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ABSTRACT: In this paper a comparison of the prediction accuracy of a response variable given a set of predictors was made 

using statistical and artificial intelligence methods using R language. The compared methods were the multiple lineal regression 

by the least squares method and the back propagation network (BP).The goal was to decrease the reducible error when predicting 

the output variable and being able to select a model, an indispensable step when developing a prediction model. The methodology 

consisted in two validation strategies. The first strategy measured just the training error rate using 100% of data. The second 

strategy used a validation set approach, dividing the observations in two parts, 50% is for a training set used to fit the models, and 

the remaining 50% is for a validation set used to test the fitted models. This methodology made it possible a comparison between 

the training error rate and testing error rate. The measures utilized to evaluate the efficiency were the sum of squared error (SSE) 

and the coefficient of determination (R
2
). The results showed that BP network can significantly decrease the reducible error 

improving the prediction accuracy. It is important to highlight the prediction accuracy with new or unseen observations not used 

during the training instead of how well the models work with the training data. 
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I. INTRODUCTION 

Day to day, it is often required to solve problems involving 

sets of variables that have some inherent relationship with 

each other [18]. Then it may be interesting to develop a 

prediction model, that is, a procedure to estimate the value 

of a response variable given a set of independent variables. 

There are many examples of this requirement, in areas such 

as chemistry, manufacturing, sales [14], marketing, 

financial[3], etcetera. This is also a very studied case in 

areas of recent creation such as statistical learning[4], 

machine learning [9] and data mining[19].  

In this setting, the independent variables might go by 

different names, such as predictors, regressors, features, 

inputs, or sometimes just variables. The response variable is 

often called the dependent variable or output variable and is 

typically denoted using the symbol ‘y’.   

Suppose, it is observed a quantitative response y and a set of 

p different predictors                . It is assumed 

that there is a relationship between ‘y’ and X, which can be 

written in the form,             , where F is an unknown 

function that represents the real relationship between y and 

X, and є represents the random error term. It is possible to 

make a prediction of ‘y’, using         , where ƒ 

represents the estimated function for ‘F’. ƒ is often treated as 

a black box, in the sense that one does not usually worry 

about the exact form of ƒ, if it yields accurate predictions for 

‘y.  

Generally, ƒ will not be a perfect estimation for the real F, 

and the prediction accuracy can be affected by two kind of 

errors called reducible error and irreducible error. 

The reducible error may be decreased by selecting the 

appropriate learning method (statistical model or ANN 

model) to estimate the real F. The irreducible error is always 

present and does not allow us to get a perfect estimation for 

F, it is because ‘y’ is also in function of ɛ, and ɛ cannot be 

estimated using the set of predictors. ɛ may also contain 

significant variables that were no considered for the learning 

method and therefore they cannot be used to make a 

prediction [7]. 

Model selection is an indispensable step in the process of 

developing a functional prediction model or a model for 

understanding the data. Cross-validation is one of the most 

commonly used methods of evaluating predictive 

performances of a model. Basically, based on data splitting, 

part of the data is used for fitting each competing model and 

the rest of the data is used to measure the predictive 

performances of the models by the validation errors, and the 

model with the best overall performance is selected [20]. 

[12] and [16] presented different works showing the 

assessment of the predictive ability for different linear 

regression models using cross validation.  The caret package 

[8] from R[13]also provides many functions to estimate the 

accuracy and attempt to streamline the process for creating 

predictive models. 

http://caret.r-forge.r-project.org/
http://caret.r-forge.r-project.org/
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ANN are structures that have a mathematical and statistical 

behavior with the property of learning, that is, the 

acquisition of knowledge, that in most cases is based on 

examples. This learning is produced by a computer style 

called in parallel, that tries to simulate some capabilities of 

the human brain, for this reason, they are defined as artificial 

neural networks to distinguish them from biological models. 

The three key elements of the biological systems that 

pretend to emulate the artificial ones are parallel processing, 

distributed memory and adaptability. ANN have also shown 

application in areas such as associative memory, 

optimization, pattern recognition, prediction, classification 

[2] and decision making[17]. 

Unlike the parametric methods of inferential statistics, ANN 

models, such as, the multilayer perceptron (MLP) and other 

AAN models, are free model estimators, since they do not 

impose any functional form of departure [10]. 

It is very important to highlight the existence of clear 

relationships between the MLP and statistical methods, such 

as linear regression, logistic regression or discriminant 

analysis. 

The contribution of this paper focuses on finding the method 

that provides the best prediction accuracy of a response 

variable, when there are several predictors and then 

decreasing the reducible error comparing a statistical 

method among an ANN model. In specific, the predictive 

methods to be compared are least squares statistical 

method,and the ANN model is a Multilayer Perceptron 

(MLP) with Backpropagation algorithm (BP) as a learning 

strategy. R software was used to generate the models and 

neuralnet package [5] was used to train the ANN model. 

The measures used to evaluate the models were the sum of 

squared error (SSE) and R
2
 statistic. Functions to calculate 

both measures were provided. The methodology consisted in 

two validation strategies, the first strategy measures just the 

training error rate using the whole data set to train the 

models. The second strategy used a validation set approach 

dividing the available set of observations into two parts, 

50% used to train the models and the remaining 50% in a 

validation set to test the fitted models with observations 

unseen during the training. The two validation strategies 

made it possible a comparison between the training error 

rate and testing error rate. 

A. Artificial Neural Networks (ANN)  

ANN are structures with a mathematical and statistical 

behavior with the capacity of learning, that is, the 

acquisition of knowledge that in most cases is based on 

examples. This learning is produced by a computer style 

called in parallel, that tries to simulate some of the 

capabilities in our brain, for this reason they are defined as 

artificial neural networks to distinguish them from 

biological models. The key elements in the biological 

systems that pretend to emulate the artificial are the parallel 

processing, the distributed memory and the adaptability[17]. 

ANN structure is generally conformed by nodes, input set, 

synaptic weights, propagation rule or base function, 

activation function and output function.  

Figure 1 shows the basic ANN structure with its elements. 

The node is usually defined as the basic element in the 

network, which receives a set of inputs (xj) from the outside 

or from the output of other nodes. Each entry has a specific 

associated weight (wij), which will be increased or decreased 

in the learning process. Each node applies a base function 

(ui) such as the sum of the entries multiplied for the weights. 

The output value for the base function is transformed by a 

non-linear activation function f (ui). The most common 

activation functions are the sigmoidal, gaussian, step and 

hyperbolic tangent functions. The output and input variables 

(yi, xj) can be both binary and continuous, depending on the 

model[10]. 

 
Figure 1. The neuron and its elements. 

 

The MLP is an ANN conformed by multiple layers and it 

has the capability to act as a universal function approximator 

through the BP learning algorithm, forcing the neural 

network to contain at least one hidden layer with enough 

non-linear units. The MLP can also approximate any 

function using the input variables to predict the output 

variable. The BP learning algorithm has the capability to 

provide the network with generalization so that the model 

obtains a correct output for an input data set that had not 

been used before[15]. 

B. Multiple Linear Regression 

This is the classic statistical method for predicting an output 

variable when there are one or more regressors. It is also a 

parametric method because assumes about the functional 

form of the relationship between the response (y) with the 

regressor (x). This means, linear regression assumes the 

relationship between the response (y) with the regressor (x) 

is linear with the form shown in equation 1,  

                , (1) 

where, β0 is the intersection, β1 is the slope and ɛ is the 

random error with zero mean and variance σ
2
[6]. 

In many cases when there are k regressors that help to 

explain Y. In this case, the structure of multiple linear 

regression could be written as equation 2, 



“Comparison of the Prediction Accuracy thru Artificial Neural Networks with Respect to Multiple Linear Regression 

using R” 

620 Carlos Eduardo Belman López
1
, ETJ Volume 4 Issue 07 July 2019 

 

    β
 
 β

 
        β

 
    ɛ (2) 

An important aspect within regression analysis is the 

estimation of the regression coefficients. In the case that 

exits k independent variables, the estimated response is 

obtained from equation 3, also known as the multiple linear 

regression equation, where ŷ is the predicted or adjusted 

value and each regression coefficient ßi is estimated through 

bi. 

Due to the relationship had been assumed as linear, the 

problem of estimating the coefficients is greatly simplified. 

The most common approach to fitting the model is known as 

least squares method.  

ŷ                     (3) 

It is evident that the adjusted regression equation is an 

estimate of the true regression function [18].  

C. Assessing Model Accuracy 

No one method dominates all others over all possible data 

sets. According to the data set, one method may work better, 

but some other method may work better on a similar but 

different data set. Hence it is an important task to decide for 

any given set of data which method produces the best 

results. To evaluate the performance of a regression method 

on a given data set, we need some way to measure how well 

its predictions match the observed data. It is needed to 

quantify how well the predicted response value for a given 

observation is close to the true response value for that 

observation [7]. SSE and R
2
 are measures widely used in 

regression and prediction cases. 

The difference between observation yi and the 

corresponding predicted value ŷi, denoted as        – ŷ
 
, it 

is called residue. The sum of squares of the residuals, or the 

sum of the squares of the error (SSE), is given by equation 

4. 

        
 

 

   

        ŷ
 
  

 

   

 
(4) 

The corrected total sum of squares (CTSS) represents the 

variation in the response values that would ideally be 

explained in the model and is calculated as shown in 

equation 5[6]. 

             
 
  

 

   

 
(5) 

The coefficient of determination (R
2
) is defined as a 

measure of the proportion of variability explained by the 

adjusted model [18]. The way to calculate R
2
 statistic is 

expressed in equation 6. 

 

                

 

(6) 

  

 

II. BODY TEXT 

The goal of this paper focused on comparing and finding the 

method that provides a better prediction accuracy for the 

response variable, when there are several predictors while 

decreasing the reducible error. 

The predictive methods that were compared are least squares 

statistical method and Back propagation network (BP). The 

measures used to evaluate the models were SSE and R
2
.  

Methodology consisted in two validation strategies, the first 

strategy measured only the training error rate using 100% of 

the data set and the second strategy used a validation set 

approach dividing the available set of observations into two 

parts, 50% is for a training set used to fit the models and the 

remaining 50% is for a validation set used to test the fitted 

models with unseen observations. R language was used as 

software tool for constructing the regression models by the 

least squares method, as well as for the training and testing 

the MLP +BP. 

The proposed method, is shown in Figure 2, is a stepwise 

method, which details are below: 

 Step 1. Selecting the dataset to test the 

investigation. 

 Step 2. Training the linear regression model by the 

least squares method using the two validation 

strategies.  

 Step 3. Predicting the response variable using the 

fitted lineal models. First predicting 100% of 

observations and second the 50% of new 

observations. 

 Step 4. Normalize data, parameter selection and 

MLP training using the two validation strategies. 

 Step 5. Predicting the response variable using the 

trained MLP and denormalize the data. First 

predicting 100% of observations and second the 

50% of new observations. 

 Step 6. Developing programming functions to 

calculate the SSE, R
2
 and print the results. 

 
Figure 2. Method. 

 

A. Step 1. Selecting the dataset to test the investigation. 

The data set consists of a group of light trucks with engines 

that use diesel as fuel, that were tested to know if humidity, 

air temperature and barometric pressure have some 

influence on the amount of nitrous oxide they emit (in ppm). 

The emissions were measured at different times and in 

different experimental conditions. The example was 
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extracted from [18].Below, the code to create the data 

matrix: 

# import the packages to be used. 

library(neuralnet) 

# Seed is useful to get same results in random generation 

set.seed(99) 

# data set to be used 

>y<-c(0.9,0.91,0.96,0.89,1,1.1,1.15,1.03,0.77,1.07,1.07, 

0.94,1.1 ,1.1,1.1,0.91,0.87,0.78, 0.82,0.95) 

> x1<-c(72.4,41.6,34.3,35.1,10.7,12.9,8.3,20.1,72.2,24,23.2, 

47.4,31.5,10.6,11.2,73.3,75.4,96.6,107.4,54.9) 

> x2<-c(76.3,70.3,77.1,68,79,67.4,66.8,76.9,77.7,67.7,76.8, 

86.6,76.9,86.3,86,76.3,77.9,78.7,86.8,70.9) 

> x3<-c(29.18,29.35,29.24,29.27,29.78,29.39,29.69,29.48, 

29.09,29.6,29.38,29.35,29.63,29.56,29.48,29.4, 29.28,29.29, 

29.03,29.37) 

> data<-data.frame(y,x1,x2,x3) 

 

The y variable represents the amount of nitrous oxide 

emitted, x1 represents the humidity, x2 represents the air 

temperature and x3 represents barometric pressure. 

For the validation set approach the data set is split in two 

parts, first part contains 50% of data set and it is used for 

training and the remaining 50% contains new observation 

not used during the training only for validation. Sample is 

generated using the 'sample' function in R. 

# Data set is split in two parts, when validation set is used. 

# A sample with 10 observations is used for training, 

# and the remaining for testing. 

> training<-sample(1:20,10)  

B. Step 2. Training the linear regression model by the 

least squares method using the two validation 

strategies. 

Regression analysis was performed using the least squares 

method thru the 'lm' function in R. This function is in the 

core and it is not necessary to import any package. As told 

before two validation strategies were thought. The first uses 

100% of data set, the second just uses 50% of data set. 

# First linear regression model is fitted  

# with 100% of the data set. 

> lmodel1<-lm(y~x1+x2+x3)      

# Second linear regression model is fitted  

#with only 50% of the data set. 

> lmodel2<- lm(y~x1+x2+x3, data[training,])  

C. Step 3. Predicting the response variable using the 

fitted lineal models. 

Function ‘predict’ was used to predict the values of the 

response variable ‘y’, using the fitted linear from step 2. 

First predicting 100% of observations and second the 50% 

of new observations. 

#First fitted model is used to predict 100% of observations  

# already used during the training phase. 

>lrm.predict<- predict(lmodel1, data)  

# Second fitted model is used to predict the remaining 50%  

# of new observations not used during the training. 

>lrm.predict2 <- predict(lmodel2, data[-training,])  

D. Step 4. Normalize data, parameter selection and MLP 

training.  

Neural networks are not easy to train and before starting the 

training, it is necessary to perform some data preparation. It 

is recommended to normalize the data before training an 

ANN. Avoiding normalization can lead to useless results or 

a very difficult training process with problems, such as, that 

most of the time the algorithm will not converge before the 

maximum number of allowed iterations. You can choose 

different methods to scale the data, for example, z-

normalization or min-max scale. The min-max method was 

selected scaling the data in the interval [0,1]. In general, the 

scale in the intervals [0,1] or [-1,1] tends to give better 

results[1].  

Therefore, the first step is to normalize the data by the min-

max method, as shown below: 

# Before to train the ANN model, the first step is to 

normalize 

# the data by the min-max method 

>maxs<- apply(data, 2, max) 

> mins <- apply(data, 2, min) 

> scaled <- as.data.frame(scale(data, center = mins, scale = 

maxs - mins)) 

1) Parameter selection for the MLP: To use an MLP, 

various parameters must be chosen, such as: the number 

of neurons in the input and output layer, the number of 

hidden layers and number of neurons per hidden layer, 

the learning algorithm, the activation function, the 

function for error calculation and function in the output 

layer. 

 Neurons in the input layer. This parameter was 

determined by the number of independent variables 

that form the training data. 

 Neurons in the output layer. The number of neurons 

in the output layer was equal to the number of 

response variables, that is, equal to the number of 

variables to be predicted. 

 Number of hidden layers. Other works have shown 

that a hidden layer is enough for most of the 

problems[10]. 

 Number of neurons in the hidden layer. There is no 

universal rule regarding the number of neurons to 

be used in the hidden layer, although there are 

several empirical rules to determine this number. 

One of these rules with good acceptance says that 

the approximate number of neurons in the hidden 

layer is equal to the average number of neurons in 

the input and output layer[11]. Finally, 3 neurons in 

the hidden layer was used for this investigation. 
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2) MLP Architecture: Finally, for this MLP, 1 hidden layer 

was used, with a configuration 3: 3: 1, which indicates 

that the input layer has 3 neurons, there is 1 hidden 

layer with 3 neurons and 1 neuron in the output layer. 

The rest of the parameters used were back propagation 

algorithm as a learning strategy, hyperbolic tangent 

function as an activation function, the SSE as a function 

for error calculation and linear output, it means, the 

activation function was not applied to the output layer. 

Figure 3 shows the neural network that was trained 

using 100% of data, the training was carried out using 

the 'neuralnet' function of the "neuralnet" package [5]in 

R, as shown below: 

 

# First neural network is fitted with 100% of the data set. 

> mlp<-neuralnet(y~x1+x2+x3,scaled,hidden=3,algorithm= 

"backprop", learningrate=.01, linear.output = TRUE, 

threshold = 0.01,act.fct='tanh')  

# Second neural network is fitted with only 50% of the data 

set. 

> mlp2<-neuralnet(y~x1+x2+x3,scaled[training,],hidden=3, 

algorithm= "backprop", learningrate=.01, linear.output = 

TRUE, threshold = 0.01,act.fct='tanh')  

> plot(mlp) 

 
Figure 3. MLP + BP trained with 100% of data. 

 

E. Step 5. Predicting the response variable using the 

trained MLP and denormalize the data.  

The MLP trained in stage 4 was used to predict the response 

variable. The function 'compute' from "neuralnet" package 

[5]was used to predict the values, as shown below: 

# First MLP is used to predict 100% of observations  

# already used during the training phase. 

>pred.mlp<- compute(mlp, scaled[ , c("x1","x2","x3")])  

# Second MLP model is used to predict the remaining 50%  

# of new observations not used during the training. 

>pred.mlp2 <- compute(mlp2, scaled[ -training, 

c("x1","x2","x3")]) 

The network produced an output in normalized way, so the 

values must be returned to the original scale, in order to 

make a meaningful comparison. 

# Predicted values have to be returned to the original scale, 

# to make a meaningful comparison 

# First prediction of 100% of data set already used in 

training 

> prediction1 <- pr.mlp$net.result*(max(data$y)-

min(data$y)) +min(data$y) 

# Second prediction is for new observations not used during 

training 

> prediction2 <- pr.mlp2$net.result*(max(data$y)-

min(data$y)) +min(data$y) 

F. Step 6. Developing programming functions to 

calculate the SSE, R
2
 and print out the results.  

Functions to calculate SSE, CTSS and R
2
 were provided at 

this step. These functions were used to calculate the 

measures and print the results. 

#Function to calculate SSE for ANN and linear models 

sse<-function(x, y){ 

sum<-0 

for(i in 1:length(x)){ 

sum<-sum+(x[[i]]-y[[i]])^2 

} 

return(sum) 

} 

# training SSE for lineal model with 100% of data. 

sse_lm<-sse(y,lrm.predict) 

# training SSE for ANN model with 100% of data. 

sse_rna<-sse(y,prediction1) 

# test SSE for lineal model with 50% of unseen new data. 

sse_lm2<-sse(data[-training,]$y,lrm.predict2) 

# test SSE for ANN with 50% of unseen new data. 

sse_rna2<-sse(data[-training,]$y,prediction2) 

#Function to calculate CTSS 

ctss<-function(x){ 

sum<-0 

for(i in 1:length(x)){ 

sum<-sum+(x[[i]]-mean(x))^2 

} 

return(sum) 

} 

# training-R^2 for lineal model with 100% of seen data. 

R2_lm<-1-sse_lm/ctss(y) 

# training-R^2 for ANN model with 100% of seen data. 

R2_rna<-1-sse_rna/ctss(y) 

# test-R^2 for lineal model with 50% of unseen new data. 

R2_lm2<-1-sse_lm2/ctss(data[-training,]$y) 

# test-R^2 for ANN model with 50% of unseen new data. 

R2_rna2<-1-sse_rna2/ctss(data[-training,]$y) 

#Print outputs 

sse_lm 

sse_lm2 

sse_rna 

sse_rna2 

R2_lm 
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R2_lm2 

R2_rna 

R2_rna2 

 

III. RESULTS 

The results are explained below and showed in Table 1: 

 Training error rate. It measured just the training 

error rate using 100% of the data set. 

o The least squares statistical method obtained 

an SSE = 0.050478 and R
2
 = 0.80.  

o ANN model obtained SSE = 0. 02011639 and 

R
2
 = 0. 92048. 

 Validation set approach. It divided the available set 

of observations into two parts, 50% was a training 

set intended to fit the models and the remaining 

50% in a validation set to test the fitted models 

o The least squares statistical method obtained 

an SSE = 0. 05648 and R
2
 = 0. 6243.  

o ANN model obtained SSE = 0. 62432 and R
2
 = 

0. 8496. 

 

Table 1. SSE and R
2
 for the Models. 

 

Linear 

Model 

MLP + 

BP 

Sample size 

for training 

SSE 0.05048 0.02012 100% 

R
2
 0.80046 0.92048 100% 

SSE 0.05649 0.02261 50% 

R
2
 0.62432 0.8496 50% 

 

IV. CONCLUSIONS 

Model selection is an indispensable step in the process of 

developing a prediction model or a model for understanding 

the data.ANN are structures with mathematical and 

statistical behavior and the capacity of learning. ANN are 

flexible tools that have already shown application as 

function estimators and now have increased the interest in 

using them as prediction tools in areas such as Data Mining 

and Machine Learning. For these purposes, R language is a 

flexible, open source and increasingly used tool in data 

science area when you can train statistical and artificial 

intelligence models. It is also easy to use, provides very 

good performance and does not consume a lot of 

computational resources. 

Based on the results, it was concluded that MLP + BP can 

significantly decrease the reducible error and improve the 

prediction accuracy of the response variable according to the 

measures SSE and R
2
. The BP network obtained better 

performance according to the measures in both validation 

strategies (first measuring just the training error rate and 

second considering a validation set approach not used during 

the training). The two validation strategies made it possible 

a comparison between the training error rate and testing 

error rate for the models. It is important to highlight the 

prediction accuracy for new observations not used during 

the training, instead of how well the methods work with the 

training data. 

Researchers interested in following this work could 

concentrate on applying the models on large volumes of data 

(Big Data) and observe the prediction accuracy, training and 

execution time. About ANN setting, it may be considered 

using the MLP with another training strategy, for example, 

resilient back propagation or even use another ANN model, 

such as, Radial Base Function (RBF).Regarding the 

measures used to evaluate the prediction accuracy, the 

PRESS statistic and R
2

predmay be considered for assessing 

both statistical and ANN models. 
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