
Engineering and Technology Journal e-ISSN: 2456-3358

Volume 08 Issue 08 August -2023, Page No.- 2540-2555

DOI: 10.47191/etj/v8i8.08, I.F. – 7.136

© 2023, ETJ

2540 Daniel Alberto Priano, ETJ Volume 08 Issue 08 August 2023

Exploring Routing and Quality of Service in Software-Defined Networks:

Interactions with Legacy Systems and Flow Management

Daniel Alberto Priano1, Fabio Sergio Bruschetti2, María Claudia Abeledo3, Javier Guevara4

1,2,3,4 Universidad Nacional de San Martín

ABSTRACT: The following article presents the most important aspects of routing technologies and the QoS (Quality of Service)

of the SDN architecture. The interaction of SDN with traditional or legacy networks is discussed in depth and concepts related to

flow management are developed. Additionally, the analysis of the Open Flow protocol is included.

KEYWORDS: SDN, OpenFlow, quality of service, QoS, routing, SDN architecture, internetworking, flow-based routing

1. INTRODUCTION

For organizations, the use of software-defined networks

(SDN) enables and accelerates the implementation and

deployment of applications while significantly reducing IT

(Information Technology) costs by automating workflows

established by the policies applicable to data networks. SDN

technology enables the development of cloud architectures by

automating on-demand automated delivery of applications or

mobility at scale. SDN enhances the benefits of data center

virtualization by increasing the flexibility and resource

utilization and reducing costs and overhead.

SDN achieves these goals by converging the management of

network services and applications into an extensible and

centralized deployment platforms that can automate the

provisioning and configuration of the entire infrastructure. TE

(Traffic Engineering) policies can be applied to different

workflows. The result is a modern and agile infrastructure that

can quickly deliver new applications and services instead of

days or weeks required in the past.

This new approach to software-defined networks proposes

five fundamental aspects:

 Separation of planes (control, data and

management),

 Programmable and low-cost devices,

 Centralized control (through a controller that can

manage such devices),

 Network virtualization and automation,

 Open-source code and structures.

On the other hand, when experimenting with large-scale

topologies in SDN networks, we can observe many advantages

in routing recovery. Compared to SDN routing, routing

convergence in the legacy network is much more influenced

by link delays. When the delay of a network link is high and

the network is large, SDN networks have a shorter routing

convergence time than legacy networks.

Centralized control in an SDN network allows improving

the efficiency of routing computation and developing fine-

grained control of network packets. Some literature studies the

convergence time of legacy routing mechanisms and SDN

routing by measuring their performance in terms of delay,

packet forwarding or convergence after link/node failure.

In this paper, the exploratory analysis of the existing

literature has focused on the sources for each of the categories

and subcategories of this topic developed in Europe and the US.

This work has been limited to information from the last decade,

as most of the research and applications based on SDN have

been developed in this period.

We have consulted different sources of documentation such

as IEEE Xplore[1], Google Scholar, ONF (Open Network

Foundation) and ITU (International Telecommunication

Union), among others. For the search, we used keywords such

as SDN architecture, SDN controllers, NFV (Network

Function Virtualization) for SDN, SDN applications and SDN

standards.

1.1 Traffic Engineering

TE is a very important mechanism for optimizing the

performance of data networks. It allows regulating the flow of

data transmitted over the network based on a dynamic and

predictive analysis of the behavior of the transmitted data[2].

A wide variety of TE techniques exist and most of them are

implemented in MPLS (Multiprotocol Label Switching)

networks.

SDN networks allow traffic engineering to be implemented

in a natural way, enabling policy coordination between

different ISPs by combining device performance with the big

picture view[3].

At this point, we would like to point out that the

implementation of TE in MPLS will be complex because it is

a multiprotocol that uses a lot of network resources. In order to

implement TE, it is necessary to modify the routing protocols

so that they can transport the typical attributes of these

https://doi.org/10.47191/etj/v8i8.08

“Exploring Routing and Quality of Service in Software-Defined Networks: Interactions with Legacy Systems and

Flow Management”

2541 Daniel Alberto Priano, ETJ Volume 08 Issue 08 August 2023

mechanisms. For example, one of them is the available

bandwidth, which has to be dynamically calculated at the

nodes in order to know the volume of traffic managed at each

link. This data will populate the TE table needed for tunnel

selection. This table will be used to manage, for example,

priorities and resource reservations. We will not go in detail

into this topic because it is not the objective of this work.

1.2 Quality of Service

With the emergence of multimedia applications, traffic

requirements for networks have become a critical feature: low

delay, low jitter or reduced packet loss.

QoS models are used to ensure that networks can transmit

data sent by critical applications. They allow users to avail

themselves of multimedia services of reasonable quality under

a specific contract that includes the operating parameters

agreed between the provider and the customer and is called

SLA (Service Level Agreement)[4].

In general, implementing QoS in routers of an IP network

consists of the following phases:

 Packets markup with a code obtained from the

headers of the current packets. It will be used to group

packages with some criteria or rule.

 Differentiated treatment of marked packets for traffic

monitoring and SLA compliance. This is achieved

through bandwidth measurement, packet remarking,

queuing and buffering treatment.

Two of the architectures used are: Integrated Services

(IntServ) and Differentiated Services (DiffServ).

The objectives of IntServ are to preserve the datagram

model of IP-based networks and to support resource

reservation for real-time applications. Routers have to store

certain state information of each flow and resource

reservations with the RSVP (Resource Reservation

Protocol)[5] in all nodes of the path. Packets of the same flow

will use the same path, emulating circuit switching.

To apply QoS to a flow, it must pass through an admission

check that verifies the availability of resources at each router

on its path. If the resources are available, the flow is admitted

to the network and each router stores its state information (soft

state). This will ensure that the flow reaches its destination. To

maintain these resource reservations during the transmission of

flows, resource reservation requests must be renewed

periodically generating an increase in network traffic.

Since the flows share the available network resources, we

can say that the links will be shared between different flows.

For example, the network bandwidth is shared by several flows

that may contain different types of traffic.

On the other hand, the main idea of DiffServ is to classify

the different flows into classes and then apply QoS rules to

them. Each node operating within a DiffServ domain will

follow the same common service provisioning policies and the

same set of PHB (Per Hop Behavior) groups[6].

A flow normally enters a DiffServ domain through a border

node. The border node performs several tasks such

classification, marking, policy enforcement and traffic

adaptation. These tasks are performed according to the TCA

(Traffic Conditioning Agreement)[7]. This TCA specifies the

traffic classification and profiling rules (measurement,

marking, discarding and shaping). Border nodes interconnect

different domains, each with its internal nodes, and implement

functions to translate the different PHBs between TCA-

compliant domains.

Forwarding traffic at each node meets a certain PHB. This

is the differentiated treatment that each individual packet

receives according to specific queuing service disciplines,

whose mechanisms are not subject to standardization. PHBs

are applied at each network node regardless of how end-to-end

or cross-domain services are constructed, providing a

particular treatment for each class of traffic.

Besides, flow admission is performed at the border nodes

and can be configured manually or dynamically. In case of

dynamic configuration, RSVP[8] will be used. This protocol

reduces the scalability possibilities.

Perhaps the biggest difference between the two systems

arises in terms of scalability over large networks. While the

IntServ model allows for greater granularity in resource

reservation on a per-flow basis, it uses greater bandwidth

resources of the network links than the DiffServ model.

Diffserv networks classify packets according to a small

number of flow groups by identifying them with the IPv4

DSCP (Differentiated Services Code Point)[9], IPv4 TOS

(Type of Service) or IPv6 Traffic Class of each IP header in

the packet. Therefore, in addition to eliminating the state

dependency of each flow, DiffServ can implement QoS

provisioning without the need for end-to-end signaling.

We can formally define QoS as a set of standards and

mechanisms aimed to guarantee certain level of quality for the

services used by critical applications. Using these mechanisms,

network administrators can efficiently use existing resources

and thus guarantee the required level of service. This avoids

over-provisioning resources and over-dimensioning networks.

The concept of QoS is critical for applications and users to

meets their requirements; this means that some traffic flows

will need preferential treatment. The objective of QoS is to

provide a service that ensures sufficient bandwidth, latency

control and reduction of data loss[10].

In SDNs it is possible to centralize QoS management,

leaving the routers to take care of their primary role and

implementing QoS directly on the switches through the

network controller. This solves the problems caused in large

networks and facilitates effective QoS management for the

entire network. This feature allows QoS policies to be changed

dynamically, making SDNs truly useful.

“Exploring Routing and Quality of Service in Software-Defined Networks: Interactions with Legacy Systems and

Flow Management”

2542 Daniel Alberto Priano, ETJ Volume 08 Issue 08 August 2023

1.3 Load Balancing

Today, our networks have to handle a large amount of

traffic, serve thousands of customers and comply with the

requirements and restrictions imposed. This is a very large

workload and difficult for a single server to handle. The

solution is to use multiple servers with a load balancer acting

as an interface.

Figure 1. Load Balancing - Source: Cisco System.

As shown in Figure 1, clients send their requests to the load

balancer, which receives them and forwards them to the

different servers according to the defined distribution or

balancing strategy.

Round Robin is one of the most common strategies. It

consists of distributing requests among servers sequentially.

Another strategy is Least Connections, where a new request is

sent to the server with the fewest client connections at that

time. There is also the IP hash strategy in which the client's IP

address is used to determine the server that will serve it.

The load balancer uses dedicated hardware is expensive and

is limited to what the vendor allows to be parameterized.

Currently, network administrators cannot use their own load

balancing algorithms since load balancers are not

programmable as they are vendor locked.

The growing demand for Internet services generates sudden

increases in network traffic, causing congestion and

overloading of links. For example, in 2009, in a data

processing center network with 150 switches and 1500 servers,

the 15% of the network was congested for more than 100

seconds even though many of the links were underutilized; this

implies a considerable need to optimize the allocation of

network resources[11].

Most data processing centers have decided to implement a

load balancer to meet the large number of users and the

requirements they generate. Balancing strategies for web

services (HTTP) are often based on link metrics provided

during installation and do not take into account dynamic

network conditions such as bandwidth utilization, packet loss

and delays. There is a lack of flexibility to adjust a strategy

based on different network requirements, network traffic or

running applications[12].

Networks must handle large traffic volumes guaranteeing

the availability of their services and avoiding unnecessary

waiting times. The article "Dynamic load balancing

application for servers, based on software-defined

networks"[13] proposes a load balancing algorithm based on a

combined criteria (available bandwidth and delay) using SDN

technologies. The objective is to obtain and evaluate different

network parameters at runtime. This set of parameters makes

it possible to select the most responsive server among the set

of servers storing and distributing the same application or

providing the same service. In this way, server response time

is improved by up to 50% compared to, for example, the

traditional Round Robin method. SDN-based server load

balancing can effectively improve server performance with

low implementation complexity compared to the traditional

load balancing method.

Using OpenFlow as the controller interface protocol in

SDN, the load balancing of a set of servers will be based on the

dynamic creation of flow tables. Through an algorithm that

allows the design of dynamic flow tables, "individual flow

tables" can be combined with a "group flow table". Individual

tables can monitor the traffic of each client while a group table

allows to classify hosts efficiently. This is also discussed in the

article mentioned above.

The algorithm mentioned in the article avoids an excessive

number of flow tables and also solves the defect that is

generated when the number of matches in the flow table is too

large. This demonstrates that it is possible to obtain better

performance in network traffic scheduling.

So far, it is possible to solve some of the problems of

traditional networks using SDN. SDN load balancer has certain

advantages compared to the method used in traditional

networks. SDN can effectively improve the performance of the

load balancer and reduce the complexity of its implementation.

SDN load balancers are programmable and allow you to design

and implement your own or custom load balancing strategy or

algorithm. Other virtues of SDN load balancers are that they

do not require dedicated hardware, which saves network costs.

A single switch can become a powerful load balancer through

the use of SDN controllers.

1.4 Multipath routing in SDN

One of the first concepts analyzed in this section is that of

applications that relate the load balancer to multipath routing;

a topic about which much has been written. This routing is the

most commonly implemented in SDN which will not be

included in this paper, but rather an overview of its

implementation and operation will be presented.

Multipath routing is a technique that uses network resources

to propagate traffic from a source node to a destination node

over multiple network paths. This technique is used to increase

bandwidth, minimize end-to-end delay, increase fault

tolerance, improve reliability, implement load balancing,

among others.

“Exploring Routing and Quality of Service in Software-Defined Networks: Interactions with Legacy Systems and

Flow Management”

2543 Daniel Alberto Priano, ETJ Volume 08 Issue 08 August 2023

There are three fundamental elements in multipath

routing[14]: Path discovery, traffic distribution and route

maintenance.

The emergence of SDNs helps to resolve the entropy

generated by the combination of internal and external routing

protocols, traffic engineering, load balancing and multipath

routing in traditional networks. Thus, the idea of routing by

destination to find the best route is abandoned and replaced by

the search for a balanced distribution of flows. In this way,

network resources and available links will be better utilized.

Efforts to achieve all this are evident in research on traffic

engineering in MPLS, whose implementation and maintenance

are excessively complex if dynamic network behavior is

required. We could say that any solution for a new paradigm

would have to be initially simple, i.e., capable of emulating the

usual behavior of traditional networks in a simple way and

from there evolve towards intelligent networks.

Enterprises and service providers are surrounded by a

number of competing forces. The enormous growth of

multimedia content, the explosion of cloud computing, the

impact of increased use of mobile devices, and continuing

business pressures to reduce costs are converging to wreak

havoc on traditional business models as, meanwhile, revenues

remain flat.

To keep pace, many companies are turning to SDN

technology, revolutionizing network design and operation.

SDN enables consistent management of an entire network that

may contain components of complex technologies, as we will

see below.

Figure 2 shows four critical areas where SDN technology

can make a difference for an organization:

1. Network programmability: SDN allows network

behavior to be controlled by software that resides

beyond the network devices that provide its

physical connectivity. As a result, network

administrators can adapt the behavior of their

networks to support new services or customers. By

decoupling hardware from software, administrators

can quickly introduce innovative and differentiated

new services without the limitations that exist in

closed, proprietary platforms.

Figure 2. Logical structure of an SDN network[15].

2. Centralization and control: SDN are based on

logically centralized network topologies that

enable intelligent control and management of

network resources. Devices operate autonomously

with limited knowledge of the network state. With

the centralized control of an SDN, a holistic view

of the network is obtained where policies for

bandwidth management, failover, quality of

service, etc. can be optimally and intelligently

implemented.

3. Network abstraction: services and applications

running on SDN reside on the technologies and

hardware that provide physical connectivity and

control of the network. Applications interact with

the network through APIs (Application

Programming Interfaces) instead of management

interfaces tightly coupled to the hardware.

4. Openness: SDN architectures usher in a new era of

openness by enabling multi-vendor interoperability

and fostering a vendor-neutral ecosystem.

Openness comes from the SDN approach itself.

Open APIs support a wide range of applications

including cloud orchestration, OSS/BSS, SaaS,

among others. These concepts are defined below:

 Operations Support Systems (OSS) refer mainly

to the network systems that are linked to its

operation, for example, the configuration of its

components, early detection of faults,

maintenance, among others. Basically, it is what

allows telecommunications network

administrators to keep the service running.

 The BSS (Business Support System) is

complementary to the OSS. It allows the

management of business elements through

various tools for customer service, collections,

invoicing, etc.[16]

“Exploring Routing and Quality of Service in Software-Defined Networks: Interactions with Legacy Systems and

Flow Management”

2544 Daniel Alberto Priano, ETJ Volume 08 Issue 08 August 2023

 SaaS (Software as a Service) allows users to

access cloud-based applications through

Internet[17]. It offers an end-to-end software

solution provided by a cloud service provider

based on a pay-per-use model. All infrastructure,

middleware, software and application data are

located in the provider's data processing center.

The service provider manages the hardware and

software and, with the appropriate service

contract, will also ensure the availability and

security of applications and data.

To this must be added the critical network applications of

each company or organization, which, of course, will depend

on their environment. Software such as OpenFlow can provide

intelligent control of multi-vendor hardware through open

programmatic interfaces.

To implement the SDN concept in practice, two

requirements must be met. First, there must be a common

logical architecture across all switches, routers and network

devices to be managed by an SDN controller. This logical

architecture can be implemented in different ways, as long as

the SDN controller sees a uniform logical switching function

across equipment from different vendors and different types of

network devices. Second, a secure and standard protocol is

needed between the SDN controller and the network device.

2.1 SDN networks scenario

OpenFlow[18] covers these two requirements: it is a

protocol between SDN controllers and network devices and

allows the logical structure of network switching functions to

be specified. The ONF is a consortium of software vendors,

content distribution networks and network equipment vendors

whose goal is to promote software-defined networking.

According to this documentation, OpenFlow is a protocol

that has evolved over time and has undergone some drastic

changes between versions as can we see in Figure 3. At the end

of 2018, OpenFlow was at version 1.5, but version 1.3 will be

taken as a reference to explain the main features of this

protocol. As will be seen below, this selected version allows to

operate and use the devices without inconvenience. However,

it is advisable to know the features of future new versions of

OpenFlow, since these will most likely be the ones

implemented in most of the switches.

Figure 3. OpenFlow version history[18].

Standardizations in SDN.

Initially, due to the great success of telecommunication

technologies, various applications with divergent requirements

for networks have been developed. To meet these

requirements, networks need to become even more

controllable and manageable. The need to manage traffic in

different ways implies an increase in service orientation.

Numerous emerging packets forwarding technologies are

enabling more direct, lower-level data control methods, e.g.,

flow level. These technologies can simplify interaction with

network resources (switches, routers, etc.) to significantly

increase network control capability. Centralized automation of

the modeling and scheduling of network resources will enable

much more agile network operation. This centralized,

programmable approach can provide the opportunity to

redesign network resource control functions using standard

interfaces and protocols.

Therefore, we can say that this approach allows:

 Centralized logical control of the network,

reducing the number of points to control and

manage,

 Support for network virtualization as an important

feature of the network architecture and

 The definition, control and management of

network resources through software applications,

providing network services in a deterministic

manner according to behavioral requests and

customizing the network for efficient and effective

deployment in its operations.

To implement the above features, ITU-T Y.3300 provides

the framework for software-defined networking (SDN) by

specifying definitions, objectives, high-level capabilities,

requirements and high-level architecture fundamental to SDN.

Several SDN-related technologies and standards have been

developed with different approaches such as ITU-T

Y.3001[19], ITU-T Y.3011[20], b-ITU-T Y.2622[21], b-ETSI

NFV[22], b-IETF I2RS[23], b-IETF RFC 3746[24], b-

ONF[25] and b-OpenDayLight[26]. All share the same goal of

providing programmability of network resources which, as

mentioned, is a core technology for the networks of the future.

2.2 Flow tables

As mentioned above, flows are grouped into tables similar

to routing or switching tables. When a packet is received, each

element in the table is checked for compliance with the

matching requirements. In OpenFlow version 1.0 there was

only one flow table but from version 1.1 onwards nested flow

tables are supported as shown in Figure 4. OpenFlow follows

a clearly defined process for traversing the flow tables in the

switch. This process, or pipeline, is as follows:

 The flow tables in the switch are sorted by

numbers, starting from 0.

“Exploring Routing and Quality of Service in Software-Defined Networks: Interactions with Legacy Systems and

Flow Management”

2545 Daniel Alberto Priano, ETJ Volume 08 Issue 08 August 2023

 Table 0 must always exist since there must be at

least one flow table in the switch. The process

always starts in this first table.

 When a packet enters, an attempt is made to match

to an entry in table 0. If a match is found, the

instructions associated with that flow are added to

the packet's action set. The action set is the set of

activities that are applied to the incoming packet

after traversing the flow tables.

 If the input instructions include the instruction to

advance to another table ("go to" instruction), the

process continues on that table and then repeats the

same process. Note that you must always advance

to tables with higher numbers, never lower. You

must always advance forward, and you can never

go back to previous tables.

 When there are no more tables to traverse, i.e.,

when the match of a table does not include the "go

to" instruction, the action set associated with the

packet is executed in the preset order.

Figure 4. OpenFlow 1.3 Pipeline[27].

If there is no entry in the table associated with the incoming

packet, a "table miss" occurs. In this case, the behavior will

depend on the table configuration. To indicate how to process

mismatched packets, specific entries can be added to the table.

The options are a) send the packet to the controller for routing,

b) pass the packet to another table in the switch, or c) discard

the packet.

Note that the order of the flow entries indicates their priority,

similar to firewall rules or router access lists. This implies that

two flow table entries could be associated with the same

incoming packet. However, when the table is traversed in

descending order, only the instructions associated with the first

matching entry will be executed.

In OpenFlow 1.5, the pipeline is modified as shown in

Figure 5. So far, we have seen the Ingress Processing. Now we

will add the Egress Processing. Fundamentally, egress

processing follows the same operation as ingress; the tables are

traversed looking for valid matches for the package and the

instructions of the table associated to the input are executed.

Egress processing allows for greater granularity and

organization of the flow table entries. It is an optional

processing, and it will not be necessary for the switch to

implement it in order to route traffic correctly.

Figure 5. OpenFlow 1.5 Pipeline[27].

2.3 Instruction and action sets

As mentioned, each incoming packet has an action set

associated and each flow table entry contains a set of

instructions. It is important to understand this distinction. The

action set associated with an incoming packet is executed over

the packet at the end of the table traversal. In contrast, the

instructions associated with a flow entry in the table are

executed when an incoming packet matches that entry.

First, we will deal with instructions. There are three types of

instructions depending on the task to be performed:

 Advance in the pipeline (advance to another table).

 Modify the action set of the package.

 Modify the incoming packet without waiting for

the execution of the final action set of the pipeline

(optional).

In total there are six instructions; two are mandatory and

four are optional. The switches must necessarily provide

support for the mandatory ones. As for the optional ones, the

controller can query the switches which of the optional

instructions they can support themselves. The mandatory

instructions are as follows:

 Write-actions <action/s>: Inserts one or more

actions into the action set of the incoming package.

If any of the inserted actions are already in the

action set, they are overwritten.

 Goto-table <ID of the table>: Indicates the next

table to follow.

Optional instructions are as follows:

 Meter <id metric>: Applies a constraint to the

specified metric.

 Apply-Actions <action/s>: The specified actions

are applied immediately on the package without

waiting the execution of the action set.

 Clear-Actions <action/s>: Removes all actions

contained in the action set.

 Write-Metadata <metadata/mask>: Updates the

metadata.

Each entry in the flow table can only associate one

instruction of each type and they will be executed in the

“Exploring Routing and Quality of Service in Software-Defined Networks: Interactions with Legacy Systems and

Flow Management”

2546 Daniel Alberto Priano, ETJ Volume 08 Issue 08 August 2023

defined order. In practice and for mandatory instructions, this

implies that "Goto-table" always goes after "Write-actions".

Otherwise, the process will follow to the next table before

executing the actions in the action set of the incoming packet.

The action sets are executed over the package at the end of

the pipeline as mentioned above and the actions are added to

the action set as the successive flow tables are traversed.

Actions are not executed on a first-come, first-served basis.

The order of execution (priority) of actions is defined as

follows:

 Copy TTL inwards: Copies the TTL field of the

outermost IP header of the incoming packet to the

second outermost one with a TTL field. This action

is executed when there is an IP header nested inside

an MPLS header (which has TTL).

 Pop: Removes all VLAN, PBB and MPLS tags

from the packet.

 Push-MPLS: Adds an MPLS label to the packet.

 Push-PBB: Adds a PBB label to the package.

 Push-VLAN: Adds a VLAN tag to the packet.

 Copy TTL outwards: Copies the TTL field of the

second outermost IP header of the incoming packet

with TTL field to the outermost IP header.

 Decrease TTL: Decreases the TTL of the IP header

by one.

 Set: Used with optional instructions.

 Qos: Applies Quality of Service actions.

 Group: Used with optional instructions. Its

operation will not be discussed in detail in the

present work.

 Output: Sends the packet through the specified

port.

2.4 Virtualization

A key advantage of SDN technology is the ability to offer

network administrators the ability to write programs that use

SDN APIs to control network behavior. SDN allows users to

develop network-aware applications, intelligently monitor

network conditions and automatically adapt network settings

as needed[28].

In fact, SDN is an approach to network virtualization that

seeks to optimize network resources and quickly adapt

networks to changing business, application and traffic needs.

It works agilely by separating the network control plane from

the data plane, creating a software-programmable

infrastructure that is independent of physical devices. With

SDN, network orchestration, management, analytics and

automation functions become the job of SDN controllers.

Because these controllers are not network devices, they can

take advantage of the scalability, performance, and modern

storage and processing resources of the cloud. Increasingly,

SDN controllers are built on open platforms using open

standards and open APIs that allow them to orchestrate,

manage and control network devices from different vendors.

SDN offers a wide range of business benefits. Separation of

the control and transport layers increases flexibility and speeds

time to market for new applications. The ability to respond

faster to problems and outages improves network availability.

For IT organizations, the programmability facilitates the

automation of network functions while reducing operating

costs.

SDN fits perfectly with another technology: NFV (Network

Functions Virtualization). NFV offers the ability to virtualize

device-based network functions such as firewalls, load

balancers and WAN accelerators. The centralized control

provided by SDN can effectively manage and orchestrate this

NFV-enabled function virtualization[29].

3. ROUTING IN SDN

At a very high level, the control plane of an SDN establishes

the local data set used to create the forwarding table entries.

The data plane uses these tables to forward traffic between

inbound and outbound ports of the same device.

By centralizing control, all the information available at each

switch in the network can be obtained as a single entity. Upon

changes and according to the QoS requirements, the software

applications will dynamically modify the flow rules taking into

account the information of these entities.

3.1 SDN Routing: Architectures for Analysis

The new concept of decoupling these two planes in the

network introduced by SDN implies that devices execute only

data forwarding; forwarding decisions are based on the set of

rules determined by an external controller. This architecture is

illustrated in Figure 6[30].

Figure 6. SDN architecture.

For this analysis, we have considered the OpenFlow

protocol. This protocol is used for communication between the

SDN controller and the data plane devices (OpenFlow

switches). OpenFlow enables routing based on decision flow.

OpenFlow switches differentiate and process traffic according

to instructions received from the controller. In a broad sense,

flow could be defined as a sequence of packets with similar

“Exploring Routing and Quality of Service in Software-Defined Networks: Interactions with Legacy Systems and

Flow Management”

2547 Daniel Alberto Priano, ETJ Volume 08 Issue 08 August 2023

characteristics. As shown in Figure 7, the controller will define

the flow using any subset of the 9 L2-L4 packet header fields

(layer 2 - layer 4) along with the identifier of the interface the

incoming packet. This highly granular control option allows

the implementation of dynamic multi-path routing and can

significantly increase network capacity[31].

Figure 7. L2-L4 fields used for a flow definition in

OpenFlow.

The controller instructions are stored inside the OpenFlow

devices in the form of flow table rules (Figure 6). When a

packet arrives, the lookup process begins by searching for the

corresponding rule in the table. If the packet does not match

any rule, it is discarded. Most commonly, however, a low

priority rule is defined that instructs the switch to forward the

packet to the controller. The SDN controller will then define

the next processing steps according to the running network.

In the present case, dynamic routing functionality was

implemented within an OpenFlow POX Controller[32]. As

shown in Figure 8, the controller manages several key

modules: link cost calculation, route calculation, routing,

statistics collection, topology discovery, OpenFlow interface,

topological data, among others. Some of them are described

below.

Figure 8. Schematic of the proposed controller design.

 Topology discovery: This module is an integral part

of the POX controller. It is responsible for

discovering and maintaining the network topology.

Information about the network connectivity will

constantly be available to the other service modules

residing in the controller. In case the link goes up

or down, this module reports the change events to

notify the registered listeners.

 Statistics gathering: To perform dynamic routing,

the controller needs an up-to-date view of the

network status. One option is to measure link

utilization periodically. To do this, it will send

various port statistics requests to the OpenFlow

switches. When an OpenFlow switch receives this

request, sends the number of bytes that traversed

the corresponding network interface (traffic). By

comparing these new values with those previously

received, the SDN controller can calculate the link

load for the last measurement cycle. As TCP flows

tend to use all available bandwidth on the path, this

method might conclude that, for example, routing

should be avoided on links loaded with one or more

long-lived TCP connections. In other words, if the

same number of bytes is carried over two different

links during the measurement cycle, both links will

be treated the same even if there is a considerable

difference in the amount of traffic flows on each

link.

As a consequence, this will have a negative effect on routing

fairness and overall network performance. For this reason, the

estimation of the available bandwidth on the links is performed

to provide this information to other modules.

Since the links are bidirectional, statistics are compiled for

each direction. The reason is based on the fact that TCP tends

to distribute the available bandwidth among the individual

TCP flows. If the link is assumed to be the bottleneck of each

TCP connection, the amount of bandwidth that could be

offered to a new TCP flow can be calculated by a formula. As

this is a very rough assumption, to determine the actual

bandwidth that a new TCP connection could get, the controller

needs detailed statistics for each traffic flow on the network.

Estimates of available link bandwidth are only used as input

arguments to the routing module. As an example, algorithms

can be proposed to protect links with low available bandwidth.

On the other hand, when a route for the UDP flow is installed,

the controller adds the flow's input switch to the query list

(Figure 8).

The statistics collected from the incoming switches provide

adequate accuracy, as they take into account packet loss within

the network. To minimize overall control, the controller sends

only one request for all UDP flows installed on the switch. The

response consists of a message with the counters for all

incoming UDP flows.

From the statistics obtained, the controller takes the UDP

flow throughput information from the last measurement cycle.

As illustrated in Figure 8 it also keeps the list of current UDP

routes to calculate the UDP throughput on each network link.

The Routing Module calculates the costs of each link and

determines the routes for traffic flows. It uses as inputs the

network topology data and the results of the statistics

collection module.

“Exploring Routing and Quality of Service in Software-Defined Networks: Interactions with Legacy Systems and

Flow Management”

2548 Daniel Alberto Priano, ETJ Volume 08 Issue 08 August 2023

3.2 Northbound and Southbound

3.2.1 Southbound

In SDN, Southbound interfaces are the OpenFlow protocol

specification. They enable communication between

controllers, switches and other network nodes that are

considered as lower-level components. The router identifies

the network topology, determines the network flows and send

the request through the Northbound interfaces.

Southbound APIs allow the end user better control over the

network and improve in real time the level of efficiency of the

SDN controller according to the demands and needs. This

interface is an industry standard that justifies the ideal

approach that the SDN controller should communicate with the

forwarding plane to modify networks by progressively

accompanying advanced business needs. To make the network

layer more responsive to real-time traffic demands,

administrators can add or remove entries to the internal flow

tables of network switches and routers.

Some of the most popular Southbound APIs are OpenFlow

(discussed in the previous section) and Cisco. Other switch and

router vendors that support OpenFlow include IBM, Dell,

Juniper, Arista, among others.

3.2.2 Northbound

Unlike Southbound APIs, Northbound APIs enable

communication between higher-level components of the

network. While traditional networks use a firewall or load

balancer to control the behavior of the data plane, SDN installs

applications on the controller to communicate with these

components through its Northbound interface.

Experts say that it would be quite difficult to improve a

network infrastructure without a Northbound interface because

the evolution of network applications will depend directly on

equipment vendors. The Northbound APIs make it easier to

innovate or customize SDN network controls because these

APIs can be reprogrammed in languages such as Java, Python

or Ruby.

3.3 Another approach: Segment routing

Segment Routing is a flexible and scalable form of routing

at the source. The source chooses a path and encodes it in the

packet header as an ordered list of segments. Any type of

instruction can identify these segments. Each segment is

identified by the segment ID (SID) which consists of a 32-bit

unsigned integer.

With Segment Routing, the network no longer needs to

maintain per-application and per-flow state. Instead, it

executes the forwarding instructions provided in the packet.

Segment Routing is based on a small number of Cisco

extensions and the OSPF (Open Shortest Path First) and IS-IS

(IntermediateSystem-to-IntermediateSystem) protocols. It can

operate with MPLS or an IPv6 data plane and integrates with

MPLS multi-service capabilities including L3VPN (Layer 3

VPN), VPWS (virtual private wire service), VPLS (virtual

private LAN service) and EVPN (Ethernet VPN).

Segment Routing can be applied directly to MPLS

architecture without changes to the forwarding plane. It uses

network bandwidth more effectively than traditional MPLS

networks and offers lower latency. A segment is encoded as an

MPLS label. The list of segments is encoded as a label stack.

The segment to process is at the top of the stack. The segment

related to the label is removed from the stack after completion.

Segment Routing can be applied to IPv6 architecture with a

new type of routing extension header. The segment is encoded

as an IPv6 address. An ordered list of segments is encoded as

an ordered list of IPv6 addresses in the routing extension

header. The segment to process is indicated by a pointer to the

route in the extension header. The pointer is incremented after

the completion of a segment.

Segment Routing provides automatic traffic protection

without topological restrictions. The network protects traffic

against link and node failures without requiring additional

signaling. FRR (Fast IP routing) technology in combination

with Segment Routing ensure full protection with optimal

backup paths. Traffic protection imposes no additional

signaling requirements[33].

Segment Routing is SDN-ready: Segment Routing is a

compelling architecture designed to be adopted by SDN and is

the foundation of AER (Application Engineered Routing). It

strikes a balance between distributed network-based

intelligence such as automatic link with node protection and

centralized controller-based intelligence such as traffic

optimization. It can provide a network with performance

guarantees, efficient use of network resources and very high

scalability for applications.

The network uses a minimal amount of state information to

meet these requirements. Segment routing can be easily

integrated with controller based SDN architectures. Figure 9

illustrates an SDN scenario in which the controller performs

centralized optimization including bandwidth admission

control. In this scenario, the controller has a complete view of

the network topology and flows. A router can request a route

to a destination with certain characteristics such as delay,

bandwidth, diversity, among others.

Figure 9. Source Cisco Systems

Segment lists allow complete virtualization of the network

without adding any application state. The state is encoded in

“Exploring Routing and Quality of Service in Software-Defined Networks: Interactions with Legacy Systems and

Flow Management”

2549 Daniel Alberto Priano, ETJ Volume 08 Issue 08 August 2023

the packet as a list of segments. The network maintains the

state of a large number of segments and can support a large

number of transaction and request-based applications without

increasing the network traffic load.

3.4 The need for an interface to enable application

programming - I2RS[34]

One of the problems of centralizing control planes is to be

able to configure and obtain statistics from network devices in

a synchronized manner and in real time. As this process is slow

today, efforts are being made to speed up the feedback loop

with the network elements through the I2RS project (RFC

7921)[35][36][37].

The I2RS Working Group was formed in November 2012 to

develop the use cases and basic architecture of a routing system

interface. The term "routing system" describes a hardware

device, a virtual router, or any software that provides routing

functions[38].

 The routing system interface shall provide the

following functionalities:

 Provide or retrieve information, policies and

operational parameters to or from the routing

system.

 Provide read and write access to the RIB (Routing

Information Base) but not to the FIB (Forwarding

Information Base).

 Monitor and analyze BGP operations and establish

or activate protocol-related policies.

 Optimize and choose network egress points based

on factors other than those provided by routing

protocols.

 Support rapid and distributed reaction to network

attacks.

 Redirect traffic to avoid the destination under

attack while maintaining normal operation of other

routes.

 Extract network topology information.

Routers that belong to the Internet routing infrastructure

maintain details and state functions in a multilayer fashion. For

example, a typical router maintains a RIB and implements

routing protocols such as OSPF, IS-IS and BGP to exchange

reachability information, topology, protocol state, etc. with

other routers. Routers convert all this information into

forwarding entries that are then used to forward packets and

flows between network elements.

It was mentioned earlier how an SDN treats packets. It is

noted that flow table rules may require network topology

information from the RIB and device configuration.

The forwarding plane and forwarding entries contain

information needed by network-oriented applications

regarding the expected and observed operational behavior of

the router. Network-oriented applications require easy access

to this information to know the network topology, to verify that

the expected configuration is installed in the forwarding plane,

to measure the behavior of flows, routes or forwarding entries,

as well as to know the configured and active states of the

router. These applications also require an easily accessible

interface to program and control the state of the forwarding

plane.

I2RS facilitates the control and observation of routing states

and allows network-oriented applications to interact with

existing networks. These applications can leverage I2RS as a

programmatic interface to create new ways to combine the

retrieval and analysis of Internet routing data and state

configuration within routers.

I2RS provides a framework for applications (including those

of the controller) to record and request specific information

that each may need or require.

There are four key drivers that shape the I2RS architecture:

1. The need for an asynchronous and programmable

interface for all operations to have quick and

interactive access.

2. Access to structured information and state that is

not modeled or configurable in existing

configuration protocols.

3. The ability to subscribe to structured event

notifications from the router.

4. The availability of standard data models for

network-oriented applications.

When a router or the I2RS software running on it is restarted

it will restart in an initial ephemeral state. The routing protocol

or application will be able to inject a certain state into the router

through the state insertion functions of I2RS. This state can

then be distributed by a routing or signaling protocol so that it

can be used locally (e.g., to schedule the shared forwarding

plane).

A local client operates in the same physical container as the

routing system, whereas a remote client operates throughout

the network. The details of how applications communicate

with a remote client is beyond the scope of I2RS.

I2RS agents and clients communicate with each other using

an asynchronous protocol where a single client can publish

multiple simultaneous requests to one or multiple agents. An

agent can process multiple simultaneous requests from one or

multiple clients.

The I2RS agent provides read and write access to selected

data from any routing element available to I2RS services.

I2RS agents can write static ephemeral state (e.g., RIB

entries) and read static and dynamic routes (e.g., MPLS label

switched path identifier or the number of active BGP

neighbors). The I2RS agent also allows clients to subscribe to

different event notifications that affect different instances of

the objects, e.g., notification of an event that resolves the next

hop in the RIB such that a RIB manager can install it in the

forwarding plane as part of a particular route.

“Exploring Routing and Quality of Service in Software-Defined Networks: Interactions with Legacy Systems and

Flow Management”

2550 Daniel Alberto Priano, ETJ Volume 08 Issue 08 August 2023

The I2RS agent can access and modify the data models

associated with the routing system that enable dynamic, static,

local, routing and signaling configuration.

Routing elements need not have an associated forwarding

plane to implement some subset of the routing system.

Examples of routing elements may include:

 A router with a forwarding plane and RIB Manager

that runs IS-IS, OSPF (Open Short Path First), BGP

(Border Gateway Protocol), PIM (Protocol

Independent Multicast), etc.

 A routing element can be managed locally via the

CLI (Command Line Interface), SNMP or via

NETCONF (Network Configuration Protocol).

The routing and signaling module that interacts with the

Internet routing system is part of the routing element. It

includes not only the standardized protocols like IS-IS, OSPF,

BGP, PIM, RSVP-TE, LDP (Lightweight Distribution

Protocolo), but also the RIB management layer.

To achieve dynamic routing, an I2RS agent needs access to

the state of the routing element beyond the subsystem because

it may need information from counters, statistics, flows and

local events. I2RS-based network applications need this

operational state, but I2RS does not provide this standardized

routing and signaling information. An example of a static

system state is the queuing behavior for an interface or for

traffic. How the I2RS agent modifies or obtains this

information is beyond the scope of this paper.

Recently, many efforts have been made to improve access

to existing information in routing and forwarding systems. The

greatest benefits have been achieved by making network

information visible and manageable through applications. For

this, there are two major challenges; first, to consider the large

amount and variety of information potentially available and

second, to simplify the protocol for accessing such information

due to the complexity in the variation of data structures and the

types of operations required.

The types of operations contemplated are complex in nature.

It is essential that I2RS be easily implementable and robust.

Complex data models make extensibility difficult, so I2RS

does not attempt to add more complexity than necessary.

A network topology manager includes an I2RS client that

uses its own data models and a protocol that collects network

state information by communicating with one or more I2RS

agents. The topology manager collects routing configuration

and operational data, such as interface and switched path label

(LSP) information. In addition, the topology manager can

collect link-state data in several ways: through I2RS models,

with BGP-LS (RFC 7752)[39], or by listening to the IGP.

The set of functionalities and information collected by the

topology manager can be integrated as a component of an

application, such as a route calculation application. Other

application interfaces can provide a consistent view of the

network reachability state using the same I2RS protocol or

could provide a topology service using extensions of the I2RS

data models. To perform this task, the controlling entity or

program has to generate a network topology view under certain

conditions. This network view can be manually programmed,

learned through observation, or constructed from information

gathered through exchange with other control plane records.

In the case of SDN, all this information to be processed and

transmitted belongs to the so-called control plane. In this

context, the control plane can be defined as the intelligence that

determines the optimal paths for sending information and

responds to incidents and new network demands[40].

In summary, the basic idea of I2RS is to create a protocol

and components for scheduling the routing information base

(RIB) of a network device. It uses a fast-routing protocol that

allows a fast cut-through of provisioning operations in order to

allow real-time interaction between the RIB and the RIB

controller manager. Previously, RIB could access information

only through the device configuration system such as

Juniper[41], Netconf[42] or SNMP[43].

I2RS provides several levels of abstraction for network path

scheduling, policy management and port configuration, e.g., to

provide fast and optimal access to the RIB for operational

support systems (OSS)[44].

I2RS is also well oriented towards possible growth in the

requirements for logical centralization of routing, routing

decisions and programmability. The protocol has different

requirements for running inside or outside a device. In this

way, as required, the functionality of a distributed controller

can be implemented.

Finally, another key subcomponent of I2RS is the

standardized and abstract topology. This topology will be

represented by common and extensible object models. The

service also allows multiple abstractions of a topology

representation to be exposed. A key aspect of this model is that

devices that are not routers (or routers of routing protocols) can

more easily manipulate and change the RIB. Today, users do

not have a great deal of difficulty obtaining this information.

In the future, network management/OSS components will be

able to quickly and efficiently interact with routing state and

network topology.

3.5 Interaction between SDN and existing networks in use

The "clean slate" proposition is a statement related to SDN.

SDN discards previously used technologies by thinking of

operating mechanisms outside the distributed model, thus

avoiding the technological costs due to the complexity of its

adaptation.

This proposition arises from observing the MPLS

technology where the updates and modifications of its features

made the deployed code of the implementations grow,

transforming them into too complex and fragile.

In some implementations[45], using centralized label

distribution to emulate the distributed functionality of LDP[46]

or RSVP[47], centralized code-based network topology

“Exploring Routing and Quality of Service in Software-Defined Networks: Interactions with Legacy Systems and

Flow Management”

2551 Daniel Alberto Priano, ETJ Volume 08 Issue 08 August 2023

knowledge yielded results at least an order of magnitude lower

than currently available commercial alternatives. The natural

assertion is that, in a highly prescriptive and centralized control

system, network behavior can approximate that of a

completely static forwarder that is arguably stable.

When network utilization increases, new devices must be

deployed to meet the demand. It would be important to be able

to meet the forwarding transfer demand without changing the

number of managed devices and their resulting control

protocol entities; if not, at least determine the integration

conditions of the new devices since each addition increases the

control information.

If we think that our centralized system must interact with

distributed devices typical of traditional routing and switching

systems, it is important to understand that the traditional

controller and router control planes must be synchronized to

achieve information consistency. The additional control plane

affects the scalability of the overall network control plane

during network convergence, or the time it takes for the totality

of control planes to reach a loop-free circuit. This manifests

itself in the resilience and performance of the overall system;

the greater the number of control planes there will potentially

be greater fragility in the system. Conversely, if properly

tuned, the resilience of the system will increase due to creating

a system that becomes consistent regardless of conditions.

It seems inevitable to discard the initial idea of the "clean

slate" as the current networks with their routing protocols will

continue to exist. These legacy networks will have to interact

with SDN networks in a mixed topology as seen in the I2RS

work discussed above.

4. EXAMPLE OF ROUTING IN A SWITCH

In order to better understand the scope of SDN, the

following is a simple example of how routes are established in

a switch and how the interaction with the controller is

performed.

This example presents a network topology that has two

switches SW1 and SW2 with 2 hosts h1 and h2 connected to

each switch respectively, as shown in Figure 10.

Figure 10. Example topology.

We will analyze the behavior of the SW1 which is connected

to other network devices through ports 1, 3 and 4 and to h2

through port 2. Inside the SW1, there is the flow table with the

actions to be applied to the incoming packets according to the

matching criteria for each input.

The criteria can be defined on the basis of fields in the

Ethernet, IP, TCP, UDP header or any other protocol that

contains a packet header. In this case, the source and

destination IP addresses will be used as matching criteria.

Those packets matching these criteria will be subjected to the

actions programmed in the table such as forwarding to a SW1

port, forwarding to the controller to modify incomplete fields

in the packet or other actions.

Packets arriving on port 2 or 3 will be directed to host h1

(10.0.0.1) by the corresponding actions: they will exit on port

1 of SW1, traverse SW2 and then exit on port 1 of SW2 to

reach h1. Packets arriving with destination 10.0.0.2 will also

be instructed to be dispatched to host h2 on port 2 of SW1. In

these cases, no conditions are set that consider the source

address of the packets, nor the transport protocol.

A third entry will be added so that TCP packets entering

SW1 will be dispatched on port 4 regardless of their source or

destination IP addresses. You get a Table 1 like the one shown

below:

Table 1 - SW1 flow table.

If you look at the first two entries in Table 1 you will notice

that packets without TCP protocol information will be routed

to hosts h1 or h2 through ports 1 and 2 respectively.

If you enter a TCP packet with source IP address 10.0.0.100

and destination IP address 10.0.0.2, SW1 would not be able to

decide whether to route it to port 2 or 4 without the information

in the Priority field. In these cases, it is routed to the output

with the higher value, on port 2.

Finally, there are two fields that establish times. The first

one indicates the duration of the rule from the time it was

installed by the controller, i.e., the time it remains in the table.

The second indicates that the rule will be removed if no

matching takes place during this period, i.e., no packet arrives

that complies with the rule.

Placing 0 (zero) in the "Duration" and "Inactive timeout"

fields will indicate that the rule can only be removed by the

controller.

The controller will control the switches via a TCP

connection that is established at the time of installation. The

controller will have applications installed that will react

appropriately when recognizing certain events. Examples are

given below.

We will add a new SW3 switch to the initial topology. A

TCP connection will be established between the controller and

the new switch. Then, from each side of the connection, the

Source IP Destination IP Protocol

* 10.0.0.1 * out: 1 2 20 sec 5 sec

* 10.0.0.2 * out: 2 2 20 sec 5 sec

* * TCP out: 4 1 0 sec 5 sec

Pairing criteria
Actions Priority Duration

Idle

timeout

FLOW TABLE

“Exploring Routing and Quality of Service in Software-Defined Networks: Interactions with Legacy Systems and

Flow Management”

2552 Daniel Alberto Priano, ETJ Volume 08 Issue 08 August 2023

switch and the controller will generate a symmetric

OFPT_HELLO[48][49] message that establishes the

OpenFlow connection and modifies the topology known to the

controller as will be seen later.

The addition of SW3 will generate changes in the SW1

switch. The controller will modify the SW1 flow table through

OFPFlowMod messages creating the specific entries,

indicating the match criteria, action priority and associated

times. Figure 11 shows in detail the event produced by

incorporating the SW3 switch.

Figure 11. Node incorporation event.

When the packet does not match any entry in the table, the

packet or its header will be sent to the controller by

OFPT_PACKET_IN message. The central module of the

controller will have an application to resolve the sending of

these packets. This application will determine the flow rules to

be installed in SW1 using OFPFlowMod messages, as shown

in Figure 12.

Figure 12. Packet event not matching any table entry.

Finally, when a link is discovered, the topology discovery

module of the controller changes the network topology by

exchanging discovery packets. In our example, this discovery

event is the addition of SW3. The topology discovery

application must be able to respond by generating the

necessary OFPFlowMod messages to add or remove the

necessary actions in the corresponding flow tables.

5. CONCLUSIONS

 In modern routers and switches, configuration

changes will affect the results obtained in the

control and data planes. Centralized management

will impact the behavior and results in distributed

nodes.

 For many network administrators, control is based

on the flexibility to program simple forwarding

decisions. Simple and specific solutions will be

favored over complex ones.

 It will be very important to make the network more

elastic and efficient based on the demands and new

information available beyond optimal algorithms.

 Both static routes and routing policies have limited

scalability in most implementations.

 Destination-based distributed routing protocols are

not a good solution in the application of pure

centralized routing ("clean slate"). SDN networks

should be interconnected with traditional networks

that maintain standardized routing protocols that

should be part of the information stored in our

controller's RIB.

 The idea of routing based on optimal path finding

seems to give way to balanced routing that meets

compromised QoS parameters for all flows

transmitted over the network using all its available

links and resources.

 Networks will be able to adapt to changes by using

metrics to control available bandwidth, packets lost

from prioritized flows or required jitter.

Applications will be used to dynamically modify

the rules in the flow tables, either through static

programming or dynamically following behavioral

patterns.

 SDN networks have an intrinsic characteristic: any

type of algorithm (such as Dijkstra's) can be

applied without being tied to routing protocols

(such as OSPF). Therefore, and depending on the

rules that are established, it will be possible to

arbitrarily alter proprietary algorithms and third-

party algorithm libraries.

 It is clear that the key to SDN will be to develop

communications networks where the control plane

is decoupled from the hardware elements. Unlike

traditional networks, the centralization of functions

in the controller will simplify network traffic

management tasks without having to configure the

elements individually.

REFERENCES

1. IEEE Xplore Digital Library –

https://ieeexplore.ieee.org/Xplore/home.jsp -

Accessed: 18-11-2021.

https://ieeexplore.ieee.org/Xplore/home.jsp

“Exploring Routing and Quality of Service in Software-Defined Networks: Interactions with Legacy Systems and

Flow Management”

2553 Daniel Alberto Priano, ETJ Volume 08 Issue 08 August 2023

2. L. Pu W. Wu C. Akyildiz, f. Ahyoung. A roadmap for

traffic engineering in SDN-OpenFlow networks.

http://citeseerx.ist.psu.edu/viewdoc/download;jsessi

onid=73DCA07DA08783DAB984C94FA3559DBE

?doi=10.1.1.433.1760&rep=rep1&type=pdf -

Accessed: 18-11-2021.

3. Esteban Carisimo, Dr. Ing. J.Ignacio Alvarez-

Hamelin ,VII National Meeting of Technicians,

ArNOG - CoNexDat - INTECIN (UBA-CONICET),

Buenos Aires, Argentina-

https://cnet.fi.uba.ar/esteban_carisimo/presentacione

s/ArNOG_2017_1.pdf - Accessed: 14-02-2020.

4. What is an SLA? How to Use Service-Level

Agreements for Success - https://www.process.st/sla-

service-level-agreement/ - Accessed: 24-02-2020

5. RSVP / Intserv and Diffserv Network Interoperation

- March 1999. –

 https://datatracker.ietf.org/doc/html/draft-ietf-issll-

diffserv-rsvp-01 - Accessed: 14-02-2020

6. Traffic forwarding in a network with IPQoS: Hopping

behaviors https://docs.oracle.com/cd/E19957-

01/820-2981/ipqos-intro-54/index.html - Accessed:

24-02-2020.

7. Inter-domain Traffic Conditioning Agreement (TCA)

Exchange Attribute –

 https://datatracker.ietf.org/doc/draft-ietf-idr-sla-

exchange/ - Accessed: 24-02-2020.

8. RSVP / Intserv and Diffserv Network Interoperation

- March 1999.

 https://datatracker.ietf.org/doc/html/draft-ietf-issll-

diffserv-rsvp-01 - Accessed: 14-02-2020.

9. Definition of the Differentiated Services Field (DS

Field) in the IPv4 and IPv6 Header -

https://tools.ietf.org/html/rfc2474 - Accessed: 14-02-

2020.

10. Cisco - Implementing Quality of Service -

https://www.cisco.com/c/en/us/support/docs/quality-

of-service-qos/qos-packet-marking/13747-

wantqos.html - Accessed: 18-11-2021.

11. S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R.

Chaiken - The nature of data center traffic:

Measurements & analysis, in: Proc. ACM

SIGCOMM IMC, Chicago, Illinois, USA, 2009.

12. A Load Balancing Method Based on SDN. Author(s)

Mao Qilin ; Shen Weikang - 7th International

Conference on Measuring Technology and

Mechatronics Automation, ICMTMA 2015.

 https://ieeexplore.ieee.org/document/7263504 -

Accessed: 18-11-2021.

13. Dynamic Load Balancing Application For Servers,

Based On Software Defined Networks. Iberian

Journal of Information Systems and Technologies.

Carlos Enrique MINDA GILCES1, Rubén

PACHECO VILLAMAR2. –

http://www.scielo.mec.pt/pdf/rist/n32/n32a06.pdf -

Accessed: 14-02-2020

14. Jack Tsai, Tim Moors. A Review of Multipath

Routing Protocols: From Wireless Ad Hoc to Mesh

Networks. National ICT Australia / University of

New South Wales, Australia, 2006.

15. Software-Defined Networks and OpenFlow - The

Internet Protocol Journal, Volume 16, No. 1 - March

2013 - William Stallings -

https://paperzz.com/doc/7523373/download-pdf-file-

-volume-16--no.-1--1.83mb - Accessed: 18-11-2021.

16. What are Operational Support Systems (OSS) and

BSS in Telecom?- Passionate about us-

https://passionateaboutoss.com/background/whatare-

oss-bss/ - Accessed: 08-06-2023.

17. What is SaaS? - Microsoft Co. -

https://azure.microsoft.com/es-es/overview/what-is-

saas/?cdn=disable - Accessed: 18-11-2021

18. Ching-Hao, Chang and Dr. Ying-Dar Lin - OpenFlow

Version Roadmap, 2015 -

http://speed.cis.nctu.edu.tw/~ydlin/miscpub/indep_fr

ank.pdf - 2011-05-20 - Accessed: 11-06-2019.

19. Y.3001 : Future networks: Objectives and design

goals - https://www.itu.int/rec/T-REC-Y.3001-

201105-I/en - Approved in 2011-05-20 - Accessed:

26-07-2020.

20. Y.3011 : Framework of network virtualization for

future networks - https://www.itu.int/rec/T-REC-

Y.3011-201201-I - Approved in 2012-01-13 - ITU -

Accessed: 26-07-2020.

21. Architecture of an independent scalable control plane

in future packet based networks - Recommendation

ITU-T Y.2622 –

https://www.itu.int/rec/dologin_pub.asp?lang=s&id=

T-REC-Y.2622-201207-I!!PDF-E&type=items – 07-

2012 - ITU - Accessed: 26-07-2020.

22. Network Functions Virtualisation (NFV) Release 4 -

https://www.etsi.org/technologies/nfv - ETSI - 2019 -

Accessed: 26-07-2020.

23. Interface to the Routing System (I2RS) Security-

Related Requirements –

 https://datatracker.ietf.org/doc/html/rfc8241 -

Internet Engineering Task Force (IETF) - 09-2017 -

Accessed: 26-07-2020.

24. Forwarding and Control Element Separation

(ForCES) Framework RFC 3746 –

 https://datatracker.ietf.org/doc/rfc3746/ - IETF - 01-

05-2018 - Accessed: 26-07-2020.

25. Open Network Foundation Website -

https://opennetworking.org/ - ONF - Accessed: 26-

07-2020.

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=73DCA07DA08783DAB984C94FA3559DBE?doi=10.1.1.433.1760&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=73DCA07DA08783DAB984C94FA3559DBE?doi=10.1.1.433.1760&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=73DCA07DA08783DAB984C94FA3559DBE?doi=10.1.1.433.1760&rep=rep1&type=pdf
https://cnet.fi.uba.ar/esteban_carisimo/presentaciones/ArNOG_2017_1.pdf
https://cnet.fi.uba.ar/esteban_carisimo/presentaciones/ArNOG_2017_1.pdf
https://www.process.st/sla-service-level-agreement/
https://www.process.st/sla-service-level-agreement/
https://datatracker.ietf.org/doc/html/draft-ietf-issll-diffserv-rsvp-01
https://datatracker.ietf.org/doc/html/draft-ietf-issll-diffserv-rsvp-01
https://datatracker.ietf.org/doc/draft-ietf-idr-sla-exchange/
https://datatracker.ietf.org/doc/draft-ietf-idr-sla-exchange/
https://datatracker.ietf.org/doc/html/draft-ietf-issll-diffserv-rsvp-01
https://datatracker.ietf.org/doc/html/draft-ietf-issll-diffserv-rsvp-01
https://tools.ietf.org/html/rfc2474
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-packet-marking/13747-wantqos.html
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-packet-marking/13747-wantqos.html
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-packet-marking/13747-wantqos.html
https://ieeexplore.ieee.org/document/7263504
http://www.scielo.mec.pt/pdf/rist/n32/n32a06.pdf
https://paperzz.com/doc/7523373/download-pdf-file--volume-16--no.-1--1.83mb
https://paperzz.com/doc/7523373/download-pdf-file--volume-16--no.-1--1.83mb
https://passionateaboutoss.com/background/whatare-oss-bss/
https://passionateaboutoss.com/background/whatare-oss-bss/
https://azure.microsoft.com/es-es/overview/what-is-saas/?cdn=disable
https://azure.microsoft.com/es-es/overview/what-is-saas/?cdn=disable
http://speed.cis.nctu.edu.tw/~ydlin/miscpub/indep_frank.pdf
http://speed.cis.nctu.edu.tw/~ydlin/miscpub/indep_frank.pdf
https://www.itu.int/rec/T-REC-Y.3001-201105-I/en
https://www.itu.int/rec/T-REC-Y.3001-201105-I/en
https://www.itu.int/rec/T-REC-Y.3011-201201-I
https://www.itu.int/rec/T-REC-Y.3011-201201-I
https://www.itu.int/rec/dologin_pub.asp?lang=s&id=T-REC-Y.2622-201207-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=s&id=T-REC-Y.2622-201207-I!!PDF-E&type=items
https://www.etsi.org/technologies/nfv
https://datatracker.ietf.org/doc/html/rfc8241
https://datatracker.ietf.org/doc/rfc3746/
https://opennetworking.org/

“Exploring Routing and Quality of Service in Software-Defined Networks: Interactions with Legacy Systems and

Flow Management”

2554 Daniel Alberto Priano, ETJ Volume 08 Issue 08 August 2023

26. Open Daylight Website –

https://www.opendaylight.org/ - Open Daylight -

Accessed: 26-07-2020.

27. OpenFlow - Basic Concepts and Theory - David

Varnum - https://overlaid.net/2017/02/15/openflow-

basic-concepts-and-theory/ - Accessed: 07-03-2023.

28. What is SDN? –

https://www.ciena.com/insights/what-is/What-Is-

SDN.html - Accessed: 18-11-2021?

29. What is SDN? - Juniper –

 https://www.juniper.net/us/en/solutions/sdn/what-is-

sdn/ - Accessed: 18-11-2021

30. D. Kreutz, F. M. M. V. Ramos, P. Esteves Verissimo,

C. Esteve Rothenberg, S, Azodolmolky, S. Uhlig,

"Software-Defined Networking: A Comprehensive

Survey," Proceedings of the IEEE, Vol.103, No.1,

pp.14-76, Jan.2015. - Accessed: 26-07-2020

31. S. Tomovic, N. Prasad, I. Radusinovic, "SDN control

framework for QoS provisioning”, 22nd

Telecommunication Forum TELFOR 2014, pp. 111-

114, Belgrade, Serbia, November 2014.

32. Using the POX SDN Controller. Available:

https://www.brianlinkletter.com/2015/04/using-the-

pox-sdn-controller/ - Accessed: 07-03-2023

33. Introduction to Segment Routing -

https://www.cisco.com/c/en/us/td/docs/ios-

xml/ios/seg_routing/configuration/xe-3s/segrt-xe-3s-

book/intro-seg-routing.pdf - Accessed: 26-07-2020.

34. An Architecture for Interfacing with Routing System

(I2RS)RFC 7921 - https://tools.ietf.org/html/rfc7921

- Accessed: 24-02-2020.

35. S. Tomovic, N. Prasad, I. Radusinovic, "SDN control

framework for QoS provisioning", 22nd

Telecommunication Forum TELFOR 2014, pp. 111-

114, Belgrade, Serbia, November 2014.

36. ASICs: Only the hard facts count -

https://www.elmos.com/produkte/special-

projects/asic-design.html - Accessed: 18-11-2021.

37. D. Kreutz, F. M. M. V. Ramos, P. Esteves Verissimo,

C. Esteve Rothenberg, S, Azodolmolky, S. Uhlig,

"Software-Defined Networking: A Comprehensive

Survey", Proceedings of the IEEE, Vol.103, No.1,

pp.14-76, Jan.2015. - Accessed: 26-07-2020

38. I2RS Architecture in SDN and its Use Cases - Arora,

Anshul – 29-09-2021 –

 https://era.library.ualberta.ca/items/df8dce41-ff58-

41d6-b934-d9a797421d6f - Accessed: 08-06-2023.

39. North-Bound Distribution of Link-State and Traffic

Engineering (TE) - Information Using BGP -

https://tools.ietf.org/html/rfc7752 - Accessed: 24-02-

2020.

40. Technopedia, Control Plane. –

https://www.techopedia.com/definition/32317/contro

l-plane - Accessed: 31-07-2019

41. Juniper - About Us –

 https://ejuniper.com/es/juniper/sobre-nosotros/ -

Accessed: 18-11-2021.

42. NetConf - RFC 6241 –

 https://tools.ietf.org/html/rfc6241 - Accessed: 18-11-

2021.

43. SNMP - RFC 1157 –

 https://tools.ietf.org/html/rfc1157 - Accessed: 18-11-

2021.

44. Operations and business support systems with Red

Hat – 19-03-2020 –

 https://www.redhat.com/en/resources/oss-bss-

streamline-digital-ops-brief - Accessed: 08-06-2023.

45. Dynamic Load Balancing Application for Servers,

Based on Software Defined Networking - RISTI -

Revista Ibérica de Sistemas e Tecnologias de

Informação versão impressa ISSN 1646-9895 ISTI

no.32 Porto - jun. 2019. -

http://dx.doi.org/10.17013/risti.n32.67-82 - Authors:

Carlos Enrique Minda Gilces1, Rubén Pacheco

Villamar2 - Accessed: 24-02-2020

46. LDP Specification - RFC 5036 –

 https://tools.ietf.org/html/rfc5036 - Accessed: 18-11-

2021.

47. Resource ReSerVation Protocol (RSVP) - RFC 2205

- https://tools.ietf.org/html/rfc2205 - Accessed: 11-

18-2021.

48. Implementation Of An OpenFlow Communications

Module For Smartnet. - Douglas Alexander Aguacía

Fiscó - Pontificia Universidad Javeriana Facultad De

Ingeniería Electrónica Departamento De Ingeniería

Electrónica Bogotá -2014. -

https://repository.javeriana.edu.co/bitstream/handle/

10554/16509/AguaciaFiscoDouglasAlexander2015.

pdf?sequence=1&isAllowed=y - Accessed: 16-02-

2020

49. OpenFlow v1.3 Messages and Structures -

https://ryu.readthedocs.io/en/latest/ofproto_v1_3_ref

.html - Accessed: 16-02-2020.

NOMENCLATURE

AER Application Engineered Routing

API Application Programming Interface

apps Applications

BGP-LS Border Gateway Protocol - Link State

BSS Business Support Systems

CLI Command Line Interface

DiffServ Differentiated Services

DSCP Differentiated Services Code Point

https://www.opendaylight.org/
https://overlaid.net/2017/02/15/openflow-basic-concepts-and-theory/
https://overlaid.net/2017/02/15/openflow-basic-concepts-and-theory/
https://www.ciena.com/insights/what-is/What-Is-SDN.html
https://www.ciena.com/insights/what-is/What-Is-SDN.html
https://www.juniper.net/us/en/solutions/sdn/what-is-sdn/
https://www.juniper.net/us/en/solutions/sdn/what-is-sdn/
https://www.brianlinkletter.com/2015/04/using-the-pox-sdn-controller/
https://www.brianlinkletter.com/2015/04/using-the-pox-sdn-controller/
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/seg_routing/configuration/xe-3s/segrt-xe-3s-book/intro-seg-routing.pdf
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/seg_routing/configuration/xe-3s/segrt-xe-3s-book/intro-seg-routing.pdf
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/seg_routing/configuration/xe-3s/segrt-xe-3s-book/intro-seg-routing.pdf
https://tools.ietf.org/html/rfc7921
https://www.elmos.com/produkte/special-projects/asic-design.html
https://www.elmos.com/produkte/special-projects/asic-design.html
https://era.library.ualberta.ca/items/df8dce41-ff58-41d6-b934-d9a797421d6f
https://era.library.ualberta.ca/items/df8dce41-ff58-41d6-b934-d9a797421d6f
https://tools.ietf.org/html/rfc7752
https://www.techopedia.com/definition/32317/control-plane
https://www.techopedia.com/definition/32317/control-plane
https://ejuniper.com/es/juniper/sobre-nosotros/
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc1157
https://www.redhat.com/en/resources/oss-bss-streamline-digital-ops-brief
https://www.redhat.com/en/resources/oss-bss-streamline-digital-ops-brief
http://dx.doi.org/10.17013/risti.n32.67-82
https://tools.ietf.org/html/rfc5036
https://tools.ietf.org/html/rfc2205
https://repository.javeriana.edu.co/bitstream/handle/10554/16509/AguaciaFiscoDouglasAlexander2015.pdf?sequence=1&isAllowed=y
https://repository.javeriana.edu.co/bitstream/handle/10554/16509/AguaciaFiscoDouglasAlexander2015.pdf?sequence=1&isAllowed=y
https://repository.javeriana.edu.co/bitstream/handle/10554/16509/AguaciaFiscoDouglasAlexander2015.pdf?sequence=1&isAllowed=y
https://ryu.readthedocs.io/en/latest/ofproto_v1_3_ref.html
https://ryu.readthedocs.io/en/latest/ofproto_v1_3_ref.html

“Exploring Routing and Quality of Service in Software-Defined Networks: Interactions with Legacy Systems and

Flow Management”

2555 Daniel Alberto Priano, ETJ Volume 08 Issue 08 August 2023

Dst Destination

EVPN Ethernet VPN

FIB Forwarding Information Base

FRR Fast IP Routing

HTTP Hyper Text Transfer Protocol

hx Host number x

I2RS Interface to Routing System

IBM International Business Machines

Corporation

ID Identification number

IEEE Institute of Electrical and Electronics

Engineers

IntServ Integrated Services

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IS-IS IntermediateSystem-to-

IntermediateSystem

IT Information Technology

L2-L4 Layer 2 - Layer 4

L3VPN Layer 3 VPN

LDP Label Distribution Protocol

MAC Media Access Control

MPLS Multiprotocol Label Switching

NETCONF Network Configuration Protocol

NFV Network Functions Virtualization

OSPF Open Shortest Path First

OSS Operation Support Systems

PBB Provider Backbone Bridges

PCE Path Computation Element

PCEP Path Computation Element Protocol

PHB Per Hop Behavior

PIM Protocol Independent Multicast

POX Python OpenFlow SDN Controller

QoS Quality of Service

RIB Routing Information Base

RSVP Resource Reservation Protocol

rx Router number x

SaaS Software as a Service

SDN Software Developed Networks

sec Seconds

SID Segment Identifier

SLA Service Level Agreement

SNMP Simple Network Management

Protocol

SWx Switch number x

TCA Traffic Conditioning Agreement

TCP Transmission Control Protocol

TE Traffic Engineering

TOS Type of Service

TTL Time To Live

UDP User Datagram Protocol

