

CFD Analysis of Centrifugal Pump with Impeller Made of Various Materials

Shrikant V Raut¹, Dr. R. R. Arakerimath²

^{1,2} Mechanical Engg. Department, JSPM'S Rajarshi Shahu College of Engineering, Tathawade, Pune

ABSTRACT: The purpose of this study is to model and simulate CFD in centrifugal pump with different impeller material. Using CFD technique impeller with four different materials are analysed and compared. Aluminium, steel, T300 and glass fibre are the four materials are used for study. T300and glass fibbers are belong to composite fibre (additive manufacturing). From result, data is compared and performance of centrifugal pump with impeller made by additive materials are compared with steel and aluminium. Results shows that composite materials (T300 and Glass fibre give performance as same as steel, so composite material or additive manufacturing for impeller can replace conventional metals like steel and aluminium.

KEYWORDS: Additive manufacturing, Comparison, impeller

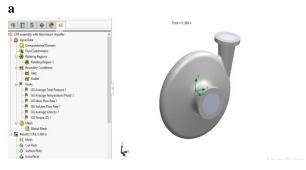
I. INTRODUCTION

Centrifugal pump is commonly used engineering invention. It has been widely used in all segment of market like water treatment, food processing, dairy and milk, oil and gas etc. There are different conventional metals are being used for manufacturing of centrifugal pump. Impeller is important part of centrifugal pump. It has been manufactured by different conventional metals like steel, aluminium. Now a days with recent technology many new materials like plastic, fibres are invented and are replacing conventional metals . In this study we are using Carbon fibre (T300) and Nylon 6/10 With 50% Glass fiber. CFD analysis of centrifugal pump is done by using these two composite materials against conventional material like steel and aluminum. Result of CFD analysis for all these four materials is compared.Water is used as a fluid

Properties of materials used in this study

in this study. Performance of composite materials i.e. Carbon fiber T300 and Nylon 6/10 With 50% Glass fiber is checked against steel and aluminum and Conclusion is made.

II. METHODOLOGY

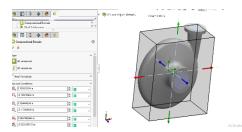

CAD modelling of centrifugal pump will be done using CAD software. CFD analysis of impeller will be done with four types of materials. Carbon fiber T300 and Nylon 6/10 With 50% Glass fiber, steel and aluminium are used for impellers. Water will be used as fluid for CFD analysis. Result for CFD analysis of centrifugal pump with impeller made of each material will be recorded. On the basis of Result obtained from CFD analysis for all four materials. Result will be compared among all four materials of impeller. And conclusion on performance will be made

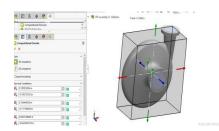
Sr. No.	Material	Young's Modulus E	Poisson's Ratio υ	Density ρ	Yield Stress	Ultimate Tensile Stress
1	SS316L	200 GPa	0.26	8027 kg/m3	170 MPa	485 MPa
2	Aluminium	68.9 <u>GPa</u>	0.33	2700 kg/m3	214 MPa	241 MPa
3	Carbon fibre T300	140 <u>GPa</u>	0.25	1760 Kg/m3	1790 Mpa	1820 MPa
4	Nylon 6/10 With 50% Glass fiber	152 Gpa	0.28	1400 Kg/m3	240 MPa	600 MPa

III. CFD ANALYSIS

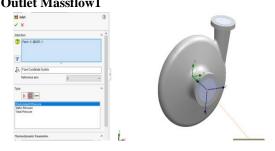
In this section a case study is done on centrifugal pump . CAD model of centrifugal pump is prepared and CFD analysis is made with different materials. Following steps are used

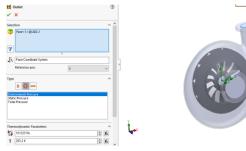
1. Create CAD model


2. Open flow simulation

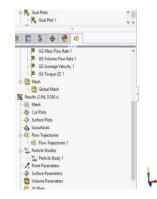

3. Set new project with Wizard

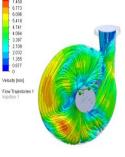
JULIUW CO	ראאטי	nie Lui		isen iv	างาร วทกนเลน	011 1	VIIIUUN	псір 🗡	ľ	JU		. . 🖂 .	- v : W	
🔨 Wizard	۵ 🖌	e	8 8	۱	<u>0</u> 6	V	ò	4	<u>2</u>	Ŷ	\$			
💾 New	Genera Setting:		Flow imulati	Run	Load/Unioad	H		Flow Simulation Results Features	Å,	-	Flow Simulati			
🗎 Clone Project		8	•			0 0 8⊟ •	1	•	7	8	•			
Assembly Layou	t Sketch	Evaluate	SOLIDWO	RKS Add-I	Ins Simulati	on	MBD	Flow Simulation	on		Ø	ji 🗸 🗊) 🔏 🎒	- 🗊
0														


4. Create Lid to open end

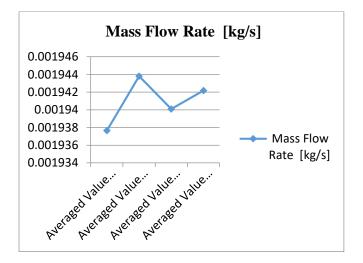

5. Apply boundary to computational domain

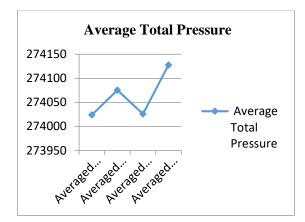
7. Apply boundary condtions i) Outlet Massflow1

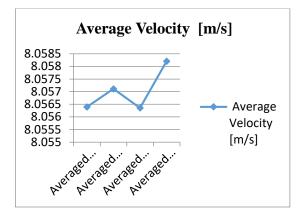


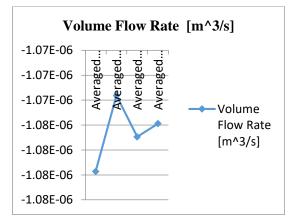

ii) Environmental Pressure1

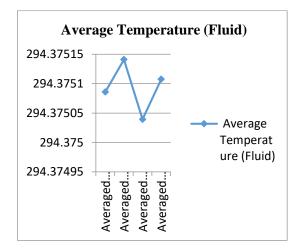
9. Results of CFD Analysis






IV. COMPARISON OF PERFORMANCE PARAMETERS OF CFP WITH DIFFERENT MATERIAL


Goal Name	Unit	Averag ed Value Alumin um	Averag ed Value Steel	Averag ed Value T300	Avera ged Value Glass fibert
	Omt	um	50001	1000	noon
Averag					
e Total					
Pressur		274023.	274075.	274025.	2741
e 1	[Pa]	8691	5272	9562	27.7
Averag					
e					
Temper					
ature					
(Fluid)		294.375	294.375	294.375	294.3
1	[K]	0858	1411	0393	751
Mass					0.004
Flow	[kg/	0.00193	0.00194	0.00194	0.001
Rate 1	s]	7633	3798	009	942
Volume		-	-	-	-
Flow	[m^	1.07972	1.07363	1.07695	1.1E-
Rate 1	3/s]	E-06	E-06	E-06	06
Averag					
e	F (0.05.000	0.05511	0.05.05	0.050
Velocit	[m/s	8.05639	8.05711	8.05635	8.058
y 1]	1903	0223	3632	207


V. GRAPH SHOWING VARIATION IN PARAMETERS WITH DIFFERENT MATERIAL

VI. CONCLUSION

Average Values of mass flow rate, volume flow rate and velocity of T300 fiber and Glass fiber are approximately same with Steel and aluminum.

So from comparison of result from both phase it has been observed that centrifugal Impeller made in additive manufacturing/3d printing technology can replace Conventional metals like Stainless steel and Aluminum.

REFERENCES

- 1. Incremental sheet forming of composite material Aditya Kharche, Shivprakash Barve ↑ School of Mechanical Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune, 411038, India
- Rapid Prototyping and Manufacturing: A Review of Current Technologies Conference Paper - January 2009 DOI: 10.1115/IMECE2009-11750
- A Review paper on 3D-Printing Aspects and Various Processes Used in the 3D-Printing by Vinod G. Gokhare and Dr. D. N. Raut, and Dr. D. K. Shinde, International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 IJERTV6IS060409
- 3D Printing Technology, Material Used For Printing and its Applications, Article in International Journal of Scientific and Engineering Research · July 2020, by Ajay Shinde, Ashutosh dandekar, Rahul Patil, Nandakishor dhavale

- The Impact and Application of 3D Printing Technology Article in International Journal of Science and Research (IJSR) · June 2014 by Cephas Mawere Harare Institute of Technology.
- 6. 3D Printing of Physical Organ Models: Recent Developments and Challenges Zhongboyu Jin, Yuanrong Li, Kang Yu, Linxiang Liu, Jianzhong Fu, Xinhua Yao, Aiguo Zhang,* and Yong He* Advanced Science published by Wiley-VCH GmbH
- 3D Printed Contact Lenses Article in ACS Biomaterials Science and Engineering · January 2021 by Fahad alam, Mohammed elsherif, Badar Alqattan, Ahmed E salih
- 8. Chitin- and Chitosan-Based Composite Materials Inmaculada Aranaz 1,2,* and Niuris Acosta Biomimetics 2022, 7, 1. https://doi.org/10.3390/biomimetics7010001
- Comparison of 3d printing Composites material with 3d printed plastic material for rapid prototyping, JECET; March 2022-May 2022; Sec. A; Vol.11. No.2, 318-323. E-ISSN: 2278–179X [DOI: 10.24214/jecet.B.11.2. 31823]
- 10. CFD simulation of a centrifugal pump impeller with variations of number of blades july 2018 the journal of engineering and exact sciences 4(2):0220-0