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ABSTRACT: The main purpose of this study gears towards finding numerical solution to fractional integro-differential equations. 

The technique involves the application of caputo properties and Chebyshev polynomials to reduce the problem to system of linear 

algebraic equations and then solved using MAPLE 18. To demonstrate the accuracy and applicability of the presented method some 

numerical examples are given. Numerical results show that the method is easy to implement and compares favorably with the exact 

results. The graphical solution of the method is displayed. 
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INTRODUCTION  

Fractional integro-differential equations has played a 

significant role in modelling of real world physical problems 

e.g  the modeling of earthquake, reducing the spread of virus, 

control the memory behaviour of electric socket and many 

others. Fractional calculus is a field dealing with integral and 

derivatives of arbitrary orders, and their applications in 

science, engineering and other fields. The idea is from the 

ordinary calculus.  According to  [1- 3], It was discovered by 

Leibniz in the year 1695 few years after he discovered 

ordinary calculus but later forgotten due to the complexity of 

the formula. Since most Fractional Integro-diffrential 

Equations (FIDEs) cannot be solved analytically, 

approximation and numerical techniques, therefore, they are 

used extensively. 

       Numerical solution to FIDEs in different fields has been 

a point of attraction for researchers in recent times. [4] 

employed Lagurre polynomials as basis functions for the 

solution of fractional Solving  Fredholm integro-differential 

equations while [5] employed Bernstein polynomials  as basis 

functions to approximate the solution of FIDEs. References 

[6 - 8] applied collocation techniques for solving FIDEs using 

different basis functions. [9] applied Sumudu transform 

method and Hermite Spectral collocation method for solving 

FIDEs.  Author [10] introduced approximate solutions of 

Volterra-Fredholm integro-differential equations of 

fractional order. References [11 - 12] used Least - Squares 

method for the solution of FIDEs.  [13-15] introduced 

numerical solution of fractional singular integro-differential 

equations by using Taylor series expansion and Galerkin 

method and a fast numerical algorithm based on the second 

kind of Chebyshev polynomials. The author in [16] applied 

numerical solution of Fredholm-Volterra fractional integro-

differential equation with nonlocal boundary conditions. 

Reference [17] employed Bernstein modified homotopy 

perturbation method for the Solution of Volterra fractional 

integro-differential equations. The objective of this work is  

to  extend  the  application  of  the  least squares and 

Chebyshev Polynomials  to  provide  an approximate solution 

for fractional integro- differential equations taking the 

fractional derivative at equally spaced point of interval. The 

general form of the class of problem considered in this work 

is given as: 

 𝐷𝛼𝑢(𝑥) =  𝑝(𝑥)𝑢(𝑥) + 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡)𝑢(𝑥)𝑑𝑡,   𝑜 ≤
𝑥

0

𝑥, 𝑡 ≤ 1,                                                                              (1)             

 With the following supplementary conditions: 

 𝑢(𝑗)(0) = 𝛿𝑗,𝑗 = 0,1,2, … ,𝑚 − 1, 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈,𝑁                                                                                       

(2)                                                                                                                   

Where 𝐷𝛼𝑢(𝑥) indicates the ∝ 𝑡ℎ Caputo fractional 

derivative of  𝑢(𝑥);  𝑝(𝑥), 𝑓(𝑥), 

 𝐾(𝑥, 𝑡) are given smooth functions, 𝛿𝑗   are real constant, 𝑥  

and 𝑡 are real variables varying [0, 1] and 𝑢(𝑥) is the 

unknown function to be determined. 

 

SOME RELEVANT BASIC DEFINITIONS 

Definition 1: Riemann – Lowville fractional integral is 

defined as [18]: 

  𝐽𝛼𝑓(𝑥) = 
1

Γ(α)
∫

𝑓(𝑥)

(𝑥−𝑡)1−𝛼
𝑑𝑡, 𝛼 > 0, 𝑥 > 0,

𝑥

0
            (3)     𝐽𝛼  

denotes the fractional integral of order ∝    
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Definition 2: The Caputor Factional Derivative is defined as 

[18]: 

𝐷𝛼𝑓(𝑥) = 
1

Γ(n−∝)
∫ (𝑥 − 𝑠)𝑛−∝−1𝑓𝑚(𝑠)𝑑𝑠  
𝑥

0
                    (4)                                                                                            

Where 𝑚 is a positive integer with the property that  𝑛 − 1 <

∝< 𝑛 

For example if  0 <∝< 1 the caputo fractional derivative is 

𝐷𝛼𝑓(𝑥) = 
1

Γ(1−∝)
∫ (𝑥 − 𝑠)−∝𝑓1(𝑠)𝑑𝑠  
𝑥

0
           (5)                                                                                                       

Hence, we have the following properties: 

(1)  𝐽𝛼 𝐽𝑣 𝑓 = 𝑗𝛼+𝑣 𝑓, 𝛼, 𝑣 > 0, 𝑓 ∈ 𝐶𝜇 , 𝜇 > 0 

(2) 𝐽𝛼𝑥𝛾 = 
𝛤(𝜆+1)

𝛤(𝛼+𝛾+1)
𝑥𝛼+𝛾, 𝛼 > 0, 𝛾 > −1, 𝑥 > 0 

(3) 𝐽𝛼 𝐷𝛼 𝑓(𝑥) = 𝑓(𝑥) − ∑ 𝑓𝑘(0)
𝑥𝑘

𝑘!

𝑛−1
𝑘=0 ,         𝑥 >

0, 𝑛 − 1 < 𝛼 ≤ 𝑛 

(4) 𝐷𝛼  𝐽𝛼 𝑓(𝑥) = 𝑓(𝑥),    𝑥 > 0, 𝑛 − 1 < 𝛼 ≤ 𝑛, 

(5) 𝐷𝛼𝐶 = 0, 𝐶  is the constant, 

(6) {
0,                                                𝛽 ∈ 𝑁0, 𝛽 < [𝛼],             

 𝐷𝛼𝑥𝛽 =
𝛤(𝛽+1)

𝛤(𝛽−𝛼+1)
𝑥𝛽−𝛼 ,                𝛽 ∈ 𝑁0, 𝛽 ≥ [𝛼],   

                 

Where [𝛼] denoted the smallest integer greater than or equal 

to 𝛼  and  𝑁0 = {0,1.2, … } 

Definition 3: The Chebyshev polynomials [12] of degree 𝑛 

over [0,1] is defined by the relation  

𝑄𝑚(𝑥) = 𝑐𝑜𝑠[sin
−1(2𝑥 − 1)]                                         (6)                                                                                                               

and  the recurrence relation is given 

𝑄∗𝑚+1(𝑥) = 2(2𝑥 − 1)𝑄
∗
𝑚
(𝑥) − 𝑄∗𝑚−1(𝑥),                              

𝑚 ≥ 1                                                                                 (7)     

Where     𝑄∗0(𝑥) = 1 ,   𝑄∗1(𝑥) = 2𝑥 − 1                                                                                            

Definition 4: Chebyshev polynomials[12]: A linear 

combination Chebyshev basis polynomials: 

     𝑢𝑚(𝑥) = ∑ 𝑎𝑗𝑄
∗
𝑗
(𝑥)𝑚

𝑗=0                                                (8)                                                                                                               

is the Bernstein polynomials of degree n where  𝑎𝑗,     𝑗 =

0,1,2, …… ..  are constants. 

 

Demonstration of Least Squares Chebyshev Method 

(LSCM) 

    The Least Squares Chebyshev Method is based on 

approximating the unknown function 𝑢(𝑥) in (1) by 

assuming an approximate solution of the form defined in (8). 

Consider equation (1) operating with 𝐽∝  on both sides as 

follows:     

  𝐽∝𝐷𝛼𝑢(𝑥) = 𝐽∝𝑓(𝑥) + 𝐽∝(∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡)
𝑥

0
        (9)                                                                                           

𝑢(𝑥) =  ∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!

𝑛−1
𝑘=0 + 𝐽∝𝑓(𝑥) + 

𝐽∝[∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡]
𝑥

0
                                                        (10) 

Substituting (8) into  (9) gives 

∑ 𝑎𝑗𝑄
∗
𝑗
(𝑥)𝑚

𝑗=0 = ∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!

𝑛−1
𝑘=0 + 𝐽∝𝑓(𝑥) +  

𝐽∝[∫ 𝑘(𝑥, 𝑡)∑ 𝑎𝑗𝑄
∗
𝑗
(𝑡)𝑚

𝑗=0 𝑑𝑡]
𝑥

0
                                       (11)                                 

Hence, the residual equation is obtained as                                                                                         

  𝑅(𝑎0,𝑎1, ……… . , 𝑎𝑛)  =        ∑ 𝑎𝑗𝑄
∗
𝑗
(𝑥)𝑚

𝑗=0 −

 {∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!

𝑛−1
𝑘=0 + 𝐽∝𝑓(𝑥) +

𝐽∝[∫ 𝑘(𝑥, 𝑡)∑ 𝑎𝑗𝑄
∗
𝑗
(𝑡)𝑚

𝑗=0 𝑑𝑡]}
𝑥

0
                                     (12)                                                         

Let   

𝑆(𝑎0,𝑎1, …… . , 𝑎𝑚) = ∫ [𝑅(𝑎0,𝑎1, …… , 𝑎𝑚)]
2
𝑤(𝑥)𝑑𝑥

1

0
 (13)                               

Where 𝑤(𝑥) is the positive weight function defined in the 

interval, [a, b]. In this work, 

 we take  𝑤(𝑥) = 1 for simplicity. Thus,                                              

𝑆(𝑎0,𝑎1, ……… . , 𝑎𝑚) = ∫  {∑ 𝑎𝑗𝑄
∗
𝑗
(𝑥)𝑚

𝑗=0 −
1

0

 {∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!

𝑚−1
𝑘=0 + 𝐽∝𝑓(𝑥) +

[∫ 𝑘(𝑥, 𝑡)∑ 𝑎𝑗𝑄
∗
𝑗
(𝑡)𝑚

𝑗=0 𝑑𝑡]}
𝑥

0
 }
2

𝑑𝑥                               (14)                                                                                                                                                                           

In order to minimize equation (15), we obtained the values of  

𝑎𝑗 (𝑗 ≥ 0) by finding 

 the minimum value of  𝑆  as:                                                                                                                                                            

                     
𝜕𝑆

𝜕𝑎𝑗
= 0, 𝑗 = 0,1,2… ,𝑚                        (15)                                                                                                        

Applying  (15) on  (14), we have 

∫ {∑𝑎𝑗𝑄
∗
𝑗
(𝑥)

𝑚

𝑗=0

− {∑𝑢𝑘(0)
𝑥𝑘

𝑘!

𝑛−1

𝑘=0

+ 𝐽∝𝑓(𝑥)
1

0

+ 𝐽∝[∫ 𝑘(𝑥, 𝑡)∑𝑎𝑗𝑄
∗
𝑗
(𝑡)

𝑚

𝑖=0

𝑑𝑡]}
𝑥

0

 } 𝑑𝑥

×    

∫ {𝑇∗𝑗(𝑥) − 𝐽
∝(∫ 𝑘(𝑥, 𝑡)𝑇∗𝑗(𝑡)𝑑𝑡)

𝑥

0
}𝑑𝑥

1

0
          (16)                                                                                                                                            

Thus,  (16) is then simplified for 𝑗 = 0,1, … 𝑛 to obtain (𝑚 +

1) algebraicsystem of equations in (𝑚 + 1) unknown 𝑎′𝑖 s 

which are then put in matrix form as follow: 

 

𝐴

=

(

 
 
 
 
 
∫ 𝑅(𝑥, 𝑎0)ℎ0𝑑𝑥
1

0

 ∫ 𝑅(𝑥, 𝑎1)ℎ0𝑑𝑥
1

0

⋯∫ 𝑅(𝑥, 𝑎𝑚)ℎ0𝑑𝑥
1

0

∫ 𝑅(𝑥, 𝑎0)ℎ1𝑑𝑥
1

0

 ∫ 𝑅(𝑥, 𝑎1)ℎ1𝑑𝑥
1

0

⋯       ∫ 𝑅(𝑥, 𝑎𝑚)ℎ1𝑑𝑥
1

0

⋮             ⋮                                    ⋱                                  ⋮

∫ 𝑅(𝑥, 𝑎0)ℎ𝑚𝑑𝑥
1

0

 ∫ 𝑅(𝑥, 𝑎1)ℎ𝑚𝑑𝑥
1

0

…∫ 𝑅(𝑥, 𝑎𝑚)ℎ𝑚𝑑𝑥
1

0 )

 
 
 
 
 

, 

   

  𝐵 =

(

 
 
 
∫ [𝐽∝𝑓(𝑥) + ∑ 𝑢𝑘(0)

𝑥𝑘

𝑘!

𝑛−1
𝑘=0 ] ℎ0𝑑𝑥

1

0

∫ [𝐽∝𝑓(𝑥) + ∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!

𝑛−1
𝑘=0 ] ℎ1𝑑𝑥

1

0

⋮

∫ [𝐽∝𝑓(𝑥) + ∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!

𝑛−1
𝑘=0 ] ℎ𝑚𝑑𝑥

1

0 )

 
 
 

              (17)                                                        

 

Where 

ℎ𝑗 = 𝑄
∗
𝑗
(𝑥) − 𝐽∝[∫ 𝑘(𝑥, 𝑡)𝑄∗𝑗(𝑡)𝑑𝑡], 𝑗 = 0,1, … ,𝑚

𝑥

0

 

𝑅(𝑥, 𝑎𝑗) =∑𝑎𝑖𝑄
∗
𝑗
(𝑥)

𝑚

𝑖=0

− 𝐽∝[∫ 𝑘(𝑥, 𝑡)∑𝑎𝑖𝑄
∗
𝑗
(𝑡)

𝑚

𝑖=0

𝑑𝑡]
𝑥

0

,

𝑗 = 0,1, … ,𝑚 

The (m + 1) linear equations are then solved to obtain the 

unknown constants 𝑎𝑗(𝑗 = 0(1)𝑚), which are then 

substituted back into the assumed approximate solution to 

give the required approximation solution. 
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NUMERICAL EXAMPLES 

In this section, the above technique is implemented on some 

problems. The problems are then solved via the  Chebyshev 

polynomials as basis functions. The problems are then solved 

to illustrate the accuracy and efficiency of the proposed 

method using Maple 18. 

Example 1: Consider the following fractional Integro-

differential [4] 

𝐷𝛼𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡
1

0
                                      (18)                                                                                                          

where  

𝑓(𝑥) = 1 −
1

3
𝑥                                                                 (19)                                                                                                                                  

Subject to 𝑢(0) = 0 

Here, (18) is solved by applying  𝐽𝛼 on both sides of (18) and 

substituting (8) into (18) to have 

𝐽𝛼[𝐷𝛼 ∑ 𝑎𝑗𝑄
∗
𝑗
(𝑥)𝑚

𝑗=0 ] = 𝐽𝛼[𝑓(𝑥)] +

𝐽𝛼[
1

4
∫ 𝑥𝑡 ∑ 𝑎𝑗𝑄

∗
𝑗
(𝑡)𝑚

𝑗=0 𝑑𝑡
1

0
]                        (20)                                                

Applying fractional integral operator on (20) 

and simplifying further, where 𝑚 = 2  and ∝= 1gives 

𝑎0 + (2𝑥 − 1) + 𝑎2(8𝑥
2 − 8𝑥 + 1) − 𝑥 +

1

6
𝑥2 −

0.25𝑎0𝑥
2 − 0.08333333335𝑎1𝑥

2 +

0.08333333335𝑎2𝑥
2 = 0          (21)                                                                                                             

Hence, the residual equation is defined as: 

   𝑅(𝑎0,𝑎1, 𝑎2  ) = 𝑎0 + (2𝑥 − 1) + 𝑎2(8𝑥
2 − 8𝑥 + 1) −

𝑥 +
1

6
𝑥2 − 0.25𝑎0𝑥

2 − 0.08333333335𝑎1𝑥
2 +

0.08333333335𝑎2𝑥
2                                                       (22)        

Let   

    𝑆(𝑎0,𝑎1, 𝑎2) = ∫ [𝑅(𝑎0,𝑎1, 𝑎2)]
2
𝑤(𝑥)𝑑𝑥

1

0
                   (23)                                                                 

Where 𝑤(𝑥) is has been defined above.  Thus, 

 

𝑆(𝑎0,𝑎1, 𝑎𝑚) = 𝑎0 + (2𝑥 − 1) + 𝑎2(8𝑥
2 − 8𝑥 + 1) − 𝑥 +

1

6
𝑥2 − 0.25𝑎0𝑥

2 − 0.08333333335𝑎1𝑥
2 +

0.08333333335𝑎2𝑥
2                                                    (24)                                                                                

∫ [𝑎0 + (2𝑥 − 1) + 𝑎2(8𝑥
2 − 8𝑥 + 1) − 𝑥 +

1

6
𝑥2 −

1

0

0.25𝑎0𝑥
2 − 0.08333333335𝑎1𝑥

2 +

0.08333333335𝑎2𝑥
2]
2

𝑑𝑥                                             (25)                                                                                           

In order to minimize (15), applying (16) on (25) and 

integrating with respect to x over the interval [0,1] to give 

three system of equations with three unknown constants 

𝑎𝑖(𝑖 = 0,1,2). Solving these equations, the following 

constants were obtained as: 𝑎0 = 0.5, 𝑎1 = 0.5 and 𝑎2 = 0. 

Substituting the values back into (8) to get the approximate 

solution as: 𝑢(𝑥) = 𝑥  which is  the same as  exact solution 

when ∝= 1. Bernstein polynomials  was used as basis 

functions to find the numerical solution of similar problem by 

[4]. The approximate solution was found at N= 3 as: 

𝑢(𝑥) = 0.0024(1 − 𝑥)3 + 0.32 × 3𝑥(1 − 𝑥) + 0.712 ×

3𝑥2(1 − 𝑥) + 0.841𝑥2  

Looking at the outcomes of the results, it tends to be said that 

our method performed more accurately since the exact 

solution is found.     

Following the same procedure for ∝= 0.9, ∝= 0.8, ∝=

0.7, ∝= 0.6, ∝= 0.5, ∝= 0.4, ∝= 0.3, ∝= 0.2 and ∝= 0.1  

𝑢(𝑥) = 0.01588902294 + 1.150959953𝑥 −

0.1157895773𝑥2  

𝑢(𝑥) = 0.04003025921 + 1.297646180𝑥 −

0.2390914991𝑥2  

𝑢(𝑥) = 0.0750324633 + 1.430521126𝑥 −

0.3639375006𝑥2  

𝑢(𝑥) = 0.1241382263 + 1.536726288𝑥 −

0.4816550418𝑥2  

𝑢(𝑥) = 0.1912818494 + 1.599296945𝑥 −

0.5801507126𝑥2  

𝑢(𝑥) = 0.2812494474 + 1.596242159𝑥 −

0.6430517126𝑥2  

𝑢(𝑥) = 0.3997678105 + 1.499487792𝑥 −

0.648689190𝑥2  

𝑢(𝑥) = 0.5536115751 + 1.273699667𝑥 −

0.5689149551𝑥2  

𝑢(𝑥) = 0.7506771300 + 0.8750423506𝑥 −

0.3677620782𝑥2  

                                                                                    (26) 

 

 

 
Figure 1: Showing the graphical  behaviour of  the 

approximation solutions of example 1 

 

Example 2: Consider the following fractional Integro-

differential [19] 

𝐷∝𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡
1

0
,                                  (27)                 

 where 

𝑓(𝑥) = 1 − 𝑒𝑥                                                             (28)                                                                             

Subject to 𝑢(0) = 0. Solving (27), following the same 

procedure above, we take ∝= 1,∝= 0.9, ∝= 0.8, ∝= 0.7, ∝

= 0.6, ∝= 0.5, ∝= 0.4, ∝= 0.3, ∝= 0.2 and ∝= 0.1. The 

following approximate solutions are obtained. 
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𝑢(𝑥) = −0.0129913096 + 0.148874949462𝑥 −

0.9344220712𝑥2  

𝑢(𝑥) = −0.0106181628 + 0.1057578250𝑥 −

0.9977935528𝑥2  

𝑢(𝑥) = −0.0076439273 + 0.045374535𝑥 −

1.056004310𝑥2  

𝑢(𝑥) = −0.0041339199 − 0.036104484𝑥 −

1.106084750𝑥2  

𝑢(𝑥) = −0.0002583555 − 0.143047337𝑥 −

1.144412894𝑥2  

𝑢(𝑥) = 0.003606784 − 0.280329534𝑥 −

1.166652574𝑥2  

𝑢(𝑥) = 0.007017205 − 0.453227097𝑥 −

1.167726049𝑥2  

𝑢(𝑥) = 0.0089045770 − 0.667185082𝑥 −

1.141854355𝑥2  

𝑢(𝑥) = 0.0078512917 − 0.927388486𝑥 −

1.082718434𝑥2  

𝑢(𝑥) = −0.1283562070 − 1.238029636𝑥 −

0.9838229360𝑥2                                                          (29) 

 

 
Figure 2: Showing the graphical  behavior of  the 

approximation solutions of example 2 

 

CONCLUSION 

 In this study, the Chebyshev polynomials together with 

Caputo properties are used to find the solution of FIDEs. 

There is a high rate of convergence of the approximate 

solutions to the exact solutions. Specifically, the performance 

of the proposed method  was compared with existing results 

in the literature and are found to be more efficient in the terms 

of  accuracy. Also, it is pleasing to note that the Chebyshev 

polynomials and the method used displayed a good behaviour 

on the graph when set into a control system at equal spaced 

point of fractional derivatives. It is also observed that the 

number of iterations needed in solving the problems using the 

proposed method is few and with lower values of M (the 

degree of the approximant). 
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