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Designing Frameworks for Reliability in Deep Learning Systems 
 

AYSE ARSLAN 

 

ABSTRACT: There has been a great amount of progress in deep learning models in the last decade. Such models are most accurate 

when applied to test data drawn from the same distribution as their training set. However, in practice, the data confronting models 

in real-world settings rarely match the training distribution.  

This study explores the use of co-design approaches for developing reliable design frameworks for deep learning systems. It aims 

to raise awareness on how to develop reliable ML models within the context of recommender systems. While much work needs to 

be done in this field, the study provides suggestions and practical tips for how to develop reliable ML models such as in the case of 

recommender systems. 

 

INTRODUCTION 

There has been a great amount of progress in deep learning 

models in the last decade. While the efforts of the AI 

(artificial intelligence) community to bring openness and 

transparency to AI research, the inherent challenges of the 

field remain unchanged. For instance, when it comes to 

testing and experimentation, the data confronting models in 

real-world settings rarely match the training distribution. 

One problem that remains to be solved is how to make design 

judgments given the huge costs of running the models.  

The study starts with a brief overview of AI and co-design 

approaches. Next, it sheds light onto model architecture, 

especially for ranking and recommender models as the 

practical tips and suggestions relate to the context of a 

recommender platform. By doing so, it aims to raise 

awareness on how to develop reliable ML models.  

Although the study provides an architecture and model 

recommendations specifically for a recommender system, the 

main points should be relevant for any other ML-driven 

model as well. 

Review of Existing Studies 

Design involves making good judgments in pursuit of 

desirable design outcomes. Design judgments do not follow 

a formal linear or rule-based process, yet emerge depending 

on the designer’s experiences and the contextual aspects of 

the design situation (Dunne, 1999; Nelson & 

Stolterman, 2014).  

When it comes to making design judgments for machine 

learning (ML), the process can become more challenging. 

The generic definition of "an AI system" is a single unified 

software system that can satisfy the following criteria: 

 To reliably pass the adversarial Turing test in which the 

human judges are instructed to ask interesting and 

difficult questions, designed to advantage human 

participants, and to successfully unmask the computer 

as an impostor.  

 To have general robotic capabilities such as being able 

to autonomously satisfactorily assemble a 

sophisticated model when equipped with appropriate 

tools and when given human-readable instructions,  

 To get top-1 strict accuracy of at least 90.0% on 

interview-level problems in a benchmark set as 

introduced by Dan Hendrycks, Steven Basart et al.  

"Unified" means that the system is integrated enough that it 

can, for example, explain its reasoning on a Q&A task, or 

verbally report its progress and identify objects during model 

assembly.  

It should also be noted that agents play a crucial role for any 

ML system. The central feature of agency is that agents are 

systems whose outputs are moved by reasons (Dennett, 

1987). An agent chooses a particular action because it 

“expects it” to deliver a desirable certain outcome. Main 

characterizations of agents include:  

• The intentional stance: An agent’s behavior can be 

usefully understood as trying to optimize an objective 

(Dennett, 1987).  

• Cybernetics: An agent’s behavior adapts to achieve an 

objective (e.g. Ashby, 1956; Wiener, 1961).  

• Decision theory / game theory / economics / AI: An 

agent selects a policy to optimize an objective.  

• An agent is a system whose behavior can be compressed 

with respect to an objective function (Orseau et al., 2018).  

• “An optimizing system is ... a part of the universe [that] 

moves predictably towards a small set of target 

configurations” (Flint, 2020).  

https://doi.org/10.47191/etj/v7i10.07
https://link.springer.com/article/10.1007/s41686-022-00063-3#ref-CR4
https://link.springer.com/article/10.1007/s41686-022-00063-3#ref-CR16
https://arxiv.org/abs/2105.09938
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• A goal-directed system has self-awareness, planning, 

consequentialism, scale, coherence, and flexibility (Ngo, 

2020).  

• Agents are ways for the future to influence the past (via the 

agent’s model of the future) (Garrabrant, 2021; von Foerster 

et al., 1951).  

Within this light of information, the system of the RL training 

process might be an agent, but the learnt RL policy itself, in 

general, won’t be an agent as after training.  

Despite their agency, ML models can still become prone 

to adversarial attacks, therefore there is a need to determine 

how to prevent adversarial attacks and to develop reliable 

models. Nelson and Stolterman (2014) called this 

prioritization appreciative judgment.  

On the other hand, instrumental judgment (Nelson & 

Stolterman, 2014) includes determining when and the 

duration in which different tools are used during the design 

process (Gray & Boling, 2018). The aim is to bring elements 

of a design into a unified whole while connective judgments 

bind together different elements of a design situation (Gray et 

al., 2015; Nelson & Stolterman, 2014).  

As design is highly dependent on context, navigational 

judgment assists designers in adjusting their approach to the 

changing situational realities of a design situation. Designers 

use navigational judgment as a tool to deal with unpredictable 

situations such as adversarial attacks in ML models (Nelson 

& Stolterman, 2014).  

There are also quality judgments made based on the interplay 

between designer’s personal preferences, external standards, 

and the uniqueness of the design context (Nelson & 

Stolterman, 2014). They can also include the stylistic feel of 

a designed artifact, including such ideas as “form, occurrence, 

essence, and excellence” (Nelson & Stolterman, 2014, p. 

151).  

When making design judgments on ML models, what would 

be needed to either complement or supplant example-driven 

trained neural network systems is the so called common 

sense, which refers to the ability to see things that to many 

human-beings seem obvious, to draw fast and simple, 

obvious conclusions (Brachmann, 2005).  

Traditional AI models are trained to optimize decisions to 

achieve the optimal return. To achieve this within a large 

number of domains including recommender systems, the 

model should learn many domain-specific sub-tasks (e.g., 

filtering different kinds of noise or focusing on a specific 

detail), which can only be learned from a semantically diverse 

dataset. Therefore, it may not always be easy to evaluate a 

model. There are three reasons why model evaluation plays a 

crucial role: 

1. To estimate the generalization accuracy, the predictive 

performance of a model on future (unseen) data. 

2. To increase the predictive performance by tweaking the 

learning algorithm and selecting the best-performing model 

from a given hypothesis space. 

3. To identify the machine learning algorithm that is best-

suited for the problem at hand. Hence, we want to compare 

different algorithms, selecting the best-performing one as 

well as the best-performing model from the algorithm’s 

hypothesis space.  

One of the main techniques include the re-

substitution evaluation and holdout method The holdout 

method is the simplest model evaluation technique; it can be 

summarized as follows.  

- First, developers take a labeled dataset and split it into two 

parts: A training and a test set.  

- Then, they fit a model to the training data and predict the 

labels of the test set.  The learning algorithm builds a model 

from the training set of labeled observations.  

- Then, they evaluate the predictive performance of the model 

on an independent test set that shall represent new, unseen 

data.  

- The fraction of correct predictions, which can be computed 

by comparing the predicted labels to the ground truth labels 

of the test set, constitutes the estimate of the model’s 

prediction accuracy.  This helps them to deal with real world 

limitations such as limited access to new, labeled data for 

model evaluation. 

Nevertheless, such model estimates may suffer from bias and 

variance. For instance, the re-substitution evaluation (fitting 

a model to a training set and using the same training set for 

model evaluation) is heavily optimistically biased.  

To overcome such biases, there are also some more advanced 

techniques for model evaluation. The bootstrap method is a 

resampling technique for estimating a sampling distribution, 

and the uncertainty of a performance estimate – the prediction 

accuracy or error.  

Another technique is the use of k-nearest neighbors 

algorithm. A k-nearest neighbors model literally stores or 

memorizes the training data and uses it only at prediction 

time.. 

In contrast to k-nearest neighbors, a simple example of a 

parametric method is logistic regression, a generalized linear 

model with a fixed number of model parameters: a weight 

coefficient for each feature variable in the dataset plus a bias 

(or intercept) unit.   

The process of finding the best-performing model from a set 

of models that were produced by different hyperparameter 

settings is called model selection. While the learning 

algorithm optimizes an objective function on the training set 

the aim is to optimize a performance metric such as 

classification accuracy.  

One of the probably most common technique for model 

evaluation is k-fold cross-validation.  Here, the main idea 

behind cross-validation is that each sample in a dataset has 

the opportunity of being tested. k-fold cross-validation is a 

https://bdtechtalks.com/2020/07/15/machine-learning-adversarial-examples/
https://link.springer.com/article/10.1007/s41686-022-00063-3#ref-CR16
https://link.springer.com/article/10.1007/s41686-022-00063-3#ref-CR16
https://link.springer.com/article/10.1007/s41686-022-00063-3#ref-CR7
https://link.springer.com/article/10.1007/s41686-022-00063-3#ref-CR8
https://link.springer.com/article/10.1007/s41686-022-00063-3#ref-CR16
https://link.springer.com/article/10.1007/s41686-022-00063-3#ref-CR16
https://link.springer.com/article/10.1007/s41686-022-00063-3#ref-CR16
https://link.springer.com/article/10.1007/s41686-022-00063-3#ref-CR16
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special case of cross-validation where one iterates over a 

dataset set k times. In each round, one splits the dataset 

into k parts: one part is used for validation, and the 

remaining k − 1 parts are merged into a training subset for 

model evaluation. 

In contrast to the repeated holdout method, test folds in k-fold 

cross-validation are not overlapping. In repeated holdout, the 

repeated use of samples for testing results in performance 

estimates that become dependent between rounds which can 

be problematic for statistical comparisons.  

Although, developers may prefer simpler models for several 

reasons, Domingos made a good point regarding the 

performance of "complex" models. As he mentions in his 

article, "Ten Myths About Machine Learning:" 

"Simpler models are preferable because they’re easier to 

understand, remember, and reason with. Sometimes the 

simplest hypothesis consistent with the data is less accurate 

for prediction than a more complicated one."  

Using these procedures, one has to bear in mind that the aim 

is then to not compare between models yet different 

algorithms that produce different models on the training 

folds. As Gael Varoquaux [Varoquaux, 2017] writes, cross-

validation is not a silver bullet. However, it is the best tool 

available, because it is the only non-parametric method to test 

for model generalization. 

One of the main optimization methods is hyperparameter 

optimization which aims at finding 

theright hyperparameters for a machine learning task by 

keeping track of use patterns in a database usually consisting 

of optimization trajectories. A Transformer-based framework 

for hyperparameter tuning, based on large-scale optimization 

data using flexible text-based representations can be used.  

An example of transformer neural networks would be large 

language models often spanning across billions of parameters 

and trained on gigabytes of text data which can be used for a 

wide range of tasks, including text generation, question 

answering, summarization, and more. 

Another technique for resource optimization would be the use 

of restless-multi-armed bandits (RMABS). An RMAB 

consists of n arms where each arm (representing a 

beneficiary) is associated with a two-state Markov decision 

process (MDP).  

In general, the focus in ML community has been so far on 

Markov reward functions; for instance, given a state space 

that is sufficient to form a task such as (x,y) pairs in a grid 

world, is there a reward function that only depends on this 

same state space that can capture the task?  

Regardless of the techniques used, there should be an 

alignment between these models and human values. At a 

high-level, the main approach to alignment focuses on 

engineering a scalable training signal for very smart AI 

systems that is aligned with human intent. It has three 

main pillars: 

- Training AI systems using human feedback: RL from 

human feedback is the main technique for aligning 

mostly deployed language models. The aim is to train a 

class of models derived from pre-trained language 

models so that they are trained to follow human intent: 

both explicit intent given by an instruction as well as 

implicit intent such as truthfulness, fairness, and safety. 

- Training AI systems to assist human evaluation: In order 

to scale alignment, engineers prefer to use techniques 

like recursive reward modeling (RRM), debate, 

and iterated amplification. The ultimate aim is to train 

models to assist humans to distinguish correct from 

misleading or deceptive solutions.  

- Training AI systems to do alignment research: As there 

is indefinitely no scalable solution a more pragmatic 

approach might be building and aligning a system that 

can make faster and better alignment research progress 

than human-beings can. 

The ultimate goal is to train models to be so aligned that they 

can off-load almost all of the cognitive labor required for 

alignment research. 

Importantly, there is a need for “narrower” AI systems that 

have human-level capabilities in the relevant domains to do 

as well as human-beings on alignment research.  

There are various other techniques to update model 

parameters, yet given the scope of this study, the next section 

will explain related techniques for developing recommender 

systems. 

 

RECOMMENDER SYSTEMS 

The main goal of a recommender system is to produce 

features from both videos and text (i.e., the user question), 

jointly allowing their corresponding inputs to interact.  

One main challenge for recommender systems relates to the 

use of language models for ML as they may not be inherently 

grounded in the physical world due to the lack of interaction 

during the training process.  

Recently, researchers seek to combine advanced language 

models with learning algorithms while grounding the 

language model within a specific real-world context.  This 

model determines the probability of a specific skill for 

completing the instruction by multiplying two probabilities: 

(1) task-grounding (i.e., a skill language description) and 

(2) world-grounding (i.e., skill feasibility in the current state). 

Another challenge is embedding videos into deep learning 

models such as recommender systems which require more 

sophisticated solutions such as objects in a scene, as well as 

temporal information, e.g., how things move and interact, 

both of which must be taken in the context of a natural-

language question that holds specific intent.  

https://en.wikipedia.org/wiki/Hyperparameter_optimization
https://en.wikipedia.org/wiki/Hyperparameter_optimization
https://en.wikipedia.org/wiki/Hyperparameter_(machine_learning)
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://en.wikipedia.org/wiki/Markov_decision_process#:~:text=In%20mathematics%2C%20a%20Markov%20decision,control%20of%20a%20decision%20maker.
https://en.wikipedia.org/wiki/Markov_decision_process#:~:text=In%20mathematics%2C%20a%20Markov%20decision,control%20of%20a%20decision%20maker.
https://openai.com/blog/deep-reinforcement-learning-from-human-preferences/
https://openai.com/blog/deep-reinforcement-learning-from-human-preferences/
https://deepmindsafetyresearch.medium.com/scalable-agent-alignment-via-reward-modeling-bf4ab06dfd84
https://openai.com/blog/debate/
https://openai.com/blog/amplifying-ai-training/
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Online video sharing platforms need to understand perceptual 

video quality (i.e., a user's subjective perception of video 

quality) in order to better optimize and improve user 

experience.   

To improve the quality, one can collect ground-truth labels 

from the platform dataset and categorize factors that affect 

quality perception into three high-level categories: (1) 

content, (2) distortions, and (3) compression.  

Another approach is to train a model from scratch on existing 

quality datasets. However, this may not be feasible as there 

are limited quality datasets. To overcome this limitation, one 

can apply a self-supervised learning step to the model during 

training to learn comprehensive quality-related features, 

without ground-truth derived from raw videos. 

When it comes to using videos, some ML-powered features 

may rely on leveraging neural network sparsity, a common 

solution that works across devices, from entry level 

computers to high-end workstations. However, mid-tier and 

high-end devices often have powerful GPUs that remain 

untapped for ML inference. Therefore, some related design 

decisions regarding ML-drive video platforms include, but 

are not limited to: 

 Backbone: To compare several widely-used 

backbones for on-device networks to be a better fit for the 

GPU by removing inefficient blocks 

 Decoder: To switch to a multi-layer 

perceptron (MLP) decoder consisting of 1x1 convolutions 

instead of using simple bilinear up-sampling   

 Model size: To develop a larger model without 

sacrificing the real-time frame rate necessary for smooth 

video segmentation 

One common challenge for web-based inference is that web 

technologies can incur a performance penalty when compared 

to apps running natively on-device.   

Moreover, security and privacy threats of ML models should 

also be taken into account as adversaries can stage effective 

attacks against these systems and potentially obtain sensitive 

information used in training the models. Rewards cannot act 

as a prediction label as they don’t represent any labels.  

During training, ML models go through episodes, each of 

which consists of a trajectory or sequence of actions and 

states. The training and output trajectories can be used by an 

attack trainer that trains an ML classifier to detect input 

trajectories that were used in the target RL model’s training.  

Given these security challenges, developing a multi-

domain/task model can be both tedious and challenging, 

therefore, the aim should be to:  

1) achieve high accuracy efficiently (keeping the number of 

parameters low),  

2) learn to enhance positive knowledge transfer while 

mitigating negative transfer, and  

3) effectively optimize the joint model while handling various 

domain-specific difficulties.  

In this way, a multi-path network is learned from neural 

architecture search by applying one reinforcement learning 

controller for each domain to select the best path in the super-

network created from a search space.  

A more effective way for automatically designing deep 

learning architectures could be to define a search space, made 

up of various potential building blocks that could be part of 

the final model. In this way, the search algorithm finds the 

best candidate architecture from the search space that 

optimizes the model objectives, e.g., classification accuracy.  

Ranking is a core problem across a variety of domains, such 

as search engines, recommender systems, or question 

answering. Some designs can also introduce noise in the 

ranking scores which causes the loss to sample many different 

rankings that may incur a non-zero cost.  

Within the light of this information, a model architecture can 

be developed in two stages:  

- Search: In the search stage, to find an optimal path for each 

domain jointly, an individual reinforcement learning (RL) 

controller is created for each domain, which samples an end-

to-end path (from input layer to output layer).  

At the end of the search stage, all the sub-networks are 

combined to build a heterogeneous architecture for the model.  

- Training: For this to work, it is necessary to define 

a unified objective function for all the domains. An algorithm 

that adapts throughout the learning process should be 

designed such that losses are balanced across domains.  

This is an efficient solution to build a heterogeneous network 

to address the data imbalance, domain diversity, negative 

transfer, domain scalability, and large search space of 

possible parameter sharing strategies for machine learning. 

 

DESIGN METHODOLOGY 

Using the co-design approach, this study explores how to 

understand the reliability of a model in novel scenarios. It 

suggests three general categories of requirements for 

designing reliable machine learning (ML) systems:  

(1) They should accurately report uncertainty about their 

predictions (“know what they don’t know”);  

(2) They should generalize robustly to new scenarios 

(distribution shift); and  

(3) They should be able to efficiently adapt to new data 

(adaptation). Importantly, a reliable model should aim to do 

well in all of these areas simultaneously out-of-the-box, 

without requiring any customization for individual tasks. 

Co-design generally refers to the collaboration between 

researchers and users to produce digital artefacts (Barbera et 

al., 2017; Cober et al., 2015). The co-design process differs 

from other methods of design in that it operates “bottom-up” 

with users being active participants in the design process, 

who provide critical insight into daily work practices and the 

existing context. Co-design is then defined as: 

“a highly facilitated, team-based process in which users, 

researchers, and developers work together in defined roles to 

https://ai.googleblog.com/2021/03/accelerating-neural-networks-on-mobile.html
https://en.wikipedia.org/wiki/Multilayer_perceptron
https://en.wikipedia.org/wiki/Multilayer_perceptron
https://en.wikipedia.org/wiki/Bilinear_interpolation
https://arxiv.org/pdf/1611.01578.pdf
https://arxiv.org/pdf/1611.01578.pdf
https://link.springer.com/article/10.1007/s41686-022-00064-2#ref-CR4
https://link.springer.com/article/10.1007/s41686-022-00064-2#ref-CR7
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design an innovation, realize the design in one or more 

prototypes, and evaluate each prototype’s significance for 

addressing a concrete need.” (Roschelle et al., 2006) 

Co-design has several advantages and is generally beneficial 

for both researchers and users. Researchers gain insight into 

the user contexts in which their tools will be deployed (Cober 

et al., 2015). This in turn helps to ensure that the 

environments or tools being designed to meet the needs and 

goals of the user and increases the likelihood of continuous 

implementation and use of the new technologies.  

Despite its promise, problems emerge within the co-design 

process. For instance, a user may have difficulties expressing 

their ideas in a non-ambiguous, highly formalized way that 

computer scientists can convert into products.  

The process model of a co-design session is divided into three 

phases: establishing context, design, and presentation.  

Phase One: Establishing Context 

The objective of this stage is to create a shared understanding 

of aspects such as content, resources, and challenges of the 

recommender system to be developed.  

Phase Two: Design 

Individual team members are encouraged to make proposals, 

adapt, or expand on ideas and ask questions. A common trend 

among both high- or low-structured approaches to co-design 

is the use of physical artifacts to support a shared 

understanding of the design (Barbera et al., 2017).  

Phase Three: Presentation and Documentation 

During this process, the researchers document, both visually 

and in text form, the design decisions that are agreed on by 

the group. At the end of stage three, an initial design has been 

created, agreed upon, and translated into a graphical format, 

which can be clearly interpreted by all parties involved.  

RECOMMENDATIONS 

When it comes to designing ML models such as 

recommender systems, the following suggestions can be 

taken into account: 

1. Defining the goal:  

Goals can include: 

 user retention, 

 increased revenue, 

 cost reduction. 

If the global task of a recommender system is to select a 

shortlist of content from a large catalog one choice might be 

to focus on the history of the user’s interaction with the 

service. Yet, “good recommendations” from a user 

perspective and from a business perspective are not always 

the same thing.  

 

2. FINDING THE OPTIMAL USER TOUCHPOINT: 

When a decision has been made on the global goal, the best 

way to display recommendations need to be made. For 

instance, in the case of recommender systems, display of 

recommendations can occur: 

 in the feed  

 push notifications, 

 email newsletter, 

 the section with personalized offers in a personal 

account, 

 or other sections on the site/application. 

Many factors influence the choice of touchpoint such as push 

notifications or the complexity of integration with ML 

microservice. 

As ML should ideally be implemented when it is seen by the 

maximum number of users,  

using ML at this point would be impractical. The main rule 

here is to integrate ML where it will make the biggest increase 

in business metrics.  

 

3. COLLECTING DIVERSE FEEDBACK: 

Feedback is the actions a user can take to demonstrate how 

they feel about the content. To build a recommender system, 

there is a need to learn how to collect different types of 

feedback: 

Explicit:  

This can be a rating by any scale or a like/dislike. 

Implicit: 

This can include; 

 

 the amount of time a user spends on the content, 

 the number of visits to the content page, 

 the number of times one shares the content on social 

networks or sends it to friends. 

Feedback should correlate with the business goals of the 

recommender system.  

Some important technical points to consider are: 

 Expanding user feedback channels: In addition to the 

time spent on the page, one can start collecting user 

comments and determining their tone.  

 Keeping a history of user feedback: This helps one to 

identify insights in long-term users’ behavior. Also, a 

large amount of historical data will allow one to 

compare models without running AB tests, in an 

offline format. 

 Collecting data on all platforms 

 

4. DEFINING BUSINESS METRICS: 

ML experts got used to working with the metrics of ML 

algorithms: precision, recall, etc. businesses might be 

interested in other indicators such as: 

 session depth, 

 conversion to click//view, 

 retention, 

https://link.springer.com/article/10.1007/s41686-022-00064-2#ref-CR32
https://link.springer.com/article/10.1007/s41686-022-00064-2#ref-CR7
https://link.springer.com/article/10.1007/s41686-022-00064-2#ref-CR4
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 average click per user 

  

5. SEGMENTING USERS: 

From a business perspective, the audience of the site 

can be very heterogeneous in various ways including; 

 socio-demographic characteristics, 

 activity on the service (number of feedback, frequency 

of visits), 

 geo-positions, 

The system should provide the ability to calculate metrics in 

different user sections, to notice the improvement (or 

deterioration) of metrics in each particular segment. For 

example, there can be two large segments: 

 “high activity” — users visit the app frequently and 

watch a lot of content, 

 “low activity” — users visit the app rarely. 

 

6. DETERMINING THE RIGHT OFFLINE METRICS: 

When the feedback data is collected and the business metrics 

are selected, there is a choice of offline metrics, which can 

optimize a model, such as precision@k or recall@k, 

One can choose offline metrics that correlate with business 

metrics by calculating the correlation between offline and 

online metrics.  

 

7. CREATING A BASELINE MODEL: 

Rather than trying to use the most complex models to solve 

the problem one can start with simpler approaches instead of 

neural networks. This simple model is called a baseline. 

For example, one can consider using a simple approach based 

on the k-Nearest neighborhoods algorithm to create a service 

for recommending content in push notifications, and only in 

the second iteration, move to a more complex boosting 

model.  

 

8. Choosing the ML Algorithm and Discard the Worst 

Models: 

The next step is to train more complex models. Recommender 

systems usually use both neural networks and classical ML 

algorithms: 

 Matrix factorization, 

 Logistic Regression, 

 KNN (user-based, item-based), 

 Boosting. 

One can also prefer to count offline metrics already 

accumulated in the feedback system. In this way, one can 

distinguish very bad models from “not quite bad ones” in 

order to test the “not quite bad model”.  

 

9. RUN EVERYTHING THROUGH THE AB TESTING 

SYSTEM: 

Any changes in the recommender algorithm, such as 

switching from a baseline to an advanced model, must go 

through a system of AB tests. Without good analytics, one 

either can’t see the effect of a recommender system, or one 

can misinterpret the data, which can cause business metrics 

to deteriorate.  

This is why AB tests need to measure both short-term and 

long-term effects. When conducting AB tests, one need to 

ensure that the samples in the test and control groups are 

representative.  

 

10. REMEMBER THE CLASSIC PROBLEMS IN 

PRODUCTION: 

When rolling out the algorithm “in production” it is necessary 

to provide a solution to a number of classic problems. 

 Users’ cold start: What to recommend to those who 

haven’t left feedback? One can make lists of globally 

popular content and make them as diverse as possible to 

be more likely to “hook” the user. 

 A feedback loop: One can show the content to the user, 

then collect feedback, and run the next learning cycle on 

that data. In this case, the system learns from the data it 

generates itself. To avoid this trap, one can usually 

allocate a small percentage of users who receive random 

output instead of recommendations — with this design, 

the system will be trained not only on its own data but also 

on users’ interactions with randomly selected content. 

Each of these suggestions might have their own advantages 

and dis-advantages. Based on the context and requirements of 

the model to be developed, relevant methods can be selected. 

It should be taken into account that there is no single one, best 

approach that would work for all models. 

 

CONCLUSION 

Design is a complex process and designing for ML models 

can certainly be much more complex. Despite the progress 

made in the field and the rise of large-scale pre-training 

models, the data confronting models in real-world settings 

rarely match the training distribution which can ultimately 

affect the reliability of a model.  

This study explored the use of co-design approaches for 

developing reliable design frameworks for deep learning in 

the context of recommender systems. It aims to raise 

awareness on how to develop reliable ML models.  

While much work needs to be done in this field, the study 

provides some practical steps to be followed when it comes 

to developing reliable models. Although the study provided 

an architecture and model recommendations for a 

recommender system, the main points should be relevant for 

any other ML-driven model as well.  
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