (ICETIS), Lecture Notes in Networks and Systems, vol 573. Springer, Cham, 2022, https://doi.org/10.1007/978-3-031-20429-6_1
El-Khafif, S.H., dan El-Brawany, M.A., “Artificial Neural Network-Based Automated ECG Signal Classifier”, , ISRN Biomedical Engineering, Hindawi Publishing Corporation Article ID 261917, pp.1-7, 2013.
http://www.medicine.mcgill.ca/physio/vlab/cardio/introecg.htm
Hernandez-Matamoros, A., Fujita, H., Escamilla-Hernandez E., Perez-Meana, H., and Nakano-Miyatake, M., “Recognition of Signals Using Wavelet Basic Atomic Functions”, Biocybernetics and Biomedical Engineering, 2020.
Weems, A., Harding, M., and Choi, A., “Classification of the ECG Signal Using Artificial Neural Network”, Proceedings of the 3rd International Conference on Intelligent Technologies and Engineering Systems (ICITES2014), Lecture Notes in Electrical Engineering, vol.345. Springer, Cham, 2016, https://doi.org/10.1007/978-3-319-17314-6_70.
Pan, J., and Tompkins, W.J., “A Real-Time QRS Detection Algorithm”, IEEE Transactions On Biomedical Engineering, Vol. BME-32, No. 3, March 1985.
Özbay, Y., and Karlik, B., “A Recognition Of ECG Arrhythmias Using Artificial Neural Network”, Proceedings – 23rd Annual Conference – IEEE/EMBS, Oct.25-28, Istanbul, Turkey, pp.1-5, 2001.
Foo, S. Y., Stuart, G., Harvey, B., and Meyer-Baese, A., “Neural Network-Based EKG Pattern Recognition”, Engineering Applications of Artificial Intelligence, 15, pp.253–260, 2002.
Engin, M., “ECG Beat Classification Using Neuro-Fuzzy Network”, Pattern Recognition Letters 25, pp.1715–1722, 2004.
He, L., Hou, W., Zhen, X., and Peng, C., “Recognition of ECG Patterns Using Artificial Neural Network”, Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA'06), 1-5, 2006.
Ceylan, M., dan Özbay, Y., “Comparison of FCM, PCA and WT Techniques For Classification ECG Arrhythmias Using Artificial Neural Network”, Expert Systems with Applications 33, 286–295, 2007.
Pohl, J., Sáblík, V., and Polách, P., “ECG Analysis With Using Of Neural Networks”, 2008, http://www.feec.vutbr.cz/EEICT/2008/sbornik/03-Doktorske%20projekty/03-Kybernetika%20a%20automatizace/05-xpohlj00.pdf , diakses 25 Agustus 2014.
Eom, J.H., Kim, S.H., and Zhang, B.T., “AptaCDSS-E: A Classifier Ensemble-Based Clinical Decision Support System For Cardiovascular Disease Level Prediction”, Expert Systems with Applications 34, pp.2465–2479, 2008
Ghongade, R., and Ghatol, A., “An Effective Feature Set for ECG Pattern Classification”, Proceedings First International Conference, ICMB, Hong Kong, China, January 4-5, pp.25-32, 2008,
Jekova, I., Bortolan, G., and Christov, I., “Assessment and Comparison of Different Methods For Heartbeat Classification”, Medical Engineering & Physics 30, pp.248–257, 2008.
Gharaviri, A., Teshnehlab, M., and Moghaddam, H.A., “Ischemia Detection via ECG Using ANFIS”, 30th Annual International IEEE EMBS Conference, Vancouver, British Columbia, Canada, August 20-24, pp.1163-1166, 2008.
Stefko, K., “Application of MLBP Neural Network for Exercise ECG Test Records Analysis in Coronary Artery Diagnosis”, Information Tech. in Biomedicine, ASC 47, pp.179–183, 2008.
Golpayegani, G.N., and Jafari, A.H., “A Novel Approach In ECG Beat Recognition Using Adaptive Neural Fuzzy Filter”, Journal Biomedical Science and Engineering, 2, pp.80-85. 2009.
Abidin, B., Dom, R.M., Arahman, A., and Abakar, R., “Use of Fuzzy Neural Network to Predict Coronary Heart Disease in a Malaysian Sample”, Proceedings of the 8th WSEAS International Conference on Telecommunications and Informatics, pp.76-80, 2009.
Mauko, I.C., “Klasifikasi Detak Elektrokardiogram Menggunakan Transformasi Wavelet Diskrit dan Adaptive Neuro Fuzzy Inference System”, Tesis, Prodi Teknik Elektro, Jurusan Ilmu-ilmu Teknik, Fakultas Teknik, Universitas Gadjah Mada Yogyakarta, 2010.
Shi, W., and Kheidorov, I., “Hybrid Hidden Markov Models for ECG Segmentation”, Sixth International Conference on Natural Computation (ICNC), pp.3323-3328, 2010.
Tonekabonipour, H., Emam, A., Teshnelab, M., and Shoorehdeli, M.A., “Comparison of Neuro-Fuzzy Approaches With Artificial Neural Networks for the Detection of Ischemia in ECG signals”, IEEE, pp.4045-4048, 2011.
Jadhav, S., Nalbalwar, S., and Ghatol, A., “Artificial Neural Network Based Cardiac Arrhythmia Classification Using ECG Signal Data”, International Conference on Electronics and Information Engineering (ICEIE), pp.228 – 231, 2010.
Patra, D., Das, M.K., and Pradhan, S., “Integration of FCM, PCA and Neural Networks for Classification of ECG Arrhythmias”, IAENG International Journal of Computer Science, 36:3, IJCS_36_3_05, pp.1-5, 2010.
https://archive-beta.ics.uci.edu/
Haseena, H.H., Joseph, P.K., and Mathew, A.T., “Classification of Arrhythmia Using Hybrid Networks”, J Med Syst 35, 2011, DOI 10.1007/s10916-010-9439-6, 1617–1630.
Gothwal, H., Kedawat, S., and Kumar, R., “Cardiac Arrhythmias Detection in an ECG Beat Signal Using Fast Fourier Transform and Artificial Neural Network”, J. Biomedical Science and Engineering, 4, pp.289-296, 2011.
Surtono, A., Widodo, T.S., and Tjokronagoro, M., “Analisis Klasifikasi Sinyal EKG Berbasis Wavelet dan Jaringan Syaraf Tiruan”, JNTETI, vol. 1, no. 3, pp. 60–66, 2012.
Adams, E. R., and Choi, A., “Using Neural Networks to Predict Cardiac Arrhythmias”, IEEE International Conference on Systems, Man, and Cybermetics, October 14-17, COEX, Seoul, Korea, 2012.
Dubey, V., and Richariya, V., A Neural Network Approach for ECG Classification, International Journal of Emerging Technology and Advanced Engineering (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 10, October), pp.189-196, 2013.
Tseng, K-K., Lee, D., and Chen, C., “ECG Identification System Using Neural Network With Global and Local Features”, International Conferences ITS, ICEduTech and STE, pp.3-10, 2016.
Das, M.K., and Kolya, A.K., “ECG Beat Classification using the Integration of S-transform, PCA and Artificial Neural Network”, National Conference on Recent Innovations in Computer Science & Communication Engineering, July, 2016.
Wu, M., Lu, Y., Yang, W., and Wong, S.Y., “A Study on Arrhythmia via ECG Signal Classification Using the Convolutional Neural Network”, Front. Comput. Neurosci, 14:564015, 2021, doi: 10.3389/fncom.2020.564015
Darwan, “The Use of Artificial Neural Networks and Wavelets in 12-Lead Electrocardiagram Images”, Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer (Matrik), Vol. 20, No. 2, Mei, pp. 355-366, 2021.
Yuniarti, A.R., Manurung, F.A., Rizal, S., “Application of Neural Network for ECG-based Biometrics System Using QRS Features”, Journal of Computer Engineering, Electronics and Information Technology (COELITE), Vol.1, Issue 1, April, pp.22-31, 2022.
Luthfi, F., and Arifin, A., “Klasifikasi Sinyal Elektrokardiografi Menggunakan Wavelet Transform Dan Neural Network”, The 13th Seminar On Intelligent Technology and Its Applications, Teknik Elektro, ITS Surabaya, ISSN: 2252-8296, 2012.
Jaiswal, G.K., and Paul, R., “Artificial Neural Network for ECG Classification”, Recent Research in Science and Technology, 6(1), pp.36-38, 2014.
Sukmawati, R., Nuryani, Purwanto, H., Yahya, I., and Lestari, A., “Pengenalan Pola Aritmia Kontraksi Ventrikel Dini pada Elektrokardiogram dengan Jaringan Syaraf Tiruan menggunakan Fitur Interval RR, Gradien Gelombang R, dan QR”, JURNAL Teori dan Aplikasi Fisika, Vol.02, No.02, Juli, pp.157-163, 2014.
Gautam, M.K., and Giri, V.K., “A Neural Network approach and Wavelet analysis for ECG classification”, 2nd IEEE International Conference on Engineering and Technology (ICETECH), 17-18 March, Coimbatore, TN, India, 2016.
Panatik, K.Z., Kamardin, K., Sjarif, N.N., Aziz, N.SN.A., Bani, N.A., Ahmad, N.A., Sam, S.M., and Azizan, A., “Detection of Arrhythmia From the Analysis of ECG Signal Using Artificial Neural Networks”, International Journal of Advanced and Applied Sciences, 6(4), pp.101-109, 2019.
Darwan and Mustafidah, H., “Use of Wavelets in Electrocardiogram Research: a Literature Review”, JUITA: Jurnal Informatika, Vol.9, No.1, pp.49-56 May, 2021.
Han, J., Kamber, M., and Pei, J., Data Mining Concepts and Techniques, Third. Morgan Kaufmann Publishers, 2012.
Bramer, M., Principles of Data Mining, Second Edition, Springer, 2013.
Khampila, A., and Boonjing, V., “Heart disease Classification using Neural Network and Feature Selection”, 21st International Conference on Systems Engineering, IEEE Computer Society, pp.406-409, 2011.
Tonekabonipour, H., Emam, A., Teshnelab, M., and Shoorehdeli, M.A., “Ischemia Prediction via ECG using MLP and RBF predictors with ANFIS Classifiers”, Seventh International Conference on Natural Computation, pp.776-780, 2011.
Emam, A., Tonekabonipour, H., and Tehnelab, M., “Applying MLP as a Predictor and ANFIS as a classifier in Ischemia detection via ECG”, IEEE, pp.2958-2962, 2011.
Rao, T.V.K.H., Mishra, S., and Singh, S.K., “Automatic Electrocardiographic Analysis Using Artificial Neural Network Models”, Advanced Materials Research, Trans Tech Publications, Ltd., November, 2011, https://doi.org/10.4028/www.scientific.net/amr.403-408.3587.
Jadhav, S., Nalbalwar, S., and Ghatol, A., “Artificial Neural Network Models Based Cardiac Arrhythmia Disease Diagnosis From ECG Signal Data”, International Journal of Computer Applications (0975 – 8887), Volume 44– No15, April, pp.8-13, 2012,
Gazali, K.H., Khleaf, H.K., and Abdalla, A.N., “A Novel ECG Heart Disease Classifier based on Hybrid Radial Basis Neural Networks”, 2nd International Conference on Emerging Trends in Computer and Image Processing (ICETCIP'2012), June 30-July 1, 2012 Bali, pp.152-155, 2012.
Sekar, B.D., Dong, M.C., Shi, J., and Hu X.Y., “Fused Hierarchical Neural Networks for Cardiovascular Disease Diagnosis”, IEEE Sensors Journal, Vol. 12, No. 3, March, pp.644-650, 2012.
Alizadehsani, R., Habibi, J., Hosseini, M.J., Mashayekhi, H., Boghrati, R., Ghandeharioun, A., Bahadorian, B., and Sani, J.A., “A Data Mining Approach For Diagnosis of Coronary Artery Disease”, Computer Methods and Program in Biomedicine 111, pp.52-61, 2013.
Sao, P., Hegadi, R., and Karmakar, S., ECG Signal Analysis Using Artificial Neural Network, International Journal of Science and Research (IJSR), pp.82-86, 2013.
El-Khafif, S.H., and El-Brawany, M.A., “Artificial Neural Network-Based Automated ECG Signal Classifier, Hindawi Publishing Corporation”, ISRN Biomedical Engineering, Article ID 261917, pp.1-7, 2013.
Solikhah, M., Nuryani, and Darmanto, “Deteksi Aritmia pada Elektrokardiogram dengan Metode Jaringan Syaraf Tiruan Kelas Jamak menggunakan Fitur Interval RR, Lebar QRS, dan Gradien Gelombang R”, Jurnal Fisika dan Aplikasinya, Vol.11, No.1, Januari, pp.36-40, 2015.
Kim, J-W., Park, S-E., Jeung, G-W., Kim, K-S., ” Detection of R-Peaks in ECG Signal by Adaptive Linear Neuron (ADALINE) Artificial Neural Network”, MATEC Web of Conferences, 2016.
Ripoli V.J.R., Wojdel, A., Romero, E., Ramos, P., and Brugada, J., “ECG Assessment Based on Neural Networks with Pretraining”, Applied Soft Computing, 49, pp.399–406, 2016.
Hasihim, F.R., Daud, N.G.N., Mokhtar, A.S.N., Rashidi, A.F., Adnan, J., and Ahmad, K.A., “Optimization of ECG Peaks (Amplitude and Duration) in Predicting ECG Abnormality using Artificial Neural Network”, Indian Journal of Science and Technology, Vol 10(12), March, 2017, DOI: 10.17485/ijst/2017/v10i12/112970.
Li, J., Si, Y., Xu, T., and Jiang S., “Deep Convolutional Neural Network Based ECG Classification System Using Information Fusion and One-Hot Encoding Techniques”, Mathematical Problems in Engineering, pp.1-10, 2018.
Sanchez, F.A.R., and Cervera, J.A.G., “ECG Classification Using Artificial Neural Networks”, International Congress of Physics Engineering, 2019.
Rifali, M., and Irmawati, D., “Sistem Cerdas Deteksi Sinyal Elektrokardiogram (EKG) untuk Klasifikasi Jantung Normal dan Abnormal Menggunakan Jaringan Syaraf Tiruan (JST)”, ELINVO (Electronics, Informatics, and Vocational Education), May, 4(1), pp.49-55, 2019.
Rana, A., and Kim, K.K., “Comparison of Artificial Neural Networks for Low-Power ECG-Classification System”, Journal of Sensor Science and Technology, Vol. 29, No. 1, pp.19-26, 2020.
Ribeiro, A.H., Ribeiro, M.H., Paixao, G.M.M., Oliveira, D.M., Gomes, P.R., Canazart, J.A., Fereira, M.P.S., Andersson, C.R., Macfarlane, P.W., Meira, W., Schon, T.B., and Ribeiro, A.L.P., “Automatic Diagnosis of the 12-Lead ECG Using a Deep Neural Network”, NATURE COMMUNICATIONS, 2020, https://doi.org/10.1038/s41467-020-15432-4,
Arianto, Y., and Hamdi, M., “Deteksi Pola Sinyal Elektrokardiogram Irama Iskemia Miokardial Menggunakan Jaringan Syaraf Tiruan Berbasis MATLAB Simulink”, Prosiding Seminar Nasional Fisika Universitas Riau ke-5 (SNFUR-5), Pekanbaru, 15-17 Oktober, 2020.
Birok, R., Kapoor, R., and Choydry, M. S., “ECG Denoising Using Artificial Neural Networks and Complete Ensemble Empirical Mode Decomposition”, Turkish Journal of Computer and Mathematics Education, Vol.12 No.2, pp.2382-2389, 2021.
Jayaprana, W.S., Intan, R., and Liliana, L., “Electrocardiogram Biometrics Recognition Menggunakan Artificial Neural Network”, Jurnal Infra, Vol.9, No.1., 2021.
Arianto, Y., Hamdi, M., and Meyzia, B., “Electrocardiogram Signal Patterns Detection of Myocardial Ischemia Rhythm Using an Artificial Neural Network Based on MATLAB/Simulink”, INTECHCOM: Science, Technology, and Communication Journal, Vol. 3, No. 1, October, pp.23-32, 2022.
Celik I., Ustun, D., and Akdagli, A., “Designing of the Artificial Neural Network Model Trained by Using the Different Learning Algorithms to Classify the Electrocardiographic Signals”, European Journal of Science and Technology (IJOSAT), Special Issue 45, pp. 74-78, December, 2022.
Scagnetto, A., Barbati, G., Gandin, I., Cappelletto, C., Baj, G., Cazzaniga, A., Cuturello, F., Ansuini, A., Bortolussi, L., and Di Lenarda, A., “Deep artificial neural network for prediction of atrial fibrillation through the analysis of 12-leads standard ECG”, Electrical Engineering and Systems Science, Cornell University, 2022.