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1. INTRODUCTION 

For organizations, the use of software-defined networks 

(SDN) enables and accelerates the implementation and 

deployment of applications while significantly reducing IT 

(Information Technology) costs by automating workflows 

established by the policies applicable to data networks. SDN 

technology enables the development of cloud architectures by 

automating on-demand automated delivery of applications or 

mobility at scale. SDN enhances the benefits of data center 

virtualization by increasing the flexibility and resource 

utilization and reducing costs and overhead. 

SDN achieves these goals by converging the management of 

network services and applications into an extensible and 

centralized deployment platforms that can automate the 

provisioning and configuration of the entire infrastructure. TE 

(Traffic Engineering) policies can be applied to different 

workflows. The result is a modern and agile infrastructure that 

can quickly deliver new applications and services instead of 

days or weeks required in the past. 

This new approach to software-defined networks proposes 

five fundamental aspects: 

 Separation of planes (control, data and 

management), 

 Programmable and low-cost devices,  

 Centralized control (through a controller that can 

manage such devices),  

 Network virtualization and automation, 

 Open-source code and structures. 

On the other hand, when experimenting with large-scale 

topologies in SDN networks, we can observe many advantages 

in routing recovery. Compared to SDN routing, routing 

convergence in the legacy network is much more influenced 

by link delays. When the delay of a network link is high and 

the network is large, SDN networks have a shorter routing 

convergence time than legacy networks. 

Centralized control in an SDN network allows improving 

the efficiency of routing computation and developing fine-

grained control of network packets. Some literature studies the 

convergence time of legacy routing mechanisms and SDN 

routing by measuring their performance in terms of delay, 

packet forwarding or convergence after link/node failure. 

In this paper, the exploratory analysis of the existing 

literature has focused on the sources for each of the categories 

and subcategories of this topic developed in Europe and the US. 

This work has been limited to information from the last decade, 

as most of the research and applications based on SDN have 

been developed in this period. 

We have consulted different sources of documentation such 

as IEEE Xplore[1], Google Scholar, ONF (Open Network 

Foundation) and ITU (International Telecommunication 

Union), among others. For the search, we used keywords such 

as SDN architecture, SDN controllers, NFV (Network 

Function Virtualization) for SDN, SDN applications and SDN 

standards. 

1.1 Traffic Engineering 

TE is a very important mechanism for optimizing the 

performance of data networks. It allows regulating the flow of 

data transmitted over the network based on a dynamic and 

predictive analysis of the behavior of the transmitted data[2]. 

A wide variety of TE techniques exist and most of them are 

implemented in MPLS (Multiprotocol Label Switching) 

networks. 

SDN networks allow traffic engineering to be implemented 

in a natural way, enabling policy coordination between 

different ISPs by combining device performance with the big 

picture view[3]. 

At this point, we would like to point out that the 

implementation of TE in MPLS will be complex because it is 

a multiprotocol that uses a lot of network resources. In order to 

implement TE, it is necessary to modify the routing protocols 

so that they can transport the typical attributes of these 
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mechanisms. For example, one of them is the available 

bandwidth, which has to be dynamically calculated at the 

nodes in order to know the volume of traffic managed at each 

link. This data will populate the TE table needed for tunnel 

selection. This table will be used to manage, for example, 

priorities and resource reservations. We will not go in detail 

into this topic because it is not the objective of this work. 

1.2 Quality of Service 

With the emergence of multimedia applications, traffic 

requirements for networks have become a critical feature: low 

delay, low jitter or reduced packet loss. 

QoS models are used to ensure that networks can transmit 

data sent by critical applications. They allow users to avail 

themselves of multimedia services of reasonable quality under 

a specific contract that includes the operating parameters 

agreed between the provider and the customer and is called 

SLA (Service Level Agreement)[4]. 

In general, implementing QoS in routers of an IP network 

consists of the following phases: 

 Packets markup with a code obtained from the 

headers of the current packets. It will be used to group 

packages with some criteria or rule. 

 Differentiated treatment of marked packets for traffic 

monitoring and SLA compliance. This is achieved 

through bandwidth measurement, packet remarking, 

queuing and buffering treatment. 

Two of the architectures used are: Integrated Services 

(IntServ) and Differentiated Services (DiffServ). 

The objectives of IntServ are to preserve the datagram 

model of IP-based networks and to support resource 

reservation for real-time applications. Routers have to store 

certain state information of each flow and resource 

reservations with the RSVP (Resource Reservation 

Protocol)[5] in all nodes of the path. Packets of the same flow 

will use the same path, emulating circuit switching. 

To apply QoS to a flow, it must pass through an admission 

check that verifies the availability of resources at each router 

on its path. If the resources are available, the flow is admitted 

to the network and each router stores its state information (soft 

state). This will ensure that the flow reaches its destination. To 

maintain these resource reservations during the transmission of 

flows, resource reservation requests must be renewed 

periodically generating an increase in network traffic. 

Since the flows share the available network resources, we 

can say that the links will be shared between different flows. 

For example, the network bandwidth is shared by several flows 

that may contain different types of traffic. 

On the other hand, the main idea of DiffServ is to classify 

the different flows into classes and then apply QoS rules to 

them. Each node operating within a DiffServ domain will 

follow the same common service provisioning policies and the 

same set of PHB (Per Hop Behavior) groups[6]. 

A flow normally enters a DiffServ domain through a border 

node. The border node performs several tasks such 

classification, marking, policy enforcement and traffic 

adaptation. These tasks are performed according to the TCA 

(Traffic Conditioning Agreement)[7]. This TCA specifies the 

traffic classification and profiling rules (measurement, 

marking, discarding and shaping). Border nodes interconnect 

different domains, each with its internal nodes, and implement 

functions to translate the different PHBs between TCA-

compliant domains. 

Forwarding traffic at each node meets a certain PHB. This 

is the differentiated treatment that each individual packet 

receives according to specific queuing service disciplines, 

whose mechanisms are not subject to standardization. PHBs 

are applied at each network node regardless of how end-to-end 

or cross-domain services are constructed, providing a 

particular treatment for each class of traffic. 

Besides, flow admission is performed at the border nodes 

and can be configured manually or dynamically. In case of 

dynamic configuration, RSVP[8] will be used. This protocol 

reduces the scalability possibilities. 

Perhaps the biggest difference between the two systems 

arises in terms of scalability over large networks. While the 

IntServ model allows for greater granularity in resource 

reservation on a per-flow basis, it uses greater bandwidth 

resources of the network links than the DiffServ model. 

Diffserv networks classify packets according to a small 

number of flow groups by identifying them with the IPv4 

DSCP (Differentiated Services Code Point)[9], IPv4 TOS 

(Type of Service) or IPv6 Traffic Class of each IP header in 

the packet. Therefore, in addition to eliminating the state 

dependency of each flow, DiffServ can implement QoS 

provisioning without the need for end-to-end signaling. 

We can formally define QoS as a set of standards and 

mechanisms aimed to guarantee certain level of quality for the 

services used by critical applications. Using these mechanisms, 

network administrators can efficiently use existing resources 

and thus guarantee the required level of service. This avoids 

over-provisioning resources and over-dimensioning networks. 

The concept of QoS is critical for applications and users to 

meets their requirements; this means that some traffic flows 

will need preferential treatment. The objective of QoS is to 

provide a service that ensures sufficient bandwidth, latency 

control and reduction of data loss[10]. 

In SDNs it is possible to centralize QoS management, 

leaving the routers to take care of their primary role and 

implementing QoS directly on the switches through the 

network controller. This solves the problems caused in large 

networks and facilitates effective QoS management for the 

entire network. This feature allows QoS policies to be changed 

dynamically, making SDNs truly useful. 
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1.3 Load Balancing 

Today, our networks have to handle a large amount of 

traffic, serve thousands of customers and comply with the 

requirements and restrictions imposed. This is a very large 

workload and difficult for a single server to handle. The 

solution is to use multiple servers with a load balancer acting 

as an interface. 

 

 
Figure 1. Load Balancing - Source: Cisco System. 

 

As shown in Figure 1, clients send their requests to the load 

balancer, which receives them and forwards them to the 

different servers according to the defined distribution or 

balancing strategy. 

Round Robin is one of the most common strategies. It 

consists of distributing requests among servers sequentially. 

Another strategy is Least Connections, where a new request is 

sent to the server with the fewest client connections at that 

time. There is also the IP hash strategy in which the client's IP 

address is used to determine the server that will serve it. 

The load balancer uses dedicated hardware is expensive and 

is limited to what the vendor allows to be parameterized. 

Currently, network administrators cannot use their own load 

balancing algorithms since load balancers are not 

programmable as they are vendor locked. 

The growing demand for Internet services generates sudden 

increases in network traffic, causing congestion and 

overloading of links. For example, in 2009, in a data 

processing center network with 150 switches and 1500 servers, 

the 15% of the network was congested for more than 100 

seconds even though many of the links were underutilized; this 

implies a considerable need to optimize the allocation of 

network resources[11]. 

Most data processing centers have decided to implement a 

load balancer to meet the large number of users and the 

requirements they generate. Balancing strategies for web 

services (HTTP) are often based on link metrics provided 

during installation and do not take into account dynamic 

network conditions such as bandwidth utilization, packet loss 

and delays. There is a lack of flexibility to adjust a strategy 

based on different network requirements, network traffic or 

running applications[12]. 

Networks must handle large traffic volumes guaranteeing 

the availability of their services and avoiding unnecessary 

waiting times. The article "Dynamic load balancing 

application for servers, based on software-defined 

networks"[13] proposes a load balancing algorithm based on a 

combined criteria (available bandwidth and delay) using SDN 

technologies. The objective is to obtain and evaluate different 

network parameters at runtime. This set of parameters makes 

it possible to select the most responsive server among the set 

of servers storing and distributing the same application or 

providing the same service. In this way, server response time 

is improved by up to 50% compared to, for example, the 

traditional Round Robin method. SDN-based server load 

balancing can effectively improve server performance with 

low implementation complexity compared to the traditional 

load balancing method. 

Using OpenFlow as the controller interface protocol in 

SDN, the load balancing of a set of servers will be based on the 

dynamic creation of flow tables. Through an algorithm that 

allows the design of dynamic flow tables, "individual flow 

tables" can be combined with a "group flow table". Individual 

tables can monitor the traffic of each client while a group table 

allows to classify hosts efficiently. This is also discussed in the 

article mentioned above. 

The algorithm mentioned in the article avoids an excessive 

number of flow tables and also solves the defect that is 

generated when the number of matches in the flow table is too 

large. This demonstrates that it is possible to obtain better 

performance in network traffic scheduling. 

So far, it is possible to solve some of the problems of 

traditional networks using SDN. SDN load balancer has certain 

advantages compared to the method used in traditional 

networks. SDN can effectively improve the performance of the 

load balancer and reduce the complexity of its implementation. 

SDN load balancers are programmable and allow you to design 

and implement your own or custom load balancing strategy or 

algorithm. Other virtues of SDN load balancers are that they 

do not require dedicated hardware, which saves network costs. 

A single switch can become a powerful load balancer through 

the use of SDN controllers. 

1.4 Multipath routing in SDN 

One of the first concepts analyzed in this section is that of 

applications that relate the load balancer to multipath routing; 

a topic about which much has been written. This routing is the 

most commonly implemented in SDN which will not be 

included in this paper, but rather an overview of its 

implementation and operation will be presented. 

Multipath routing is a technique that uses network resources 

to propagate traffic from a source node to a destination node 

over multiple network paths. This technique is used to increase 

bandwidth, minimize end-to-end delay, increase fault 

tolerance, improve reliability, implement load balancing, 

among others. 
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There are three fundamental elements in multipath 

routing[14]: Path discovery, traffic distribution and route 

maintenance. 

The emergence of SDNs helps to resolve the entropy 

generated by the combination of internal and external routing 

protocols, traffic engineering, load balancing and multipath 

routing in traditional networks. Thus, the idea of routing by 

destination to find the best route is abandoned and replaced by 

the search for a balanced distribution of flows. In this way, 

network resources and available links will be better utilized. 

Efforts to achieve all this are evident in research on traffic 

engineering in MPLS, whose implementation and maintenance 

are excessively complex if dynamic network behavior is 

required. We could say that any solution for a new paradigm 

would have to be initially simple, i.e., capable of emulating the 

usual behavior of traditional networks in a simple way and 

from there evolve towards intelligent networks. 

Enterprises and service providers are surrounded by a 

number of competing forces. The enormous growth of 

multimedia content, the explosion of cloud computing, the 

impact of increased use of mobile devices, and continuing 

business pressures to reduce costs are converging to wreak 

havoc on traditional business models as, meanwhile, revenues 

remain flat. 

To keep pace, many companies are turning to SDN 

technology, revolutionizing network design and operation. 

SDN enables consistent management of an entire network that 

may contain components of complex technologies, as we will 

see below. 

Figure 2 shows four critical areas where SDN technology 

can make a difference for an organization: 

1. Network programmability: SDN allows network 

behavior to be controlled by software that resides 

beyond the network devices that provide its 

physical connectivity. As a result, network 

administrators can adapt the behavior of their 

networks to support new services or customers. By 

decoupling hardware from software, administrators 

can quickly introduce innovative and differentiated 

new services without the limitations that exist in 

closed, proprietary platforms. 

 

 
Figure 2. Logical structure of an SDN network[15]. 

 

2. Centralization and control: SDN are based on 

logically centralized network topologies that 

enable intelligent control and management of 

network resources. Devices operate autonomously 

with limited knowledge of the network state. With 

the centralized control of an SDN, a holistic view 

of the network is obtained where policies for 

bandwidth management, failover, quality of 

service, etc. can be optimally and intelligently 

implemented. 

3. Network abstraction: services and applications 

running on SDN reside on the technologies and 

hardware that provide physical connectivity and 

control of the network. Applications interact with 

the network through APIs (Application 

Programming Interfaces) instead of management 

interfaces tightly coupled to the hardware. 

4. Openness: SDN architectures usher in a new era of 

openness by enabling multi-vendor interoperability 

and fostering a vendor-neutral ecosystem. 

Openness comes from the SDN approach itself. 

Open APIs support a wide range of applications 

including cloud orchestration, OSS/BSS, SaaS, 

among others. These concepts are defined below: 

 Operations Support Systems (OSS) refer mainly 

to the network systems that are linked to its 

operation, for example, the configuration of its 

components, early detection of faults, 

maintenance, among others. Basically, it is what 

allows telecommunications network 

administrators to keep the service running. 

 The BSS (Business Support System) is 

complementary to the OSS. It allows the 

management of business elements through 

various tools for customer service, collections, 

invoicing, etc.[16] 
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 SaaS (Software as a Service) allows users to 

access cloud-based applications through 

Internet[17]. It offers an end-to-end software 

solution provided by a cloud service provider 

based on a pay-per-use model. All infrastructure, 

middleware, software and application data are 

located in the provider's data processing center. 

The service provider manages the hardware and 

software and, with the appropriate service 

contract, will also ensure the availability and 

security of applications and data. 

 

To this must be added the critical network applications of 

each company or organization, which, of course, will depend 

on their environment. Software such as OpenFlow can provide 

intelligent control of multi-vendor hardware through open 

programmatic interfaces.  

To implement the SDN concept in practice, two 

requirements must be met. First, there must be a common 

logical architecture across all switches, routers and network 

devices to be managed by an SDN controller. This logical 

architecture can be implemented in different ways, as long as 

the SDN controller sees a uniform logical switching function 

across equipment from different vendors and different types of 

network devices. Second, a secure and standard protocol is 

needed between the SDN controller and the network device. 

2.1 SDN networks scenario 

OpenFlow[18] covers these two requirements: it is a 

protocol between SDN controllers and network devices and 

allows the logical structure of network switching functions to 

be specified. The ONF is a consortium of software vendors, 

content distribution networks and network equipment vendors 

whose goal is to promote software-defined networking. 

According to this documentation, OpenFlow is a protocol 

that has evolved over time and has undergone some drastic 

changes between versions as can we see in Figure 3. At the end 

of 2018, OpenFlow was at version 1.5, but version 1.3 will be 

taken as a reference to explain the main features of this 

protocol. As will be seen below, this selected version allows to 

operate and use the devices without inconvenience. However, 

it is advisable to know the features of future new versions of 

OpenFlow, since these will most likely be the ones 

implemented in most of the switches. 

 
Figure 3. OpenFlow version history[18]. 

Standardizations in SDN. 

Initially, due to the great success of telecommunication 

technologies, various applications with divergent requirements 

for networks have been developed. To meet these 

requirements, networks need to become even more 

controllable and manageable. The need to manage traffic in 

different ways implies an increase in service orientation. 

Numerous emerging packets forwarding technologies are 

enabling more direct, lower-level data control methods, e.g., 

flow level. These technologies can simplify interaction with 

network resources (switches, routers, etc.) to significantly 

increase network control capability. Centralized automation of 

the modeling and scheduling of network resources will enable 

much more agile network operation. This centralized, 

programmable approach can provide the opportunity to 

redesign network resource control functions using standard 

interfaces and protocols. 

Therefore, we can say that this approach allows: 

 Centralized logical control of the network, 

reducing the number of points to control and 

manage, 

 Support for network virtualization as an important 

feature of the network architecture and 

 The definition, control and management of 

network resources through software applications, 

providing network services in a deterministic 

manner according to behavioral requests and 

customizing the network for efficient and effective 

deployment in its operations. 

To implement the above features, ITU-T Y.3300 provides 

the framework for software-defined networking (SDN) by 

specifying definitions, objectives, high-level capabilities, 

requirements and high-level architecture fundamental to SDN. 

Several SDN-related technologies and standards have been 

developed with different approaches such as ITU-T 

Y.3001[19], ITU-T Y.3011[20], b-ITU-T Y.2622[21], b-ETSI 

NFV[22], b-IETF I2RS[23], b-IETF RFC 3746[24], b-

ONF[25] and b-OpenDayLight[26]. All share the same goal of 

providing programmability of network resources which, as 

mentioned, is a core technology for the networks of the future. 

2.2 Flow tables 

As mentioned above, flows are grouped into tables similar 

to routing or switching tables. When a packet is received, each 

element in the table is checked for compliance with the 

matching requirements. In OpenFlow version 1.0 there was 

only one flow table but from version 1.1 onwards nested flow 

tables are supported as shown in Figure 4. OpenFlow follows 

a clearly defined process for traversing the flow tables in the 

switch. This process, or pipeline, is as follows: 

 The flow tables in the switch are sorted by 

numbers, starting from 0. 
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 Table 0 must always exist since there must be at 

least one flow table in the switch. The process 

always starts in this first table. 

 When a packet enters, an attempt is made to match 

to an entry in table 0. If a match is found, the 

instructions associated with that flow are added to 

the packet's action set. The action set is the set of 

activities that are applied to the incoming packet 

after traversing the flow tables. 

 If the input instructions include the instruction to 

advance to another table ("go to" instruction), the 

process continues on that table and then repeats the 

same process. Note that you must always advance 

to tables with higher numbers, never lower. You 

must always advance forward, and you can never 

go back to previous tables. 

 When there are no more tables to traverse, i.e., 

when the match of a table does not include the "go 

to" instruction, the action set associated with the 

packet is executed in the preset order. 

 

 
Figure 4. OpenFlow 1.3 Pipeline[27]. 

 

If there is no entry in the table associated with the incoming 

packet, a "table miss" occurs. In this case, the behavior will 

depend on the table configuration. To indicate how to process 

mismatched packets, specific entries can be added to the table. 

The options are a) send the packet to the controller for routing, 

b) pass the packet to another table in the switch, or c) discard 

the packet. 

Note that the order of the flow entries indicates their priority, 

similar to firewall rules or router access lists. This implies that 

two flow table entries could be associated with the same 

incoming packet. However, when the table is traversed in 

descending order, only the instructions associated with the first 

matching entry will be executed. 

In OpenFlow 1.5, the pipeline is modified as shown in 

Figure 5. So far, we have seen the Ingress Processing. Now we 

will add the Egress Processing. Fundamentally, egress 

processing follows the same operation as ingress; the tables are 

traversed looking for valid matches for the package and the 

instructions of the table associated to the input are executed. 

Egress processing allows for greater granularity and 

organization of the flow table entries. It is an optional 

processing, and it will not be necessary for the switch to 

implement it in order to route traffic correctly. 

 

 
Figure 5. OpenFlow 1.5 Pipeline[27]. 

 

2.3 Instruction and action sets 

As mentioned, each incoming packet has an action set 

associated and each flow table entry contains a set of 

instructions. It is important to understand this distinction. The 

action set associated with an incoming packet is executed over 

the packet at the end of the table traversal. In contrast, the 

instructions associated with a flow entry in the table are 

executed when an incoming packet matches that entry. 

First, we will deal with instructions. There are three types of 

instructions depending on the task to be performed: 

 Advance in the pipeline (advance to another table). 

 Modify the action set of the package. 

 Modify the incoming packet without waiting for 

the execution of the final action set of the pipeline 

(optional). 

In total there are six instructions; two are mandatory and 

four are optional. The switches must necessarily provide 

support for the mandatory ones. As for the optional ones, the 

controller can query the switches which of the optional 

instructions they can support themselves. The mandatory 

instructions are as follows: 

 Write-actions <action/s>: Inserts one or more 

actions into the action set of the incoming package. 

If any of the inserted actions are already in the 

action set, they are overwritten. 

 Goto-table <ID of the table>: Indicates the next 

table to follow. 

Optional instructions are as follows: 

 Meter <id metric>: Applies a constraint to the 

specified metric. 

 Apply-Actions <action/s>: The specified actions 

are applied immediately on the package without 

waiting the execution of the action set. 

 Clear-Actions <action/s>: Removes all actions 

contained in the action set. 

 Write-Metadata <metadata/mask>: Updates the 

metadata. 

 

Each entry in the flow table can only associate one 

instruction of each type and they will be executed in the 
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defined order. In practice and for mandatory instructions, this 

implies that "Goto-table" always goes after "Write-actions". 

Otherwise, the process will follow to the next table before 

executing the actions in the action set of the incoming packet. 

The action sets are executed over the package at the end of 

the pipeline as mentioned above and the actions are added to 

the action set as the successive flow tables are traversed. 

Actions are not executed on a first-come, first-served basis. 

The order of execution (priority) of actions is defined as 

follows: 

 Copy TTL inwards: Copies the TTL field of the 

outermost IP header of the incoming packet to the 

second outermost one with a TTL field. This action 

is executed when there is an IP header nested inside 

an MPLS header (which has TTL). 

 Pop: Removes all VLAN, PBB and MPLS tags 

from the packet. 

 Push-MPLS: Adds an MPLS label to the packet. 

 Push-PBB: Adds a PBB label to the package. 

 Push-VLAN: Adds a VLAN tag to the packet. 

 Copy TTL outwards: Copies the TTL field of the 

second outermost IP header of the incoming packet 

with TTL field to the outermost IP header. 

 Decrease TTL: Decreases the TTL of the IP header 

by one. 

 Set: Used with optional instructions.  

 Qos: Applies Quality of Service actions. 

 Group: Used with optional instructions. Its 

operation will not be discussed in detail in the 

present work. 

 Output: Sends the packet through the specified 

port. 

 

2.4 Virtualization 

A key advantage of SDN technology is the ability to offer 

network administrators the ability to write programs that use 

SDN APIs to control network behavior. SDN allows users to 

develop network-aware applications, intelligently monitor 

network conditions and automatically adapt network settings 

as needed[28]. 

In fact, SDN is an approach to network virtualization that 

seeks to optimize network resources and quickly adapt 

networks to changing business, application and traffic needs. 

It works agilely by separating the network control plane from 

the data plane, creating a software-programmable 

infrastructure that is independent of physical devices. With 

SDN, network orchestration, management, analytics and 

automation functions become the job of SDN controllers. 

Because these controllers are not network devices, they can 

take advantage of the scalability, performance, and modern 

storage and processing resources of the cloud. Increasingly, 

SDN controllers are built on open platforms using open 

standards and open APIs that allow them to orchestrate, 

manage and control network devices from different vendors. 

SDN offers a wide range of business benefits. Separation of 

the control and transport layers increases flexibility and speeds 

time to market for new applications. The ability to respond 

faster to problems and outages improves network availability. 

For IT organizations, the programmability facilitates the 

automation of network functions while reducing operating 

costs.  

SDN fits perfectly with another technology: NFV (Network 

Functions Virtualization). NFV offers the ability to virtualize 

device-based network functions such as firewalls, load 

balancers and WAN accelerators. The centralized control 

provided by SDN can effectively manage and orchestrate this 

NFV-enabled function virtualization[29]. 

 

3. ROUTING IN SDN 

At a very high level, the control plane of an SDN establishes 

the local data set used to create the forwarding table entries. 

The data plane uses these tables to forward traffic between 

inbound and outbound ports of the same device. 

By centralizing control, all the information available at each 

switch in the network can be obtained as a single entity. Upon 

changes and according to the QoS requirements, the software 

applications will dynamically modify the flow rules taking into 

account the information of these entities. 

3.1 SDN Routing: Architectures for Analysis 

The new concept of decoupling these two planes in the 

network introduced by SDN implies that devices execute only 

data forwarding; forwarding decisions are based on the set of 

rules determined by an external controller. This architecture is 

illustrated in Figure 6[30]. 

 

 
Figure 6. SDN architecture. 

 

For this analysis, we have considered the OpenFlow 

protocol. This protocol is used for communication between the 

SDN controller and the data plane devices (OpenFlow 

switches). OpenFlow enables routing based on decision flow. 

OpenFlow switches differentiate and process traffic according 

to instructions received from the controller. In a broad sense, 

flow could be defined as a sequence of packets with similar 
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characteristics. As shown in Figure 7, the controller will define 

the flow using any subset of the 9 L2-L4 packet header fields 

(layer 2 - layer 4) along with the identifier of the interface the 

incoming packet. This highly granular control option allows 

the implementation of dynamic multi-path routing and can 

significantly increase network capacity[31]. 

 

 
Figure 7. L2-L4 fields used for a flow definition in 

OpenFlow. 

 

The controller instructions are stored inside the OpenFlow 

devices in the form of flow table rules (Figure 6). When a 

packet arrives, the lookup process begins by searching for the 

corresponding rule in the table. If the packet does not match 

any rule, it is discarded. Most commonly, however, a low 

priority rule is defined that instructs the switch to forward the 

packet to the controller. The SDN controller will then define 

the next processing steps according to the running network. 

In the present case, dynamic routing functionality was 

implemented within an OpenFlow POX Controller[32]. As 

shown in Figure 8, the controller manages several key 

modules: link cost calculation, route calculation, routing, 

statistics collection, topology discovery, OpenFlow interface, 

topological data, among others. Some of them are described 

below. 

 

 
Figure 8. Schematic of the proposed controller design. 

 

 Topology discovery: This module is an integral part 

of the POX controller. It is responsible for 

discovering and maintaining the network topology. 

Information about the network connectivity will 

constantly be available to the other service modules 

residing in the controller. In case the link goes up 

or down, this module reports the change events to 

notify the registered listeners. 

 Statistics gathering: To perform dynamic routing, 

the controller needs an up-to-date view of the 

network status. One option is to measure link 

utilization periodically. To do this, it will send 

various port statistics requests to the OpenFlow 

switches. When an OpenFlow switch receives this 

request, sends the number of bytes that traversed 

the corresponding network interface (traffic). By 

comparing these new values with those previously 

received, the SDN controller can calculate the link 

load for the last measurement cycle. As TCP flows 

tend to use all available bandwidth on the path, this 

method might conclude that, for example, routing 

should be avoided on links loaded with one or more 

long-lived TCP connections. In other words, if the 

same number of bytes is carried over two different 

links during the measurement cycle, both links will 

be treated the same even if there is a considerable 

difference in the amount of traffic flows on each 

link. 

 

As a consequence, this will have a negative effect on routing 

fairness and overall network performance. For this reason, the 

estimation of the available bandwidth on the links is performed 

to provide this information to other modules.  

Since the links are bidirectional, statistics are compiled for 

each direction. The reason is based on the fact that TCP tends 

to distribute the available bandwidth among the individual 

TCP flows. If the link is assumed to be the bottleneck of each 

TCP connection, the amount of bandwidth that could be 

offered to a new TCP flow can be calculated by a formula. As 

this is a very rough assumption, to determine the actual 

bandwidth that a new TCP connection could get, the controller 

needs detailed statistics for each traffic flow on the network. 

Estimates of available link bandwidth are only used as input 

arguments to the routing module. As an example, algorithms 

can be proposed to protect links with low available bandwidth. 

On the other hand, when a route for the UDP flow is installed, 

the controller adds the flow's input switch to the query list 

(Figure 8). 

The statistics collected from the incoming switches provide 

adequate accuracy, as they take into account packet loss within 

the network. To minimize overall control, the controller sends 

only one request for all UDP flows installed on the switch. The 

response consists of a message with the counters for all 

incoming UDP flows. 

From the statistics obtained, the controller takes the UDP 

flow throughput information from the last measurement cycle. 

As illustrated in Figure 8 it also keeps the list of current UDP 

routes to calculate the UDP throughput on each network link. 

The Routing Module calculates the costs of each link and 

determines the routes for traffic flows. It uses as inputs the 

network topology data and the results of the statistics 

collection module. 
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3.2 Northbound and Southbound 

3.2.1 Southbound 

In SDN, Southbound interfaces are the OpenFlow protocol 

specification. They enable communication between 

controllers, switches and other network nodes that are 

considered as lower-level components. The router identifies 

the network topology, determines the network flows and send 

the request through the Northbound interfaces. 

Southbound APIs allow the end user better control over the 

network and improve in real time the level of efficiency of the 

SDN controller according to the demands and needs. This 

interface is an industry standard that justifies the ideal 

approach that the SDN controller should communicate with the 

forwarding plane to modify networks by progressively 

accompanying advanced business needs. To make the network 

layer more responsive to real-time traffic demands, 

administrators can add or remove entries to the internal flow 

tables of network switches and routers. 

Some of the most popular Southbound APIs are OpenFlow 

(discussed in the previous section) and Cisco. Other switch and 

router vendors that support OpenFlow include IBM, Dell, 

Juniper, Arista, among others. 

3.2.2 Northbound 

Unlike Southbound APIs, Northbound APIs enable 

communication between higher-level components of the 

network. While traditional networks use a firewall or load 

balancer to control the behavior of the data plane, SDN installs 

applications on the controller to communicate with these 

components through its Northbound interface.  

Experts say that it would be quite difficult to improve a 

network infrastructure without a Northbound interface because 

the evolution of network applications will depend directly on 

equipment vendors. The Northbound APIs make it easier to 

innovate or customize SDN network controls because these 

APIs can be reprogrammed in languages such as Java, Python 

or Ruby. 

3.3 Another approach: Segment routing 

Segment Routing is a flexible and scalable form of routing 

at the source. The source chooses a path and encodes it in the 

packet header as an ordered list of segments. Any type of 

instruction can identify these segments. Each segment is 

identified by the segment ID (SID) which consists of a 32-bit 

unsigned integer. 

With Segment Routing, the network no longer needs to 

maintain per-application and per-flow state. Instead, it 

executes the forwarding instructions provided in the packet. 

Segment Routing is based on a small number of Cisco 

extensions and the OSPF (Open Shortest Path First) and IS-IS 

(IntermediateSystem-to-IntermediateSystem) protocols. It can 

operate with MPLS or an IPv6 data plane and integrates with 

MPLS multi-service capabilities including L3VPN (Layer 3 

VPN), VPWS (virtual private wire service), VPLS (virtual 

private LAN service) and EVPN (Ethernet VPN). 

Segment Routing can be applied directly to MPLS 

architecture without changes to the forwarding plane. It uses 

network bandwidth more effectively than traditional MPLS 

networks and offers lower latency. A segment is encoded as an 

MPLS label. The list of segments is encoded as a label stack. 

The segment to process is at the top of the stack. The segment 

related to the label is removed from the stack after completion. 

Segment Routing can be applied to IPv6 architecture with a 

new type of routing extension header. The segment is encoded 

as an IPv6 address. An ordered list of segments is encoded as 

an ordered list of IPv6 addresses in the routing extension 

header. The segment to process is indicated by a pointer to the 

route in the extension header. The pointer is incremented after 

the completion of a segment. 

Segment Routing provides automatic traffic protection 

without topological restrictions. The network protects traffic 

against link and node failures without requiring additional 

signaling. FRR (Fast IP routing) technology in combination 

with Segment Routing ensure full protection with optimal 

backup paths. Traffic protection imposes no additional 

signaling requirements[33]. 

Segment Routing is SDN-ready: Segment Routing is a 

compelling architecture designed to be adopted by SDN and is 

the foundation of AER (Application Engineered Routing). It 

strikes a balance between distributed network-based 

intelligence such as automatic link with node protection and 

centralized controller-based intelligence such as traffic 

optimization. It can provide a network with performance 

guarantees, efficient use of network resources and very high 

scalability for applications.  

The network uses a minimal amount of state information to 

meet these requirements. Segment routing can be easily 

integrated with controller based SDN architectures. Figure 9 

illustrates an SDN scenario in which the controller performs 

centralized optimization including bandwidth admission 

control. In this scenario, the controller has a complete view of 

the network topology and flows. A router can request a route 

to a destination with certain characteristics such as delay, 

bandwidth, diversity, among others. 

 

 
Figure 9. Source Cisco Systems 

 

Segment lists allow complete virtualization of the network 

without adding any application state. The state is encoded in 
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the packet as a list of segments. The network maintains the 

state of a large number of segments and can support a large 

number of transaction and request-based applications without 

increasing the network traffic load. 

3.4 The need for an interface to enable application 

programming - I2RS[34] 

One of the problems of centralizing control planes is to be 

able to configure and obtain statistics from network devices in 

a synchronized manner and in real time. As this process is slow 

today, efforts are being made to speed up the feedback loop 

with the network elements through the I2RS project (RFC 

7921)[35][36][37]. 

The I2RS Working Group was formed in November 2012 to 

develop the use cases and basic architecture of a routing system 

interface. The term "routing system" describes a hardware 

device, a virtual router, or any software that provides routing 

functions[38]. 

 The routing system interface shall provide the 

following functionalities: 

 Provide or retrieve information, policies and 

operational parameters to or from the routing 

system.  

 Provide read and write access to the RIB (Routing 

Information Base) but not to the FIB (Forwarding 

Information Base). 

 Monitor and analyze BGP operations and establish 

or activate protocol-related policies. 

 Optimize and choose network egress points based 

on factors other than those provided by routing 

protocols. 

 Support rapid and distributed reaction to network 

attacks.  

 Redirect traffic to avoid the destination under 

attack while maintaining normal operation of other 

routes. 

 Extract network topology information. 

Routers that belong to the Internet routing infrastructure 

maintain details and state functions in a multilayer fashion. For 

example, a typical router maintains a RIB and implements 

routing protocols such as OSPF, IS-IS and BGP to exchange 

reachability information, topology, protocol state, etc. with 

other routers. Routers convert all this information into 

forwarding entries that are then used to forward packets and 

flows between network elements.  

It was mentioned earlier how an SDN treats packets. It is 

noted that flow table rules may require network topology 

information from the RIB and device configuration. 

The forwarding plane and forwarding entries contain 

information needed by network-oriented applications 

regarding the expected and observed operational behavior of 

the router. Network-oriented applications require easy access 

to this information to know the network topology, to verify that 

the expected configuration is installed in the forwarding plane, 

to measure the behavior of flows, routes or forwarding entries, 

as well as to know the configured and active states of the 

router. These applications also require an easily accessible 

interface to program and control the state of the forwarding 

plane. 

I2RS facilitates the control and observation of routing states 

and allows network-oriented applications to interact with 

existing networks. These applications can leverage I2RS as a 

programmatic interface to create new ways to combine the 

retrieval and analysis of Internet routing data and state 

configuration within routers. 

I2RS provides a framework for applications (including those 

of the controller) to record and request specific information 

that each may need or require. 

There are four key drivers that shape the I2RS architecture: 

1. The need for an asynchronous and programmable 

interface for all operations to have quick and 

interactive access. 

2. Access to structured information and state that is 

not modeled or configurable in existing 

configuration protocols.  

3. The ability to subscribe to structured event 

notifications from the router. 

4. The availability of standard data models for 

network-oriented applications. 

When a router or the I2RS software running on it is restarted 

it will restart in an initial ephemeral state. The routing protocol 

or application will be able to inject a certain state into the router 

through the state insertion functions of I2RS. This state can 

then be distributed by a routing or signaling protocol so that it 

can be used locally (e.g., to schedule the shared forwarding 

plane). 

A local client operates in the same physical container as the 

routing system, whereas a remote client operates throughout 

the network. The details of how applications communicate 

with a remote client is beyond the scope of I2RS. 

I2RS agents and clients communicate with each other using 

an asynchronous protocol where a single client can publish 

multiple simultaneous requests to one or multiple agents. An 

agent can process multiple simultaneous requests from one or 

multiple clients. 

The I2RS agent provides read and write access to selected 

data from any routing element available to I2RS services. 

I2RS agents can write static ephemeral state (e.g., RIB 

entries) and read static and dynamic routes (e.g., MPLS label 

switched path identifier or the number of active BGP 

neighbors). The I2RS agent also allows clients to subscribe to 

different event notifications that affect different instances of 

the objects, e.g., notification of an event that resolves the next 

hop in the RIB such that a RIB manager can install it in the 

forwarding plane as part of a particular route. 
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The I2RS agent can access and modify the data models 

associated with the routing system that enable dynamic, static, 

local, routing and signaling configuration. 

Routing elements need not have an associated forwarding 

plane to implement some subset of the routing system. 

Examples of routing elements may include: 

 A router with a forwarding plane and RIB Manager 

that runs IS-IS, OSPF (Open Short Path First), BGP 

(Border Gateway Protocol), PIM (Protocol 

Independent Multicast), etc. 

 A routing element can be managed locally via the 

CLI (Command Line Interface), SNMP or via 

NETCONF (Network Configuration Protocol). 

The routing and signaling module that interacts with the 

Internet routing system is part of the routing element. It 

includes not only the standardized protocols like IS-IS, OSPF, 

BGP, PIM, RSVP-TE, LDP (Lightweight Distribution 

Protocolo), but also the RIB management layer. 

To achieve dynamic routing, an I2RS agent needs access to 

the state of the routing element beyond the subsystem because 

it may need information from counters, statistics, flows and 

local events. I2RS-based network applications need this 

operational state, but I2RS does not provide this standardized 

routing and signaling information. An example of a static 

system state is the queuing behavior for an interface or for 

traffic. How the I2RS agent modifies or obtains this 

information is beyond the scope of this paper. 

Recently, many efforts have been made to improve access 

to existing information in routing and forwarding systems. The 

greatest benefits have been achieved by making network 

information visible and manageable through applications. For 

this, there are two major challenges; first, to consider the large 

amount and variety of information potentially available and 

second, to simplify the protocol for accessing such information 

due to the complexity in the variation of data structures and the 

types of operations required. 

The types of operations contemplated are complex in nature. 

It is essential that I2RS be easily implementable and robust. 

Complex data models make extensibility difficult, so I2RS 

does not attempt to add more complexity than necessary. 

A network topology manager includes an I2RS client that 

uses its own data models and a protocol that collects network 

state information by communicating with one or more I2RS 

agents. The topology manager collects routing configuration 

and operational data, such as interface and switched path label 

(LSP) information. In addition, the topology manager can 

collect link-state data in several ways: through I2RS models, 

with BGP-LS (RFC 7752)[39], or by listening to the IGP. 

The set of functionalities and information collected by the 

topology manager can be integrated as a component of an 

application, such as a route calculation application. Other 

application interfaces can provide a consistent view of the 

network reachability state using the same I2RS protocol or 

could provide a topology service using extensions of the I2RS 

data models. To perform this task, the controlling entity or 

program has to generate a network topology view under certain 

conditions. This network view can be manually programmed, 

learned through observation, or constructed from information 

gathered through exchange with other control plane records. 

In the case of SDN, all this information to be processed and 

transmitted belongs to the so-called control plane. In this 

context, the control plane can be defined as the intelligence that 

determines the optimal paths for sending information and 

responds to incidents and new network demands[40]. 

In summary, the basic idea of I2RS is to create a protocol 

and components for scheduling the routing information base 

(RIB) of a network device. It uses a fast-routing protocol that 

allows a fast cut-through of provisioning operations in order to 

allow real-time interaction between the RIB and the RIB 

controller manager. Previously, RIB could access information 

only through the device configuration system such as 

Juniper[41], Netconf[42] or SNMP[43].  

I2RS provides several levels of abstraction for network path 

scheduling, policy management and port configuration, e.g., to 

provide fast and optimal access to the RIB for operational 

support systems (OSS)[44]. 

I2RS is also well oriented towards possible growth in the 

requirements for logical centralization of routing, routing 

decisions and programmability. The protocol has different 

requirements for running inside or outside a device. In this 

way, as required, the functionality of a distributed controller 

can be implemented. 

Finally, another key subcomponent of I2RS is the 

standardized and abstract topology. This topology will be 

represented by common and extensible object models. The 

service also allows multiple abstractions of a topology 

representation to be exposed. A key aspect of this model is that 

devices that are not routers (or routers of routing protocols) can 

more easily manipulate and change the RIB. Today, users do 

not have a great deal of difficulty obtaining this information. 

In the future, network management/OSS components will be 

able to quickly and efficiently interact with routing state and 

network topology. 

3.5 Interaction between SDN and existing networks in use 

The "clean slate" proposition is a statement related to SDN. 

SDN discards previously used technologies by thinking of 

operating mechanisms outside the distributed model, thus 

avoiding the technological costs due to the complexity of its 

adaptation. 

This proposition arises from observing the MPLS 

technology where the updates and modifications of its features 

made the deployed code of the implementations grow, 

transforming them into too complex and fragile. 

In some implementations[45], using centralized label 

distribution to emulate the distributed functionality of LDP[46] 

or RSVP[47], centralized code-based network topology 
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knowledge yielded results at least an order of magnitude lower 

than currently available commercial alternatives. The natural 

assertion is that, in a highly prescriptive and centralized control 

system, network behavior can approximate that of a 

completely static forwarder that is arguably stable. 

When network utilization increases, new devices must be 

deployed to meet the demand. It would be important to be able 

to meet the forwarding transfer demand without changing the 

number of managed devices and their resulting control 

protocol entities; if not, at least determine the integration 

conditions of the new devices since each addition increases the 

control information.  

If we think that our centralized system must interact with 

distributed devices typical of traditional routing and switching 

systems, it is important to understand that the traditional 

controller and router control planes must be synchronized to 

achieve information consistency. The additional control plane 

affects the scalability of the overall network control plane 

during network convergence, or the time it takes for the totality 

of control planes to reach a loop-free circuit. This manifests 

itself in the resilience and performance of the overall system; 

the greater the number of control planes there will potentially 

be greater fragility in the system. Conversely, if properly 

tuned, the resilience of the system will increase due to creating 

a system that becomes consistent regardless of conditions. 

It seems inevitable to discard the initial idea of the "clean 

slate" as the current networks with their routing protocols will 

continue to exist. These legacy networks will have to interact 

with SDN networks in a mixed topology as seen in the I2RS 

work discussed above. 

 

4. EXAMPLE OF ROUTING IN A SWITCH 

In order to better understand the scope of SDN, the 

following is a simple example of how routes are established in 

a switch and how the interaction with the controller is 

performed. 

This example presents a network topology that has two 

switches SW1 and SW2 with 2 hosts h1 and h2 connected to 

each switch respectively, as shown in Figure 10. 

 
Figure 10. Example topology. 

 

We will analyze the behavior of the SW1 which is connected 

to other network devices through ports 1, 3 and 4 and to h2 

through port 2. Inside the SW1, there is the flow table with the 

actions to be applied to the incoming packets according to the 

matching criteria for each input. 

The criteria can be defined on the basis of fields in the 

Ethernet, IP, TCP, UDP header or any other protocol that 

contains a packet header. In this case, the source and 

destination IP addresses will be used as matching criteria. 

Those packets matching these criteria will be subjected to the 

actions programmed in the table such as forwarding to a SW1 

port, forwarding to the controller to modify incomplete fields 

in the packet or other actions. 

Packets arriving on port 2 or 3 will be directed to host h1 

(10.0.0.1) by the corresponding actions: they will exit on port 

1 of SW1, traverse SW2 and then exit on port 1 of SW2 to 

reach h1. Packets arriving with destination 10.0.0.2 will also 

be instructed to be dispatched to host h2 on port 2 of SW1. In 

these cases, no conditions are set that consider the source 

address of the packets, nor the transport protocol. 

A third entry will be added so that TCP packets entering 

SW1 will be dispatched on port 4 regardless of their source or 

destination IP addresses. You get a Table 1 like the one shown 

below: 

Table 1 - SW1 flow table. 

 
 

If you look at the first two entries in Table 1 you will notice 

that packets without TCP protocol information will be routed 

to hosts h1 or h2 through ports 1 and 2 respectively. 

If you enter a TCP packet with source IP address 10.0.0.100 

and destination IP address 10.0.0.2, SW1 would not be able to 

decide whether to route it to port 2 or 4 without the information 

in the Priority field. In these cases, it is routed to the output 

with the higher value, on port 2. 

Finally, there are two fields that establish times. The first 

one indicates the duration of the rule from the time it was 

installed by the controller, i.e., the time it remains in the table. 

The second indicates that the rule will be removed if no 

matching takes place during this period, i.e., no packet arrives 

that complies with the rule. 

Placing 0 (zero) in the "Duration" and "Inactive timeout" 

fields will indicate that the rule can only be removed by the 

controller. 

The controller will control the switches via a TCP 

connection that is established at the time of installation. The 

controller will have applications installed that will react 

appropriately when recognizing certain events. Examples are 

given below. 

We will add a new SW3 switch to the initial topology. A 

TCP connection will be established between the controller and 

the new switch. Then, from each side of the connection, the 

Source IP Destination IP Protocol

* 10.0.0.1 * out: 1 2 20 sec 5 sec

* 10.0.0.2 * out: 2 2 20 sec 5 sec

* * TCP out: 4 1 0 sec 5 sec

Pairing criteria
Actions Priority Duration

Idle 

timeout

FLOW TABLE
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switch and the controller will generate a symmetric 

OFPT_HELLO[48][49] message that establishes the 

OpenFlow connection and modifies the topology known to the 

controller as will be seen later.  

The addition of SW3 will generate changes in the SW1 

switch. The controller will modify the SW1 flow table through 

OFPFlowMod messages creating the specific entries, 

indicating the match criteria, action priority and associated 

times. Figure 11 shows in detail the event produced by 

incorporating the SW3 switch. 

 
Figure 11. Node incorporation event. 

 

When the packet does not match any entry in the table, the 

packet or its header will be sent to the controller by 

OFPT_PACKET_IN message. The central module of the 

controller will have an application to resolve the sending of 

these packets. This application will determine the flow rules to 

be installed in SW1 using OFPFlowMod messages, as shown 

in Figure 12. 

 
Figure 12. Packet event not matching any table entry. 

 

Finally, when a link is discovered, the topology discovery 

module of the controller changes the network topology by 

exchanging discovery packets. In our example, this discovery 

event is the addition of SW3. The topology discovery 

application must be able to respond by generating the 

necessary OFPFlowMod messages to add or remove the 

necessary actions in the corresponding flow tables. 

 

5. CONCLUSIONS 

 In modern routers and switches, configuration 

changes will affect the results obtained in the 

control and data planes. Centralized management 

will impact the behavior and results in distributed 

nodes. 

 For many network administrators, control is based 

on the flexibility to program simple forwarding 

decisions. Simple and specific solutions will be 

favored over complex ones. 

 It will be very important to make the network more 

elastic and efficient based on the demands and new 

information available beyond optimal algorithms. 

 Both static routes and routing policies have limited 

scalability in most implementations. 

 Destination-based distributed routing protocols are 

not a good solution in the application of pure 

centralized routing ("clean slate"). SDN networks 

should be interconnected with traditional networks 

that maintain standardized routing protocols that 

should be part of the information stored in our 

controller's RIB. 

 The idea of routing based on optimal path finding 

seems to give way to balanced routing that meets 

compromised QoS parameters for all flows 

transmitted over the network using all its available 

links and resources. 

 Networks will be able to adapt to changes by using 

metrics to control available bandwidth, packets lost 

from prioritized flows or required jitter. 

Applications will be used to dynamically modify 

the rules in the flow tables, either through static 

programming or dynamically following behavioral 

patterns. 

 SDN networks have an intrinsic characteristic: any 

type of algorithm (such as Dijkstra's) can be 

applied without being tied to routing protocols 

(such as OSPF). Therefore, and depending on the 

rules that are established, it will be possible to 

arbitrarily alter proprietary algorithms and third-

party algorithm libraries. 

 It is clear that the key to SDN will be to develop 

communications networks where the control plane 

is decoupled from the hardware elements. Unlike 

traditional networks, the centralization of functions 

in the controller will simplify network traffic 

management tasks without having to configure the 

elements individually. 
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