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ABSTRACT: In this paper, a three-dimensional (3-D) stability analysis of rectangular deformable plate was performed to find the 

solution to the buckling problem of a uniaxially compressed plate in which the two adjacent loaded edges is clamped and the other, 

simply supported (CSCS).  A three dimensional kinematics and constitutive relations were used to obtain the equation of total energy 

functional. The general and direct variation of the total potential energy function was done to get the general and direct governing 

equation of the plate by considering the effect of shear deformation. The solution of the general governing equation gave the 

deflection of the plate which is a product of the coefficient of deflection and shape function of the plate. The shape function is 

derived in terms of polynomial and trigonometric function and solved to get the exact deflection of the plate. The expression for the 

critical buckling load and other formulae was obtained by the direct variation of the total potential energy equation. This was done 

by minimizing the energy functional with respect to the coefficients of deflection after including the deflection and shear 

deformation rotation functions in it. The span to thickness ratio and aspect ratios were varied to ascertain the buckling behavior of 

different type of plate under uniformly distributed load. The outcome of the numerical analysis revealed that increase in the span- 

thickness ratio led to the increased value of the critical buckling load which implies that the plate structure is safe when the plate 

thickness is increased. The result showed that the critical buckling loads from the present study using polynomial are slightly higher 

than those obtained using trigonometric theories signifying the more exactness of the latter. The overall average percentage 

differences between the two functions recorded are 2.4%. This shows that at about 98% both approaches are the same and can be 

applied with confidence in the stability analysis of any type of plate with such boundary condition. The result of the present study 

using the established 3-D model for both functions is satisfactory and were found to follow an identical pattern, but quite distinct in 

validation which shows the credibility of the derived relationships. 

KEYWORDS: CSCS rectangular plate, stability analysis 3-D plate, polynomial and trigonometric function, exact deflection 

potential. 

 

1. INTRODUCTION 

 Plates are three-dimensional structural elements whose 

parallel plane surfaces are separated by a small dimension 

called “thickness”, and the relevance of plate materials in the 

construction industry and its application in marine, nuclear, 

mechanical, aerospace and structural engineering [1, 2]; is 

irrefutable. Based on the nature of the material and 

deformation properties, plates are categorized as orthotropic, 

anisotropic, and isotropic plates. Based on shapes, they can 

be triangular, circular plates or rectangular. As regards to 

their support conditions, plate edges can be simply supported, 

free or clamped [3]. Based on their depth or thickness, they 

can be classified as thin, moderately thick or thick plates [4]. 

Considering the span-depth ratio (a/t), rectangular plates with 

50 ≤ a/t ≤ 100 are classified as thin plate, 20 ≤ a/t ≤ 50 as 

moderately thick and a/t ≤ 20 as thick plate [5]. The unique 

properties of thick plates such as light weight, economy, 

ability to tailor the structural properties and its ability to 

withstand heavy loads [6], have attracted more research 

interest. 

         Based on the nature and kind of applied load, thick 

plates display dynamic, flexural and buckling behaviors [7]. 

Buckling is the commonest evidence of structural instability 

[8]. The phenomenon where a structure undergoes significant 

distortion and can no longer sustain its ability to withstand the 

load at a critical load value, is called buckling. Analyzing the 

stability of thick plates is of great importance as the interest 

for thick plates in the design of engineering structures have 

greatly increased. 

https://doi.org/10.47191/etj/v7i7.05
https://www.sciencedirect.com/topics/engineering/rectangular-plate
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         Several researchers have considered different theories 

in order to avoid the rigorous nature of 3-D analysis by 

reducing the three-dimensional problem to two-dimensional 

by making an assumption that the strains can be expanded in 

the thickness dimension, integrating out the thickness 

dimension [9-12, 15-17]. Three-dimensional plate analysis is 

essential as two-dimensional analysis for a 3-D element often 

results to inaccurate and unreliable design. 

         Unlike the classical plate theory (CPT) formulated by 

Kirchhoff (1850) [9] which is mostly used for thin plate 

analysis, refined plate theory (RPT) addressed the transverse 

shear deformation effect. To account for the effect of shear 

deformation in the plate, the RPT which includes the first 

order shear deformation theory (FSDT) [10, 11], and second 

order shear deformation theory (SSDT) applied correction 

factor. In order to avoid the complication of a shear correction 

factor in plate analysis, higher order shear deformation theory 

(HSDT) was developed for a complete change in shear 

transverse stress on the plate surfaces [12, 13, 14]. However, 

RPT is an incomplete 3-D plate theory because of the 

neglected normal strain and stress along the thickness axis of 

the plate [15]. The use of 3-D plate theory is yet uncommon 

among recent researchers and a typical rectangular plate 

should be evaluated as a three-dimensional element. 

Applying equilibrium, numeric or energy methods [16], the 

stability of thick plates can also be analyzed. 

         Using work principle approach, Ibeabuchi et al. (2020) 

[17] examined the buckling of uniaxially compressed plate 

elastically restrained in all directions. The authors derived the 

buckling coefficients of the plate and developed a numerical 

model with polynomial displacement function. Their study 

was limited to CPT which can only be reliable in thin plate 

analysis. The 3-D plate theory was not applied and thick 

CSCS plates were not addressed.  

         Sayyad and Ghugal (2012) [18] employed RPT to 

analyze simply supported thick isotropic plates under biaxial 

and uniaxial in-plane forces using an assumed exponential 

function. They neither to take into account 3-D plate theory 

nor derive the displacement functional from the principle of 

elasticity. Also, their model did not account a CSCS plate’s 

support condition. 

         Thick plates subjected to uniaxial in-plane compressive 

loading were investigated by Ezeh et al. (2018) [19]. The 

authors used an assumed polynomial displacement functions 

to analyze the buckling features of plates by considering Ritz 

principle.  They could not apply 3-D plate theory with exact 

deflection functions and their study did not consider plate 

with the CSCS edge condition. Ibearugbulem et al. (2020) 

[20] used the same shape function and applied RPT to analyze 

the stability of thick plates. In their study, the strain energy 

and external work were combined to obtain the cumulative 

potential energy which was reduced to the governing 

equations. The authors obtained the critical load by 

substituting the polynomial function into the governing 

equation and the outcome was compared with those of FSDT. 

The authors [19 and 20] failed to consider plates with CSCS 

support conditions and also neglected all the stress and strain 

along the thickness direction of the plate. The exact 

displacement potential functional was also not derived. 

         Although Vareki et al. (2016) [21] applied displacement 

potential functions to solve the buckling problem of simply 

supported thick plates, they failed to employ exact 

displacement potential functional. Moslemi et al. (2016) [22] 

employed the same method (Love’s displacement potential 

functions) to obtain exact solutions for the stability problem 

of thick plates of the same boundary condition. The authors 

solved two differential, partial equations of second and fourth 

orders to obtain the critical buckling load. The derived 

differential equations were analyzed using the method of 

variable separation. But they failed to consider CSCS (C: 

Clamped and S: Simply Supported edges) plates.   

        The stability of a 3-D simply supported rectangular thick 

plate (SSSS) and thick plate fixed at the supports (CCCC) 

under a compressive uniaxial load, were analyzed by Onyeka 

et al. (2022) [23 and 24] applying direct variational calculus 

with both polynomial-trigonometric displacement functions. 

Compared with the outcome of refined plate theories, their 

results were higher showing the exactness of their theory and 

the coarseness of the RPT.  However, their study did not 

consider thick plates with the CSCS boundary condition. 

Onyeka et al. (2022) [25] employed a precise solution 

approach to develop a new model for analyzing the stability 

of three-dimensional plates CCFS support conditions. The 

authors obtained the true plates shape function from the 

equations of compatibility and the deflection coefficient of 

the plate from governing equation. Although the outcome of 

their 3-D model was satisfactory, they did not consider the 

application of exact displacement potential function for 

CSCS edge condition. 

          The buckling problem of a thick plate under uniform 

loading that was simply supported at the first and fourth 

edges, clamped and freely supported in the second and third 

edge respectively (SCFS), was analytically solved by Onyeka 

et al. (2022) [26]. The authors investigated the aspect ratio 

effect on the plate’s critical buckling load without 

considering the use of exact trigonometric fuction. Also, the 

CSCS plate boundary condition was not debated.  

          The novelty of this study over the previous works lies 

in its method of analysis, plate theory, shape functions, and 

plate’s edge conditions. The study is aimed at obtaining the 

buckling solution of a 3-D isotropic thick plate with two 

opposite edges clamped and simply supported (CSCS), using 

exact displacement potential functional. This work intends to 

achieve this through the following specific objectives by 

simplify the governing equations  partial differential 

equations for the potential functions in form of polynomial 
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and trigonometric function thereafter the expressions for the 

critical buckling load of the plate was obtained using 

variational calculus.   

 

2. THEORETICAL ANALYSIS 

 A three dimensional kinematics and constitutive relations 

was used to obtain the equation of total energy functional 

based on the static elastic theory of plate. The stress-strain 

relationship for an isotropic material under elastic condition 

as described using generalized Hooke’s law is given as: 

[
 
 
 
 
 
εx

εy

εz
γxz

γyz

γxy]
 
 
 
 
 

=
1

E

[
 
 
 
 
 

1 −μ −μ 0 0 0
−μ 1 −μ 0 0 0
−μ −μ 1 0 0 0

0 0 0 2(1 + μ) 0 0

0 0 0 0 2(1 + μ) 0

0 0 0 0 0 2(1 + μ)]
 
 
 
 
 

 

[
 
 
 
 
 
σx

σy

σz
τxz

τyz

τxy]
 
 
 
 
 

                                                      (1) 

Where: 

Modulus of elasticity and Poisson’s ratios are denoted with E 

and µ respectively, the symbol 𝜀𝑥 denotes normal strain along 

x axis, the symbol 𝜀𝑦 denotes normal strain along y axis, the 

symbol 𝜀𝑧 denotes normal strain along z axis, the symbol 𝛾𝑥𝑦 

denotes shear strain in the plane parallel to the x-y plane, the 

symbol 𝛾𝑥𝑧 denotes shear strain in the plane parallel to the x-

z plane, the symbol 𝛾𝑦𝑧 denotes shear strain in the plane 

parallel to the y-z plane. 

 
Figure 1: CSCS Rectangular plate under uniaxial 

compressive load 

 

From the Figure 1, the non-dimensional form of coordinates 

is given as:  R = x/a, Q = y/b and S = z/t corresponding to x, 

y and z-axes respectively. The spatial dimensions of the plate 

along x, y and z-axes are a, b and t respectively, as the t is the 

thickness of the plate, thus the six strain components is 

obtained using the established Hookes law (see ) as: 

𝑥

=
𝑆𝑡

𝑎

𝑑θx

𝑑𝑅
                                                                                     (2) 

𝑦

=
𝑆𝑡

𝑎𝛽

𝑑θy

𝑑𝑄
                                                                                    (3) 

𝑧 =
1

𝑡

𝑑𝑤

𝑑𝑆
                                                                                  (4) 


𝑥𝑦

=
𝑆𝑡

𝑎𝛽

𝑑θx

𝑑𝑄
+

𝑆𝑡

𝑎

𝑑θy

𝑑𝑅
                                                           (5) 


𝑥𝑧

= θx +
1

𝑎

𝑑𝑤

𝑑𝑅
                                                                       (6) 


𝑦𝑧

= θy +
1

𝑎𝛽

𝑑𝑤

𝑑𝑄
                                                                          (7) 

Similarly the six stress components gives: 

x

=
Ets

(1 + μ)(1 − 2μ)a
[(1 − μ) .

𝜕𝑥

𝜕𝑅
+


β
.
𝜕𝑦

𝜕𝑄

+
a

𝑠t2
.
∂w

∂S
]                                                                                 (8) 

y

=
Ets

(1 + μ)(1 − 2μ)a
[ .

𝜕𝑥

𝜕𝑅
+

(1 − μ)

β
.
𝜕𝑦

𝜕𝑄

+
a

𝑠t2
.
∂w

∂S
]                                                                                (9) 

z

=
Ets

(1 + μ)(1 − 2μ)a
[ .

𝜕𝑥

𝜕𝑅
+


β
.
𝜕𝑦

𝜕𝑄

+
(1 − μ)a

𝑠t2
.
∂w

∂S
]                                                                    (10) 

xy

=
E(1 − 2)𝑡𝑠

2(1 + μ)(1 − 2μ)a
. [

1

β

𝜕𝑥

𝜕𝑄

+
𝜕𝑦

𝜕𝑅
]                                                                                      (11) 

xz

=
E(1 − 2)𝑡𝑠

2(1 + μ)(1 − 2μ)a
. [

a

ts
𝑥 +

1

ts

∂w

∂R
]                            (12) 

yz

=
E(1 − 2)𝑡𝑠

2(1 + μ)(1 − 2μ)a
. [

a

ts
𝑦 +

1

βts

∂w

∂Q
]                         (13) 

 

2.1. Energy Equation 

Total potential energy functional is the algebraic summation 

of strain energy and external work. This mathematically 

expressed as: 

 = U −

V                                                                                                                                                          (14)  

Given that the strain energy is; 
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U =
abt

2
∫∫ ∫ (xx + yy + zz + τxyxy

+ τxzxz

0.5

−0.5

1

0

1

0

+ τyzyz
) dR dQ dS                               (15) 

And the external work for buckling load is given as: 

V

=
abNx

2a2
∫∫ (

𝜕w

𝜕𝑅
)

2
𝑏

0

𝑎

0

dR dQ                                                   (16) 

Putting Equations 2 to 13 into 15 and substituting 15 and 16 

into 14 gives: 



= D∗
(1 − μ)𝑎𝑏

2a2(1 − 2μ)
∫∫[(1 − μ) (

𝜕𝑠𝑥

𝜕𝑅
)

2

 +
1

𝛽

𝜕𝑠𝑥

𝜕𝑅
.
𝜕𝑠𝑦

𝜕𝑄

1

0

1

0

+
(1 − μ)

𝛽2
(
𝜕𝑠𝑦

𝜕𝑄
)

2

+
(1 − 2)

2β2
(
𝜕𝑠𝑥

𝜕𝑄
)

2

+
(1 − 2)

2
(
𝜕𝑠𝑦

𝜕𝑅
)

2

+
6(1 − 2)

t2
(a2𝑠𝑥

2 + a2𝑠𝑦
2 + (

𝜕w

𝜕𝑅
)

2

+
1

β2
(
𝜕w

𝜕𝑄
)

2

+ 2a. 𝑠𝑥

𝜕w

𝜕𝑅
+

2a. 𝑠𝑦

𝛽

𝜕w

𝜕𝑄
) +

(1 − μ)a2

𝑡4
(
𝜕w

𝜕𝑆
)

2

−
Nx

D∗
. (

𝜕w

𝜕𝑅
)

2

] 𝜕𝑅𝜕𝑄                                                                 (17) 

given that 𝐷∗ is the Rigidity for 3-D thick plate, let 

𝐷∗ = 𝐷 
(1 − 𝜇)

(1 − 2𝜇)
 

where 𝐷 is the Rigidity of the CPT or incomplete 3-D 

thick plate, let 

    𝑁𝑥,, 𝑤, 𝜃𝑆𝑥 , and 𝜃𝑆𝑦  are the uniform applied uniaxial 

compression load of the plate, the poison ratio, deflection , 

shear deformation rotation along x axis and shear 

deformation rotation along y axis respectively. 

2.2. Equilibrium and Governing Equation 

          Minimizing the Energy equation (Equation 17) with 

respect to rotation in x-z plane and rotation in y-z plane 

(𝜃𝑆𝑥, and 𝜃𝑆𝑦) and simplifying the outcome using the law of 

addition gives the two equations of equilibrium (Equations 

18 and 19) in x-z plane and y-z plane respectively: 

𝜕𝑤

𝜕𝑅
[(1 − μ)

𝜕2

𝜕𝑅2
 +

1

𝛽2
.

𝜕2

𝜕𝑄2
(1 − )

+
6(1 − 2)a2

t2
. (1 +

1

𝑐
)]

= 0                                                 (18) 

1

𝛽
.
𝜕w

𝜕𝑄
[

𝜕2

𝜕𝑅2
(1 − μ) +

(1 − μ)

𝛽2

𝜕2

𝜕𝑄2

+
6(1 − 2)a2

t2
. (1 +

1

𝑐
)]

= 0                                                      (19) 

One of the possibilities of Equation 18 to be true is for the 

terms in the bracket to sum to zero. Adding terms in the 

brackets of Equation 18 and 19 gives: 

6(1 − 2)(1 + 𝑐)

t2

= −
c(1 − μ)

a2
(

𝜕2

𝜕𝑅2

+
1

𝛽2

𝜕2

𝜕𝑄2
)              (20) 

       Similarly, the general governing equation is obtained by 

differentiating the Energy equation with respect to 

deflection and simplifying the outcome by substituting 

Equation 20 into it to get: 

D∗

2a2
∫∫[

6(1 − 2)(1 + c)

t2
(
𝜕2w

𝜕𝑅2
+

1

β2
.
𝜕2w

𝜕𝑄2
)

1

0

1

0

+
(1 − μ)a2

𝑡4

𝜕2w

𝜕𝑆2
−

Nx

D∗
.
𝜕2w

𝜕𝑅2
] dR dQ

= 0  37 

That is: 

D∗

2a4
∫∫[(

𝜕4w1

𝜕𝑅4
+

2

β2
.

𝜕4w1

𝜕𝑅2𝜕𝑄2
+

1

β4
.
𝜕4w1

𝜕𝑄4

1

0

1

0

−
Nx1a

4

gD∗
.
𝜕2w1

𝜕𝑅2
)w𝑆

+
w1

g
(
(1 − μ)a4

𝑡4
.
𝜕2w𝑆

𝜕𝑆2

−
Nxsa

4

D∗
.
𝜕2w𝑆

𝜕𝑅2
)] dR dQ

= 0                                                            (21) 

Where: 

𝑤 = w𝑅 . w𝑄 . w𝑆                                                                      (22) 

w1

= w𝑅 . w𝑄                                                                                  (23) 

N𝑥

= N𝑥1 + N𝑥𝑠                                                                           (24) 

For Equation 21 to be true, its integrand must be zero. That 

is: 

(
𝜕4w1

𝜕𝑅4
+

2

β2
.

𝜕4w1

𝜕𝑅2𝜕𝑄2
+

1

β4
.
𝜕4w1

𝜕𝑄4
−

Nx1a
4

gD∗
.
𝜕2w1

𝜕𝑅2
)w𝑆

+
w1

g
(
(1 − μ)a4

𝑡4
.
𝜕2w𝑆

𝜕𝑆2

−
Nxsa

4

D∗
.
𝜕2w𝑆

𝜕𝑅2
)                                                                  (25) 

One of the possibilities of Equation 25 to be true is for the 

terms in each of the two brackets sum to zero. That is: 

𝜕4w1

𝜕𝑅4
+

2

β2
.

𝜕4w1

𝜕𝑅2𝜕𝑄2
+

1

β4
.
𝜕4w1

𝜕𝑄4
−

Nx1a
4

gD∗
.
𝜕2w1

𝜕𝑅2

= 0                                                                                        (26) 

(1 − μ)a4

𝑡4
.
𝜕2w𝑆

𝜕𝑆2
−

Nxsa
4

D∗
.
𝜕2w𝑆

𝜕𝑅2

= 0                                                                                           (27) 
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Given that; 

𝑤 = w1. w𝑆                                                                                (28) 

Putting the Equation 28 into 26 and solve to get the exact 

deflection function in polynomial and trigonometric form as 

given in the Equation 29 and 30 respectively: 

w = ∆0 (𝑎0 +  𝑎1𝑅 + 𝑎2𝑅
2 + 𝑎3𝑅

3 + 𝑎4𝑅
4). (𝑏0 +  𝑏1𝑄

+ 𝑏2𝑄
2 + 𝑏3𝑄

3 + 𝑏4𝑄
4)                     (29) 

𝑤 = ∆0(𝑎0 +  𝑎1𝑅 + 𝑎2 cos𝑔1𝑅 + 𝑎3 sin 𝑔1𝑅). (𝑏0 +  𝑏1𝑄

+ 𝑏2 cos 𝑔2𝑄 + 𝑏3 sin 𝑔2𝑄)                 (30) 

Where:  

w = 𝐴1. ℎ                                                                                (31) 

w𝑆

= ∆0

+ ∆1S                                                                                       (32) 

And, 

w𝑆 = ∆0                                                                                  (33) 

Substituting Equation 29 and 30 into the re-arranged 

Equation 6 and simplifying the outcome gives: 

𝑠𝑥 =
𝑐

𝑎
. ∆0. (1  2𝑅  3𝑅2  4𝑅3) [

𝑎1

𝑎2
𝑎3

𝑎4

] . (1  𝑄  𝑄2  𝑄3  𝑄4) 

 

[
 
 
 
 
𝑏0

𝑏1

𝑏2

𝑏3

𝑏4]
 
 
 
 

                                                                                       (34) 

𝜃𝑆𝑥 =
𝑐

𝑎
. ∆0. [1   𝑐1𝑆𝑖𝑛 (𝑐1𝑅)  𝑐1𝐶𝑜𝑠 (𝑐1𝑅)] [

𝑎1

𝑎2

𝑎3

]. 

[1   𝑄   𝐶𝑜𝑠 (𝑐1𝑄)  𝑆𝑖𝑛 (𝑐1𝑄)] [

𝑏0

𝑏1

𝑏2

𝑏3

]                              (35) 

 

Similarly; 

𝑠𝑦 =
𝑐

𝑎β
. ∆0. (1  𝑅  𝑅2  𝑅3  𝑅4)

[
 
 
 
 
𝑎0

𝑎1
𝑎2

𝑎3

𝑎4]
 
 
 
 

. 

(1  2𝑄  3𝑄2  4𝑄3) [

𝑏1

𝑏2

𝑏3

𝑏4

]                                                     (36) 

 

𝑠𝑦 =
𝑐

𝑎β
. ∆0. [1   𝑅   𝐶𝑜𝑠 (𝑐1𝑅)  𝑆𝑖𝑛 (𝑐1𝑅)] [

𝑎0

𝑎1
𝑎2

𝑎3

].  

[1     𝑐1𝑆𝑖𝑛 (𝑐1𝑄)  𝑐1𝐶𝑜𝑠 (𝑐1𝑄)] [

𝑏1

𝑏2

𝑏3

]                              (37) 

In symbolic forms, Equations 34 and 35 are: 

𝑠𝑥

=
𝐴2𝑅

𝑎
.
𝜕ℎ

𝜕𝑅
                                                                                                                                          (38) 

While Equations 36 and 37 are: 

𝑠𝑦

=
𝐴2𝑄

𝑎β
.
𝜕ℎ

𝜕𝑄
                                                                               (39) 

Given that; 

Given that: ℎ is the shape function of the plate, 𝐴1 is the 

coefficient of deflection  𝐴2 and 𝐴3 are the coefficients of 

shear deformation in x axis and y axis respectively. 

Where: 

The coefficient of deflection; 

𝐴1 = ∆0

[
 
 
 
 
𝑎0

𝑎1
𝑎2

𝑎3

𝑎4]
 
 
 
 

.

[
 
 
 
 
𝑏0

𝑏1

𝑏2

𝑏3

𝑏4]
 
 
 
 

                                                                   (40) 

The trigonometric shape function; 

ℎ

= (1  𝑅 cos 𝑔1𝑅 sin 𝑔1𝑅). (1 𝑄 cos 𝑔2𝑄 sin 𝑔2𝑄)         (41) 

        The polynomial shape function;  

ℎ

= [1  𝑅 𝑅2 𝑅3  𝑅4]. [1  𝑄 𝑄2 𝑄3 𝑄4]                                     (42) 

 

2.3. Direct Governing Equation 

By substituting Equations (31), (38) and (39) into the Energy 

equation obtained in Equation (17) and differentiating with 

respect to deflection coefficient (A1), the direct governing 

equation of the plate is given as: 

𝜕Π

𝜕𝐴1

= 6(1 − 2) (
a

𝑡
)

2

([𝐴1 + 𝑀2𝐴1]. 𝑘𝑅

+
1

β2
. [𝐴1 + 𝑀3𝐴1]. 𝑘𝑄) −

Nxa
2𝐴1

D∗
. 𝑘𝑅

= 0                                                             (43) 

Rearranging Equation 43  

gives:

  

Nxa
2

D∗

= 6(1 − 2) (
a

𝑡
)

2

([1 + 𝑀2]

+
1

β2
. [1

+ 𝑀3].
𝑘𝑄

𝑘𝑅

)                                                                                (44) 

This gives: 

a2Nx

𝐸𝑡3

=
(1 + μ)

2
(
a

𝑡
)

2

([1 + 𝑀2]

+
1

β2
. [1

+ 𝑀3].
𝑘𝑄

𝑘𝑅

)                                                                                (45) 

Where: 
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𝑘𝑅𝑅 = ∫∫(
𝜕2ℎ

𝜕𝑅2
)

21

0

1

0

𝑑𝑅𝑑𝑄:  𝑘𝑅𝑄

= ∫∫(
𝜕2ℎ

𝜕𝑅𝜕𝑄
)

21

0

1

0

𝑑𝑅𝑑𝑄; 𝑘𝑄𝑄

= ∫∫(
𝜕2ℎ

𝜕𝑄2
)

21

0

1

0

𝑑𝑅𝑑𝑄                   (45a)  

𝑘𝑅 = ∫∫(
𝜕ℎ

𝜕𝑅
)

2
1

0

1

0

𝑑𝑅𝑑𝑄; 𝑘𝑄

= ∫∫(
𝜕ℎ

𝜕𝑄
)

2
1

0

1

0

𝑑𝑅𝑑𝑄                                                      (45b)  

Minimizing Equation 54 with respect to A2R and A2Q and 

Solving Equations simultaneously gives respectively: 

𝐴2𝑅

= 𝑀2𝐴1                                                                                 (46) 

𝐴2𝑄 = 𝑀3𝐴1                                                                         (47) 

Where: 

𝑀2 =
(𝑚12𝑚23 − 𝑚13𝑚22)

(𝑚12𝑚12 − 𝑚11𝑐22)
 ;  𝑀3

=
(𝑚12𝑚13 − 𝑚11𝑚23)

(𝑚12𝑚12 − 𝑚11𝑚22)
                                                   (48)  

𝑚11

= (1 − μ)𝑘𝑅𝑅 +
1

2𝛽2
(1 − 2)𝑘𝑅𝑄

+ 6(1

− 2) (
a

𝑡
)

2

𝑘𝑅                                                                      (49)    

𝑚22

=
(1 − μ)

𝛽4
𝑘𝑄𝑄 +

1

2β2
(1 − 2)𝑘𝑅𝑄

+
6

β2
(1 − 2) (

a

𝑡
)

2

𝑘𝑄                                                       (50) 

𝑚12 = 𝑚21 =
1

2𝛽2
𝑘𝑅𝑄;  𝑚13 = −6(1 − 2) (

a

𝑡
)

2

𝑘𝑅;  𝑚23

= 𝑚32 = −
6

β2
(1 − 2) (

a

𝑡
)

2

𝑘𝑄     (51) 

2.4. Numerical Analysis 

A problem of a rectangular thick plate that is clamped at two 

adjacent edges and the other simply supported (CSCS) under 

uniaxial compressive load is presented. The polynomial and 

trigonometric displacement function as presented in the 

Equation (29) and (30) was applied to obtain the solution of 

the critical buckling load in the plate at various aspect ratios. 

The boundary conditions of the rectangular plate presented in 

the Figure 1 are as follows: 

At  𝑅 =  𝑄 =  0; deflection (𝑤)  =

0                                                                                                      (52)         

At  𝑅 = 0, bending moment (
𝑑2𝑤

𝑑𝑅2) = 0;  𝑄 =

 0, slope (
𝑑𝑤

𝑑𝑄
) = 0                                                     (53)    

At  𝑅 = 𝑄 =  1, deflection (𝑤) =

0;                                                                                                            (54) 

At  𝑅 = 1, bending moment ( 
𝑑2𝑤

𝑑𝑅2) = 0;   Q =

 1, shear force (
𝑑3𝑤

𝑑𝑄3)  =  0                                      (55) 

At Q = 1, bending moment (
𝑑2𝑤

𝑑𝑅2) = 0;  𝑅 = 1, slope 

(
𝑑𝑤

𝑑𝑄
) = 0                                                           (56) 

Substituting Equation (52) to (56) into the derivatives of w 

and solving gave the characteristic equation gives the 

following constants: 

𝑎0 = 0; 𝑎1 = 𝑎4;  𝑎2 = 0; 𝑎3

= −2𝑎4 𝑎𝑛𝑑                                                                                  (57) 

𝑏0 = 0; 𝑏1 = 0; 𝑏2 = 2𝑏4;  𝑏3

= −2𝑏4                                                                                           (58) 

Substituting the constants of Equation (57) and (58) into 

Equation (29) gives; 

𝑤

= (𝑎4𝑅 − 𝑎4𝑅
3 + 𝑎4𝑅

4)

× (𝑏4𝑄
2 − 𝑏4𝑄

3

+ 𝑏4𝑄
4)                                                                                           (59) 

Simplifying Equation (59) which satisfying the boundary 

conditions of Equation (52 to 56) gives: 

𝑤

= 𝑎4 × 𝑏4(𝑅 − 2𝑅3 + 𝑅4)

× (𝑄2 − 2𝑄3

+ 𝑄4)                                                                                              (60) 

Let the amplitude,  

𝐴1

= 𝑎4

× 𝑏4                                                                                                                                                    (61) 

And;  

ℎ

= (𝑅 − 2𝑅3 + 𝑅4)

× (𝑄2 − 2𝑄3

+ 𝑄4)                                                                                              (62) 

Thus, the polynomial deflection functions after satisfying the 

boundary conditions is:  

𝑤

= (𝑅 − 2𝑅3 + 𝑅4)

× (𝑄2 − 2𝑄3

+ 𝑄4). 𝐴1                                                                                       (63) 

Similarly, substituting Equations (52 to 56) into Equation 

(30) and solving gives the following constants: 

𝑠𝑖𝑛𝑔1 = 0;  2𝐶𝑜𝑠 𝑔1 + 𝑔1 𝑆𝑖𝑛 𝑔1 − 2

= 0                                                                                                  (64) 

The value of 𝑔1 that satisfies Equation (64) is: 
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𝑔1 = 𝑚𝜋 ; 𝑔1

= 2𝑚𝜋 [𝑤ℎ𝑒𝑟𝑒 𝑚 = 𝑛

= 1, 2, 3… ]                                                                                 (65) 

Substituting Equation (65) into the derivatives of w and 

satisfying the boundary conditions of Equation (52) to (56) 

gives the following constants: 

𝑎0 = 𝑎1 = 𝑎2;   𝑏1 = 𝑏3 = 0; 𝑏0 = −𝑏2

= 0                                                                                               (66) 

Substituting the constants of Equation (66) into Equation (30) 

and simplify the outcome gives: 

𝑤  

= 𝑎3

× 𝑏2(𝑆𝑖𝑛 𝜋𝑅). (𝐶𝑜𝑠 2𝜋𝑄

− 1)                                                                                            (67) 

Let the amplitude,           

𝐴1

= 𝑎3

× 𝑏2                                                                                                     (68) 

And; 

ℎ

= (𝑆𝑖𝑛 𝜋𝑅). (𝐶𝑜𝑠 2𝜋𝑄

− 1)                                                                                                    (69) 

Thus, the trigonometric deflection functions after satisfying 

the boundary conditions is:  

𝑤

= 𝐴1(𝑆𝑖𝑛 𝜋𝑅). (𝐶𝑜𝑠 2𝜋𝑄

− 1)                                                                                                    (70) 

         As such, a numerical values of the stiffness for a CSCS 

plate were obtained using Equation (45a) and (45b) by 

applying the two shape function (trigonometric and 

polynomial) as obtained in Equation (62) and Equation (69) 

and their results are presented in Table 1. 

 

Table 1. The polynomial and trigonometric stiffness coefficients of deflection function of the CSFS plate  

Displacement Shape Function 𝒌𝑹𝑹 𝒌𝑹𝑸 𝒌𝑸𝑸 𝒌𝑹 𝒌𝑸 

Polynomial 
0.00762 0.00925 0.03937 0.00077 0.00925 

Trigonometry 3𝜋4

4
 𝜋4 4𝜋4 

3𝜋2

4
 𝜋2 

 

3. RESULTS AND DISCUSSIONS 

In this section, Equation (29) and (30) showed the expression 

of deflection function which was derived to get the formulae 

for predicting the buckling load of the plate. The graphical re-

presentation of the result of the critical buckling load of a 

rectangular plate that is clamped and simply supported at the 

two adjacent edges (CSCS), as calculated is shown in the 

Figures 2 to 10. This result also showed the comparative 

stability analysis of the CSCS plate under uniaxial 

compressive load at varying aspect ratio. The first non-

dimensional result was obtained by expressing the 

displacement shape function of the plate in the form of 

polynomial to analyze the effect of aspect ratio on the critical 

buckling load of the plate while the second result was 

obtained by expressing the displacement shape function of 

the plate in the form of trigonometry to analyze the effect of 

aspect ratio on the critical buckling load of the plate.  The 

aspect ratio of the plate into consideration includes; 1, 1.5, 

2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0.                A numerical and 

graphical comparison was made between the two approaches 

(polynomial and trigonometric functions) to study a 3-D 

plate’s stability at varying thickness. The span to thickness 

ratio considered is ranged between 4 through 1500, which is 

obviously seen to span from the thick plate, moderately thick 

plate and thin plate (see [2 and 12]). 

         The values obtained in Figure 2 to 10, shows that as the 

values of critical buckling load increase, the span- thickness 

ratio increases. This reveals that as the in-plane load on the 

plate increase and approaches the critical buckling, the failure 

in a plate structure is a bound to occur; this means that a 

decrease in the thickness of the plate, increases the chance of 

failure in a plate structure. Hence, failure tendency in the plate 

structure can be mitigated by increasing its thickness. It is 

also observed in the figures that as the length to breadth ratio 

(aspect ratio) of the plate increases, the value of critical 

buckling load decreases while as critical buckling load 

increases as the length to breadth ratio increases. This implies 

that an increase in plate width increases the chance of failure 

in a plate structure. It can be deduced that as the in-plane load 

which will cause the plate to fail by compression increases 

from zero to critical buckling load, the buckling of the plate 

exceeds specified elastic limit thereby causing failure in the 

plate structure. This meant that, the load that causes the plate 

to deform also causes the plate material to buckle 

simultaneously. 

         Looking closely at the result of buckling load using 

Polynomial function for the span to thickness ratio of 30 and 

beyond, it is seen that the value of critical buckling load of 

the plate maintained a constant value of 8.49 for square plate, 

3.06 for aspect ratio of 1.5, 1.90 for aspect ratio of 2.0, 1.50 

for aspect ratio of 2.5, 1.32 for aspect ratio of 3.0, 1.22 for 

aspect ratio of 3.5, 1.16 for aspect ratio of 4.0, 1.12 for aspect 

ratio of 4.5, 1.09 for aspect ratio of 5.0. Similarly, the result 

of buckling load using Trigonometric function for the span to 

thickness ratio of 30 and beyond, it is seen that the value of 

critical buckling load of the plate maintained a constant value 
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of 8.84 for square plate, 3.19 for aspect ratio of 1.5, 1.97 for 

aspect ratio of 2.0, 1.54 for aspect ratio of 2.5, 1.34 for aspect 

ratio of 3.0, 1.24 for aspect ratio of 3.5, 1.17 for aspect ratio 

of 4.0, 1.13 for aspect ratio of 4.5, 1.10 for aspect ratio of 5.0. 

This proof that the value of critical load for thin plate and 

thick plate (see [2 and 12]) which described the thin and 

moderately thick plate as the one whose span to thickness 

ratio is equal or less than 30.  

         The comparison shows that the present theory using 

trigonometric functions predicts a slightly lower value of the 

critical buckling load than polynomial function when the 

plate is thicker and higher value as the plate is thinner. This 

is quite expected because the trigonometric function gives 

higher value of the stiffness coefficient than polynomial, and 

therefore is considered safer to use for thick plate analysis. 

However, both functions provide exact solution using 3-D 

theory in the stability analysis of a rectangular plate. The 

percentage difference of critical buckling load between the 

present study using polynomial, and that of trigonometric 

function for an isotropic CSCS rectangular plate at a variable 

aspect ratio is presented in Table. The highest average 

percentage difference is 7.4295 which occurs at the square 

plate using polynomial function, while the lowest average 

percentage difference is 0.9461 which occur in an aspect ratio 

of  five (5) using trigonometric function. It is shown in the 

table that the degree of the error in percentage decreases as 

the aspect ratio of the plate decreases. This implies that as the 

length of the plate widens, the credibility of the two 

approaches (trigonometry and polynomial) becomes the 

same. Furthermore, it was discovered that the values of the 

percentage error decrease as the span to thickness ratio of the 

plate decrease for the two approaches in consideration. This 

implies that as the plate gets thinner, the two methods differs 

more and becomes almost the same for thick plates. This 

could mean that the two approaches are suitable for thick 

plate analysis. This, however, shows the high level of 

convergence between the two approaches. It also implies a 

high level of accuracy of the derived relationships and thus 

proof reliability of the process in the stability analysis of 

rectangular plate of any category (thin, moderately thick and 

thick plate). Finally, the overall average percentage 

differences between the two functions recorded are 2.4%. 

These differences being less than 5% are quite acceptable in 

statistical analysis, as it will not put the structure into danger 

[3]. This shows that at about 98% both approaches are the 

same and can be applied with confidence in the stability 

analysis of any type of plate with such boundary condition. 

 

Figure 2. Graph of Critical buckling load (𝐍𝐱) versus span to thickness ratio of a rectangular plate at aspect ratio of 1.0 

 

Figure 3. Graph of Critical buckling load (𝐍𝐱) versus span to thickness ratio of a rectangular plate at aspect ratio of 1.5 
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Figure 4. Graph of Critical buckling load (𝐍𝐱) versus span to thickness ratio of a rectangular plate at aspect ratio of 2.0 

 

Figure 5. Graph of Critical buckling load (𝐍𝐱) versus span to thickness ratio of a rectangular plate at aspect ratio of 2.5 

 

Figure 6. Graph of Critical buckling load (𝐍𝐱) versus span to thickness ratio of a rectangular plate at aspect ratio of 3.0 
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Figure 7. Graph of Critical buckling load (𝐍𝐱) versus span to thickness ratio of a rectangular plate at aspect ratio of 3.5 

 
Figure 8. Graph of Critical buckling load (𝐍𝐱) versus span to thickness ratio of a rectangular plate at aspect ratio of 4.0 

 

Figure 9. Graph of Critical buckling load (𝐍𝐱) versus span to thickness ratio of a rectangular plate at aspect ratio of 4.5 
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Figure 10. Graph of Critical buckling load (𝐍𝐱) versus span to thickness ratio of a rectangular plate at aspect ratio of 5.0 

 

4. CONCLUSION AND RECOMMENDATION 

The result of this study as recorded in the percentage 

difference analysis showed that the 2-D refined plate theory 

(RPT) is only an approximate relation for buckling analysis 

of thick plate [22] and when applied to the thick plate will 

under-predicts buckling loads as they neglect the transverse 

normal stresses along the thickness axis of the plate. Thus, the 

polynomial and trigonometric displacement function 

developed in this study produces an exact solution as they 

emanated from a complete three-dimensional theory which is 

more reliable solution in the stability analysis of plates and, 

can be recommended for analysis of any type of rectangular 

plate subjected to such loading and boundary condition. 
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