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ABSTRACT: The heart is one of the most important human organs. One of instruments to detect cardiac abnormalities is the 

electrocardiogram (ECG). This research tries to analyze ECG image in normal heart condition from ECG machine. The previous 

research related to the pre-processing process is the same, only at the feature extraction process look for peaks P, Q, R, S, T, heart 

rate, and Deviation-ST. While this research is the characteristic extraction process using wavelet transformation. The image of lead 

ECG 12 is processed using discrete wavelet transforms with decomposition up to ten levels, by searching for mean square error 

(MSE). The type of mother wavelet and the wavelet order used are Daubechies (db) with 1 (db1 (Haar)). The smallest MSE value 

decomposition results are obtained at the level 5, which are lead I, II, III, aVR, aVF, V4 and V5, lead V1 & V2 on level 4, for aVL 

(level 9), V3 (level 7) and V4 (level 6). It is expected that such research can be followed up to the identification model of cardiac 

abnormalities using wavelets. 
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I. INTRODUCTION  

The heart is a very important part of our body. Based on data 

from the World Health Organization (WHO) year 2019 shows 

17,9 millions of people worldwide died from cardiovascular 

disease (heart) or representing 32% all global deaths[1]. The 

American Heart Association mentioned that almost every one 

of three people died is caused by cardiovascular disease. 

Therefore, we must maintain the condition of our bodies, 

especially the heart. Early heart detection can be performed 

by checking the heart condition with aids such as: 

electrocardiogram (ECG), blood test, nuclear heart scanning, 

cardiac catheterization, cardiac test, echocardiography and 

coronary angiography [2].                

A instrument that is frequently used to check for heart 

abnormality is electrocardiogram (Figure 1). 

Electrocardiogram is a tool to determine the electrical activity 

of the heart in patients [3]. Where the results are used by the 

medical team to diagnose heart conditions [4]. Detection of 

cardiac abnormalities uses a simple ECG. An ECG device 

consists of 12 leads which is installed on several body parts, 

then records and prints out the result in the form of an ECG 

graph paper. From such graph paper it can be  analyzed 

whether the patient’s heart are in normal condition or have 

abnormalities. Based on the above review, this study also uses 

12 lead ECG images according to the ECG device used by 

several hospitals. Image of lead 12 printed on ECG paper then 

scanned. 
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Fig 1. Electrocardiogram Example 

 

The scanning results of each lead will be used as input in the 

pre-processing process. The pre-processing process uses 

several methods, including segmentation (changing color 

images to grayscale, then from grayscale to binary images), 

morphology (using dilation and erosion processes), and the 

latter transforming into spatial regions. The pre-processing 

results will then be made as input at the feature extraction 

process. Feature extraction applied wavelet transform 

decomposition, using mother wavelet of daubechies order one 

(Haar).The feature extraction result is the smallest MSE value 

of all 12 lead ECG.  

 

II. RELATED WORK 

Some studies that use the image are among others; pre-

processing by converting RGB to Grayscale, feature 

extraction using Prewit edge detection and classification 

using artificial neural network of Resilient Propagation with 

testing accuracy 84,21% [5]. Pre-processing converts from 

RGB to grayscale by feature extraction using the Welch 

method, and the classification of ANN of Backpropagation 

obtains its accuracy 72,5% [6]. Performing binary pre-

processing, noise and thinning removal, while feature 

extraction with Discrete Wavelet Transformation and PCA 

(Principal Component Analysis) [7]. 

Pre-processing is done by: Segmentation (gray scale and 

binary), Morphology (Dilation and Erosion), as well as 

changes to ECG graphic image, while feature extraction is to 

find the peaks of PQRST, Heart Rate (HR) and ST-Deviation 

[8]. Conducted the study by implementing a one-dimensional 

analysis approach (duration of the heart cycle) of heart rate 

variability to multidimensional analysis (shape parameters 

and peak location of the heart cycle) analysis of heart 

parameters [9]. Conducted an ECG signal study with a 

wavelet, where the threshold function is improved, and 

resulted in the best SNR improvement using the MIT-BIH 

arrhythmia database [10].  

ECG research to detect Arrhythmias by comparing 

CSVM and SVM standards, resulting in a better CSVM 

accuracy rate when compared to SVM which is 98.25% [11]. 

Conducts a literature review by reviewing advanced 

machines and deep learning-based CAAC (computer-aided 

arrhythmia classification) expert systems for surprising 

introduction of ECG signals, discussing their strengths, 

advantages, and disadvantages [12]. There are many studies 

using ECG signals and wavelets such as [13], [14], [15], [16], 

[17], [18], [19], [2], [21], [22], [23], [24], [25], [26], [27], 

[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], 

[39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], 

[50], and [51]. 

Research conducted by [8], detects PQRST peak search, 

heart rate and ST deviation, in which ECG image data is 

captured by scan. The computational results show upward 

and downward deflection of the isoelectric P, Q, R, S 

respectively and T waves represent clinical EKG calculations. 

Research [8] allows to be expanded to a broader extent to 

extract its features, resulting in more accurate results of ECG 

information. 

This study proposes to find the smallest MSE value of 

wavelet decomposition using Daubechies order 1 (db1(Haar)) 

using image data of ECG 12 lead. Pre-processing is done with 

several steps including: Segmentation (grayscale and binary), 

Morphology (Dilation and Erosion), as well as changes to 

ECG graphic image [8]. The feature extraction step for 

finding the best decomposition of the Daubechies wavelet 

with 10 levels is seen from the smallest MSE values of 12 

lead ECG
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Fig 2. Methodology Proposed 

 

III.  

IV. METHODOLOGY 

The models developed in this research include the steps, like: 

data preparation, pre-processing and feature extraction shown 

in the Figure 2. ECG graphic image data is obtained from the 

scanning data of ECG recordings. The process of data 

preparation and pre-processing is similar to that done by [8]. 

A. Feature Extraction 

The feature extraction stage uses Wavelet Transform 

Decomposition with the mother wavelet Daubechies on the 

order 1 (db1(Haar)). Wavelet is a method of processing a 

signal in which a signal is split into several parts. Wavelet is 

a set of functions generated by a single function ѱ with 

dilation and translation process [52]. 

Ѱ a,b (t) = | a |-1/2ѱ(
𝑡−𝑏

𝑎 
)   (1) 

With ѱ (t) as the mother wavelet function, a is the parameter 

of dilation a, and B is the translation parameter. This research 

used wavelet transform decomposition, the drawing of a time 

scale of digital signal which is obtained by using digital 

filtering technique. A signal must be passed in two filters, 

namely the highpass filter and the lowpass filter to allow the 

frequency of the signal to be analyzed.This decomposition 

process can be through one or more levels. Example of a one-

level signal decomposition is Figure 3. 

Fig. 3. Example of signal decomposition 

 

In figure 3, the result of the highpass filter, yhigh [k] is called 

the detailed signal and the result of the lowpass filter, the ylow 

[k] is called the approximation signal, x[n] is the original 

signal. The decomposition of a single-level signal is written 

with mathematical expressions of the equations 2 and 3 [52]. 

yhigh [k]= ∑ [𝑛]ℎ[2𝑘 − 𝑛]𝑛                          (2) 

ylow[k]=∑ [𝑛]𝑔[2𝑘 − 𝑛]𝑛                         (3) 

 

yhigh [k] and ylow [k] is the result of highpass filter and 

lowpass filter, h[n] is highpass filter and g[n] is lowpass filter, 

n and k are integer variables. This inner signal serves as the 

main signal or mother wavelet. When the decomposition 

process is executed, the approximation coefficient signal will 

be the mother wavelet and it is decomposed based on the high 

pass and low pass filter, and so on according to the level we 

want. In wavelet decomposition the signal is divided into 

components of approximation and detail (Figure 4). The 

approximation component is then subdivided into the 

approximate and detailed components, and so on up to the 

desired level [53]. 

Mathematically the decomposition of wavelet 3 level can 

be written [53]. 

X = cA1 + cD1 

         = cA2 + cD2 + cD1 

              = cA3 + cD3 + cD2 + cD1                                                   (4) 

 

Where X the decomposition of a signal, with A is called the 

approximate coefficient of level i, and D is called the detail 

coefficient at level i. 
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Fig. 4. Wavelet Decomposition 

 

B. Mean Square Error  

The performance of this research was analyzedusing Mean 

Square Error (MSE).The greater the error value, the less good 

the results obtained. Likewise the smaller the error value the 

better the results. The equation used to find the MSE is in the 

equation 5 [54]. 

MSE = 1/(𝑀. 𝑁) ∑ ∑ (𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦))2       𝑁−1
𝑦=0

𝑀−1
𝑥=0 (5) 

Where f(x,y) is the input value of the image and g(x,y) the 

mean value of the image, M is the number of input image 

rows and N the number of input image columns, for x,y  which 

contains 0.1,2, ... , n. 

 

V.  RESULT 

The experimental material is a data of heartcondition image 

of the 12 lead ECG that have been scanned and transformed 

from the time zone to the spatial region. The pre-procesing 

steps are the same as those done by [8] (Table 1). 

 

Table 1. The Pre-Processing Steps [8] 

Results from the pre-processing stage as in Table 2. 
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 Table 2. Image & Signal 12 Lead ECG 

 

Table 3. MSE Value of Mother Wavelet Deubicies with 10 Decompositions in Each Lead 
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This experiment will look for what type of wavelet is most 

appropriate to the 12 lead ECG image pattern by finding the 

smallest mean square error (MSE). The 12 lead ECG image 

is processed using discrete wavelet transforms with 

decomposition up to ten levels, then each decomposition 

coefficient i.e., cA10, cD10, cD9, cD8, cD7, cD6, cD5, cD4, 

cD3, cD2 and cD1 is recalculated for reconstruction of the 

ECG signal (Equation 4). After obtaining the reconstructed 

signal results, the MSE value is sought (Equation 5). The 

result of feature extraction is shown in Table 3. 

 

V. CONCLUSION  

The decomposition result is viewed from the smallest MSE 

value from which it can be known that each lead obtained by 

the smallest mean value is obtained at the 5 level 

decomposition, i.e., lead I, II, III, aVR, aVF, V4 and V5, 

whereas for V1 & V2 is obtained at the 4 level, for aVL (level 

9), V3 (level 7) and V4 (level 6). Future research is expected 

to be followed up to compare with other mother wavelets or 

to identify cardiac abnormalities based on ECG images. 
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