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ABSTRACT: Low-cost microcontrollers, but also with reduced processing and memory capabilities, are highly appreciated devices 

for the development of specific tasks as embedded systems. The devices found in the market today provide dedicated 32-bit 

architectures with communication capabilities ideal for IoT applications. Some of these tasks would highly benefit from the 

generalization and approximation capabilities of a neural network, but current convolutional networks prove to be too complex for 

microcontrollers. An alternative for some cases is the use of Multilayer Neural Networks (MNNs), which, thanks to a shallower 

depth, reach sizes suitable for use in small embedded systems. An MNN can accommodate a complex decision surface capable of 

being used in high dimensionality pattern classification problems, such as handwritten character recognition. Given the lack of an 

explicit strategy to define the architecture of these networks in coherence with the problem to be solved, this paper conducts a 

performance analysis of these networks in terms of their depth, to establish criteria to determine their size in a specific application. 

For the evaluation, the public database MNIST has been used in conjunction with classical metrics to evaluate the performance of 

a classification model. The results show that the depth of the network determines to a high degree the performance of the model, 

and guides the appropriate selection of the architecture. 

KEYWORDS: Accuracy, Confusion matrix, Gradient-based learning, Machine learning, Multilayer neural network, Optical 

character recognition. 

 

I. INTRODUCTION 

Although the automotive sector is the one that gives greater 

visibility to embedded computing systems, the truth is that 

these systems are increasingly present in everyday life, 

permeating areas as important to humans as wearable systems 

for health monitoring, control and sensing in military 

applications, robotics (with particular relevance in service 

robotics), applications supported by the internet of things 

(IoT), and even in household appliances and technological 

toys (Castañeda & Salguero, 2017, Zilong et al., 2018, 

Martínez et al., 2019, Gajaria & Adegbija, 2022). These 

embedded systems are supported on a wide variety of 

hardware, ranging from FPGAs (Field-Programmable Gate 

Arrays) and small microcontrollers from 16 to 32 bits, to 

development boards with a memory management unit that 

allow running graphical operating systems such as Linux 

(Moreno & Páez, 2017, Esquivel et al., 2012). In general, 

these systems are part of a larger system, and require custom-

developed software due to hardware resource constraints 

(Ktari et al., 2022). Even so, they have great advantages in 

terms of performance and low cost, which is why they have 

become so popular. Another important aspect of their current 

popularity is their ability to incorporate automatic learning 

strategies, which together with their Wi-Fi and Bluetooth 

communication capabilities make them powerful processing 

systems (Hashemifar et al., 2019). 

Deep networks have turned around the performance of 

systems in tasks such as speech recognition, computer vision, 

and language processing, applications in which traditional 

filtering-based strategies perform poorly (Caley et al., 2019, 

Martínez et al., 2018a). These learning techniques, in 

conjunction with reinforcement learning strategies, are 

crucial in pattern recognition applications (Hock & 

Schoelling, 2019, Martínez & Rendón, 2022). Thanks to the 

possibility of training and evaluating deep networks on 

current computers, it has been possible to implement such 

activities as modules in key areas, such as robotics, and in 

particular, assistive care, improving integration with humans, 

while simultaneously increasing the capacity of the systems 

(Yarza et al., 2022). Major drivers have been both the reduced 

cost of manufacturing high-performance processors, as well 

as the lower cost and greater capacity for storing information 

in online servers. However, this type of solution is still 

relegated to next-generation embedded systems because the 

hardware they use does not yet reach the required 

performance levels (Prabakaran et al., 2022). This resource 

limitation still allows the implementation of some less 

demanding machine learning models, such as Multilayer 
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Neural Networks (MNN), with a much shallower 

architecture, and with very high performance in some 

difficult applications for traditional digital algorithms (Hu et 

al., 2021). 

Machine learning strategies such as SVM (Support Vector 

Machine) and CNN (Convolutional Neural Network) are 

highly resources demanding both in their training process and 

in their propagation process (more in the former than in the 

latter, but even an off-line system is demanding in high speed 

and storage) (Martínez et al., 2018b). Today’s computers 

have optimized processors with pipelining, deep cache 

memory hierarchies, and multicore units, which can meet the 

demands of these models, especially if they work hand in 

hand with graphics processing units (GPU) (Yao et al., 2021). 

In this sense, there is research to develop similar acceleration 

structures for FPGAs, but to date, embedded systems do not 

have these features (Riaño et al., 2012, Xu et al., 2022). This 

makes research on optimization schemes for machine 

learning techniques as well as hardware architectures a very 

active field of research. It is also worth mentioning that 

classical connectionist schemes such as MNNs have been 

widely reported in the literature since the 1980s as a suitable 

strategy for solving some problems, such as handwritten 

character recognition (Shi et al., 2022, Ao et al., 2022). 

This research examines one of the key issues in the design 

of MNN applications on an embedded system, which is 

related to the design of the model architecture according to 

the expected performance. A good (high performance) pattern 

recognition system can be built on the limited hardware of a 

microcontroller if special care is taken on system parameters 

such as training information, training information 

normalization, learning scheme, and above all, classification 

model architecture. MNNs have been reported to be 

successful in automatic character recognition applications, 

but this type of network does not have a rigid structure related 

to the problem conditions, which makes its design complex, 

and becomes a trial-and-error problem. In the search for a 

suitable architecture for this problem, we propose a 

performance evaluation of different MNN models by varying 

step by step the depth of its structure and evaluating in each 

case the performance achieved. We use as a case study the 

problem of character recognition supported by the well-

known MNIST database. From the results of the research, we 

show how the network architecture is fundamental in the 

process of identifying handwriting features, and achieving the 

definition of an optimal depth for a 32-bit microcontroller. 

The following part of the paper is arranged in this way. 

Section II presents the formulation of the problem, details and 

design considerations, preliminary concepts, background 

work of the research group and the development methodology 

adopted for the solution of the problem following the 

specifications of the problem profile. Section III shows in 

detail the results found during the research. We present the 

data corresponding to the performance analysis, and we 

discuss how the performance of the scheme is affected under 

each case. And finally, in Section IV, we present our 

conclusions. 

 

II. MATERIALS AND METHODS 

To evaluate the performance of MNN as a function of its 

depth, the MNIST database was used. This corresponds to a 

large database of handwritten digits that is commonly used to 

train various image processing systems (Fig. I). It has a 

training set of 60000 samples and a test set of 10000 samples. 

It is a subset of a larger set available from NIST. The digits 

have been size normalized and centered on a fixed size image 

of 28x28 pixels. This database can be loaded directly into the 

Keras framework in which all the code was developed. We 

use Keras 2.8.0 with TensorFlow 2.8.2 and Python 3.10.5. 

 
Figure I. Sample from the MNIST Public Database 

The structure of the training and validation data was 

maintained throughout the training with all models, but in 

each case, the images were previously randomly shuffled to 

avoid bias. We used five MNN models characterized by 

different depths, one model with one hidden layer, one with 

two hidden layers, one with three hidden layers, one with four 

hidden layers, and one with five hidden layers. All layers 

were designed in the same way, keeping 100 neurons in each 

layer, and 10 output categories. All layers used the sigmoid 

activation function and softmax activation function in the 

output layer. The models were built with the Keras Sequential 

class, adding the necessary hidden layers as appropriate. The 

input vector of each model was formed with the concatenated 

and normalized rows of the images, which constituted a row 

vector (1D tensor) of 784 elements. Figs. II to VI shows the 

detailed structure of each of the five models evaluated. 

 
Figure II. MNN Architecture with a Single Hidden 

Layer 
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Figure III. MNN Architecture with Two Hidden Layers 

According to the detailed structure, the model with one 

hidden layer requires 79510 parameters, the model with two 

hidden layers requires 89610 parameters, the model with 

three hidden layers requires 99710 parameters, the model 

with four hidden layers requires 109810 parameters, and the 

model with five hidden layers requires 119910 parameters. 

These parameters are what will consume the storage 

resources of the microcontroller, so the ideal choice is the 

model with the highest performance and the lowest number 

of parameters. All parameters of these models must be tuned 

by training. 

 
Figure IV. MNN Architecture with Three Hidden Layers 

 

 
Figure V. MNN Architecture with Four Hidden Layers 

 
Figure VI. MNN Architecture with Five Hidden Layers 

All models were trained and evaluated under the same 

conditions. For training, the categorical cross-entropy 

function was used as the loss function, and Stochastic 

Gradient Descent (SGD) was used as the optimizer. The 

training was performed over 30 epochs with a batch size of 

100. In each case, a set of random parameters generated with 

different seeds dependent on several variables, including the 

machine clock, was started. For evaluation, all models have 

evaluated over 30 epochs with both training and validation 

data. The metrics used were accuracy and Mean Squared 

Error (MSE). Also for each trained model, the confusion 

matrix was calculated for the validation data (10000 data 

support). 

 

III.  RESULTS AND DISCUSSION 

As mentioned, the code was developed in Python with Keras 

support. An Intel Core i7-7700HQ eight-core machine was 

used with a Debian 11 Bulleye Linux OS with kernel 5.18. 

Google Colab support was available, configuring a GPU in 

its runtime. Each epoch on each model consumed a little more 

than two seconds, for average training times of 1 minute. This 

time could be influenced by the data visualization, as this 

visualization was requested for error and metrics in each 

training epoch, both for training data and validation data. In 

principle, the training time is the same for all five models. The 

five models were stored in separate objects in the same 

training environment and examined simultaneously. 

Fig. VII shows the loss function behavior achieved by each 

of the five models. Fig. VII(a) shows the curves for the MNN 

model with one hidden layer, Fig. VII(b) the curves for the 

model with two hidden layers, Fig. VII(c) the curves for the 

model with three hidden layers, Fig. VII(d) the curves for the 

model with four hidden layers, and Fig. VII(e) the curves for 

the model with five hidden layers. In these figures, the blue 

curve corresponds to the training data, while the red dashed 

curve corresponds to the unknown validation data. The first 
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interesting behavior in each of the five curves in this figure is 

that the validation data have similar behavior to the training 

data, i.e., the behavior of the loss function is similar in both 

cases. This means that initially none of the models suffers 

from overfitting. The model with one hidden layer has the 

best behavior, the error is consistently reduced throughout the 

whole process, and it could even be considered to train over 

a larger number of epochs since no overfitting is observed. 

The model with two hidden layers also performs well, and the 

error, although higher than the first case, is not so far behind, 

and again it is possible to think of training the model over a 

larger number of epochs since no overfitting is observed. The 

model with three hidden layers is inferior to the first two 

cases, the error is reduced consistently throughout the training 

but much more slowly at the beginning of the training. From 

epoch 10 onwards the error reduces with a steep slope similar 

to that observed in the training of the first model, and no 

saturation or overfitting is observed so that it can be 

contemplated to train this model for a larger number of 

epochs. However, under these conditions, the model would 

require more resources and time to reach a competitive 

structure with the first two cases. The model with four hidden 

layers showed very little reduction in training error, and with 

the data collected it is not possible to infer whether the 

performance will improve for a larger number of epochs. The 

same, but with worse results are observed with the last model 

since in this case no error reduction was observed throughout 

the training process. These results should be consistent with 

the other metrics but indicate that a greater degree of network 

depth considerably deteriorates its ability to retain the model's 

feature information. 

 
Figure VII. Behavior of the Loss Function During Training. The Blue Line Corresponds to the Training Data and the Red 

Line to the Validation Data. (A) One Hidden Layer, (B) Two Hidden Layers, (C) Three Hidden Layers, (D) Four Hidden 

Layers, and (E) Five Hidden Layers 

Fig. VIII shows the behavior of the accuracy for the five 

models throughout the training, again the blue curve 

corresponds to the training data, while the red dotted curve 

corresponds to the unknown validation data. Fig. VIII(a) 

corresponds to the model with a single hidden layer, Fig. 

VIII(b) corresponds to the model with two hidden layers, Fig. 

VIII(c) corresponds to the model with three hidden layers, 

Fig. VIII(d) corresponds to the model with four hidden layers, 

and Fig. VIII(e) corresponds to the model with five hidden 

layers. As expected, this metric has results congruent with 

those shown for the loss function in Fig. VII. In none of the 

models, traces of overfitting are observed given the closeness 

between curves corresponding to training and validation. The 

first two models (with one and two hidden layers) seem to 

have reached saturation in the parameter fitting process, and 

their accuracy exceeds or is close to 90%. When the model 

incorporates a single hidden layer the accuracy increases 

rapidly in the first 10 epochs, then its growth is slower but 

continuous. When the model incorporates two hidden layers, 

the growth of the accuracy is slower, requiring up to 20 

epochs to increase its value considerably. These first two 

models have high performance and are suitable for embedded 

implementation, but the second model requires a little more 

than 10000 additional parameters to the model with a single 

hidden layer. In the case of the model with three hidden 

layers, under the same conditions, its accuracy does not 

exceed 80%, which is not a bad result, and the curves show 

that the model can continue to learn over a larger number of 

epochs. The last two models (four and five hidden layers) do 

not exceed 20% accuracy, and in both cases, it is difficult to 

establish any success in their training. 
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Figure VIII. Behavior of the Accuracy during Training. The Blue Line Corresponds to the Training Data and the Red 

Line to the Validation Data. (A) One Hidden Layer, (B) Two Hidden Layers, (C) Three Hidden Layers, (D) Four Hidden 

Layers, And (E) Five Hidden Layers 

The last metric calculated for the models was the confusion 

matrix, which is shown in Fig. IX. Fig. IX (a) corresponds to 

the matrix for the one-hidden-layer model, Fig. IX (b) 

corresponds to the matrix for the two-hidden-layer model, 

Fig. IX(c) corresponds to the matrix for the three-hidden-

layer model, Fig. IX (d) corresponds to the matrix for the 

four-hidden-layer model, and Fig. IX (e) corresponds to the 

matrix for the five-hidden-layer model. The confusion matrix 

of the models was calculated only for the validation data, 

which constitutes support of 10000 images. The categories 

predicted by the models were placed in the rows and their 

correct assignments in the columns. Given the amount of 

data, to facilitate their analysis a color temperature was 

assigned to the values, which is shown on the right of each 

sub-figure. In this coding, darker colors indicate a low 

number of elements, while lighter colors indicate a high 

number of elements (around 1000 elements per category are 

expected). Under these conditions, it is easy to observe that 

the first three models manage to correctly categorize the 

elements in their categories (one, two, and three hidden 

layers), while the last two models do not (four and five hidden 

layers). Furthermore, it is observed that the performance of 

the first two models exceeds the requirements for the 

construction of the embedded system. 

 
Figure IX. Behavior of the Confusion Matrix for Validation Data: (A) One Hidden Layer, (B) Two Hidden Layers, (C) 

Three Hidden Layers, (D) Four Hidden Layers, And (E) Five Hidden Layers 
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IV. CONCLUSION 

In this paper, we evaluate the performance of an MNN model 

for its possible use on embedded systems, particularly on 

small 32-bit microcontrollers. This evaluation consisted in 

determining the performance of the model against different 

network depths. Fixed-size of 100 neurons per layer and the 

same training and evaluation conditions were selected. 

MNIST was used as the dataset since the final application 

contemplates the autonomous identification of handwritten 

characters. The training was developed in all cases over 30 

epochs with cross-entropy function as loss function and SDG 

as optimizer. As metrics for performance evaluation, the 

accuracy in each training epoch was calculated with the 

training and validation data, and the confusion matrix with 

the validation data. The final results show that, for a short 

training of 30 epochs, a higher network depth deteriorates the 

learning capability of the models when using a vanilla SDG 

as an optimizer. It is possible that longer training cycles 

would achieve better performance for deeper networks, but 

an accuracy above 90% is achieved with a hidden layer, a 

model that also proposes the lowest RAM consumption. 

Future research developments consider a more complex 

database (larger categories including the entire Latin 

alphabet), as well as an evaluation of the behavior of the 

models against a much larger number of training cycles. 
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