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Abstract: Wind power has become the renewable energy with more participation in countries looking for environmental 

sustainability. Wind power is transformed into electric power by means of wind turbines, which are generally grouped in wind 

farms to exploit the relative benefits to economies of scale. The efficient design of a wind farm requires a set of wind turbines to 

be distributed to produce the maximum amount of installed energy. One of the typical factors to be considered for the optimal 

design of a wind farm is the interaction between the fields of operation of the wind turbines or the wake effect; wake effect 

provokes a considerable loss of power, so it is important when designing a wind farm to consider said wake effects in such a way 

as to maximize the expected energy production. The wind farm layout optimization problem is considered an NP-hard 

optimization problem, as there is no algorithm that can solve it in polynomial computation time. This research proposes the 

implementation of an evolutionary metaheuristic to find the optimal allocation of turbines in wind farms, considering the wake 

effect. In order to find those parameters of the genetic algorithm that provide high quality solutions in reasonable computation 

time, a factorial experimental design 2
5
 was used. The results of the solved instances demonstrated that the metaheuristic method 

and the design of experiments technique provide different configurations that improve up to 1% in both utility and power 

generation than the previous configurations proposed in the literature in reasonable computing times.  

Keywords: wind farm, wake effect, artificial intelligence, combinatorial optimization, genetic algorithms, design of 

experiments, renewable energy, metaheuristic. 

 

I. INTRODUCTION 

Wind power is considered to be the fastest growing source 

of renewable energy since worldwide production grew 

significantly between 2005 and 2008, reaching 121. 2 GW 

of total installed capacity. Which has made this green energy 

an extremely interesting topic in the last few years. 

Environmental sustainability demands a considerable 

reduction in the use of fossil fuels, which are extremely 

contaminating and unsustainable, so ambitious plans have 

been proposed for the production of green energy, including 

wind power [1]. Wind power is transformed into electric 

power by means of wind turbines, which are generally 

grouped in wind farms to exploit the relative benefits to 

economies of scale, such as lower costs of installation and 

maintenance [2]. A wind farm’s design is an important 

component in guaranteeing the profitability of a wind farm 

project. A bad design or an unsuitable wind turbine layout in 

wind farms might result in a lower production of wind 

power compared to expected production; higher 

maintenance costs; among other unsatisfactory aspects [3].  

The wind farm layout optimization problem consists of 

finding an optimal allocation of wind turbines on a 

particular site that maximizes energy production. In practice 

this is an extremely difficult problem, because of the size of 

the instances in real applications, having to take into account 

a huge number of complex conditions, together with the 

presence of nonlinear factors [1], which amount to a 

considerable financial investment owing to the high 

consumption of necessary resources (time, labor, equipment, 

etc) required for the optimal design of a wind farm. The 

wind farm layout optimization problem is considered to be 

an NP-hard optimization problem, as there is no algorithm 

that can solve it in polynomial computation time. Because of 

the computation resource needed to solve this optimization 

problem, exact algorithms would an unreasonable amount of 

computation time [4]. Therefore, in view of this complexity, 

rigorous optimization approaches such as: branch and 

bound, dynamic programming, linear programming, etc. can 

be used in smaller-scale instances [5]. Consequently, a 

metaheuristic approach needs to be used, except in situations 

where the wind farms are very small [6]. There are a series 

of optimization techniques and methods that have been 

successfully used in the wind farm layout optimization 

problem, among which genetic algorithms [7-8] particularly 

stand out. 
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One of the typical factors to be considered for the 

optimal design of a wind farm is the interaction between the 

fields of operation of the wind turbines, known as the wake 

effect, which is treated as a non-linear phenomenon. 

According to estimates, the average loss of power resulting 

from the wake effect between turbines in large offshore 

wind farms is about 10-20% of the total energy production 

[9]. However, said rates of power loss also, to a greater 

extent, depend of the particular conditions and 

characteristics of the wind farm such as: wind speed, 

distance between wind turbines, the model of wind turbines, 

etc.  

Wake effect is an interaction-derived phenomenon that 

refers the situation that arises when two neighboring wind 

turbines are located at a certain distance, and a certain wind 

current comes from a dominant direction with a certain 

initial speed and this current interacts with the first upstream 

wind turbine, said wind turbine creates turbulence in the 

wind arising from its absorption of kinetic energy, causing 

said wind to loss considerable speed and force. The 

weakened wind, as it continues its course will be absorbed 

by a second wind turbine downstream, which shall have at 

its disposal less kinetic energyto operate, causing a notable 

drop in the rated output (Megawatt, Kilowatt, etc.) of its 

power production. 

Therefore, on a large wind farm wind, wake effect 

provokes a considerable loss of power [10], so it is 

extremely important when designing a wind farm to 

minimize said wake effects in such a way as to maximize 

the expected energy production.   

The modeling of the wake effect phenomenon fulfills 

an important function in understanding the behavior of wind 

turbulence when it interacts with a set of wind turbines on a 

wind farm. It also makes it possible to quantify the wind 

speed deficits created by said effects in order to later 

calculate the loss of power corresponding to the incident 

speed deficits on each one of the affected wind turbines. In 

[4], a compilation and review of the different wake effect 

models in existence was done, comparing the different 

models to demonstrate that the Jensen model is a good 

option for solving the wind farm layout optimization 

problem, owing to its simplicity and relatively high level of 

precision. For the purpose of this paper, we only consider 

the Jensen model for calculating the speed deficits caused by 

wake effects among two or more wind turbines, therefore 

the total of these deficits throughout the wind farm is 

considered to be the sum of the speed deficits present. In the 

wind farm optimization problem, a distant wake effect is 

more significant than a nearby wake effect [4]. Despite the 

Jensen model being an approximation of the real 

environment, it gives satisfactory results for the purposes of 

this research. 

One main advantage of this model is that it offers the 

possibility of implicitly dealing with a considerable number 

of wind scenarios, something that, for practical effects, is a 

necessity [1]. 

Therefore, the purpose of this paper is to optimize the 

positions or locations of the turbines in such a way that we 

get an optimal layout or design of the wind farm, ensuring 

that the maximum amount of installed power is produced by 

the wind farm, taking the reductions of energy caused by the 

wake effect into account. We propose to achieve this by 

using a metaheuristic approach, specifically the 

implementation of genetic algorithms, which in turn is 

combined with the design of experiments technique to 

provide good quality solutions within a reasonable 

computation time for large-scale wind farm layout scenarios. 

 

II. MATERIAL and METHODS (BODY TEXT) 

The first part of this section gives a brief explanation of the 

construction phases of a wind farm project.  The second part 

sets forth the discretization strategy to reduce the problem's 

complexity. A brief explanation of wind turbines is given in 

the third part. The fourth part presents the wake effect model 

we used.  While lastly, the fifth part of this section shows 

the Genetic Algorithm adaptation used to solve this 

problem. Likewise, a factorial experimental design is at two 

levels is carried out with the algorithm to find the proper 

parameters that will provide high quality solutions for the 

instances considered in this research in a reasonable 

computation time. The experimental design and its results 

are presented in the results section. Design-Expert (Version 

7.1.6 Trial) software is used for the experiment. 

CONSTRUCTION of a WIND FARM 

This section briefly explains the stages in the 

construction of a wind farm project. It is worth mentioning 

that, for the purposes of this paper, we have excluded the 

development of the first two stages as we are focusing on 

optimizing:  installed wind farms, those that have at least an 

initial design or layout or those that are at the stage of 

planning their installation. In other words, this research is 

mainly focused on the third stage. 

The first phase in the construction of a wind farm is to 

find a windy site to ensure the profitability of the project. 

According to [11], there are two types of wind farms:  land-

based and offshore ones. This research only considers wind 

farms built on land. 

In the second stage the owner of the land is contacted 

to draw up the corresponding agreements. In parallel with 

this stage, the wind farm developers install measurement 

devices and determine the distribution of the wind. 

Furthermore, the number of turbines and the models to be 

installed are defined in this stage. 

The third stage consists of solving the wind farm 

design optimization problem to ensure that maximum wind 

power is obtained. 
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WIND FARM DISCRETIZATION 

In order to reduce the complexity of the wind farm 

design optimization problem and thus get good quality 

solutions, discretization is applied to the wind farm by 

means of small squares or small rectangles. This is because 

this paper only considers totally flat wind farms that are 

either square or rectangular and are divided into small 

square or rectangular cells. Likewise, this research only 

considers wind turbines that are all of the same height. The 

centroids or points inside the squares represent the possible 

locations where a turbine could be installed.  

Figure 1 presents a proposed design (scenario) for a 

wind farm of 600 m x 600 m, showing its discretization for 

the purpose of finding the precise center of each square, the 

possible location or ring where a wind turbine could be 

assigned or installed. For this specific design, we have a 

predefined set of 25 possible discrete locations with 

dimensions of 120 m x 120 m, in 11 of which a wind turbine 

is allocated or installed (represented by red filled in rings). 

For this scenario in particular, the number of possible 

combinations or ways of designing the wind farm amounts 

to 4,457,400. A specific wind with an initial speed    and a 

dominant North-to-South direction is involved in the 

proposed wind farm scenario. These discretization strategy 

is very useful as, if it is not discretized, the algorithm used 

would take a very long time to find a solution within a 

continuous solution space. 

 
Figure 1. Discrete wind farm 

 

WIND TURBINES 

Wind turbines are electrical devices that extract kinetic 

energy from the wind to transform mechanical energy into 

electric power.  

The main characteristics of a wind turbine that are 

linked to wind farm design optimization are given in Table 

1.  

 

 

Table 1. Main characteristics and nomenclature 

Characteristic Nomenclature 

Cut-in speed    

Cut-out speed    

Rotor diameter d 

Hub height Z 

Rated speed - 

Rated power - 

Power curve - 

 

When a wind impacts on a turbine and its speed is 

higher than   , the blades of the turbines start to turn and 

generate power (energy). The power produced ascends to 

the cube at the rate of the wind speed until the wind speed 

reaches the rated speed, at which point the wind turbine’s 

control system adjust the rhythm of the blades for the power 

that is produced to be uniform and equivalent to the rated 

power. When the wind speed reaches   , the wind turbine 

automatically stops, owing to the fact if it works at a speed 

that is equal to or greater than this speed, its electrical and/or 

mechanical components will be damaged. Another of the 

significant main characteristics is the power curve, which 

provides the power produced at every wind speed 

between  and   . Figure 2 shows an example of the power 

curve of a SENVION wind turbine (   = 3 m/s,    = 22 m/s, 

rated power = 3,200 kW, rated speed = 12 m/s). 

 
Figure 2. Power curve of a SENVION Model 3.2M114 

NES wind turbine 

 

WAKE EFFECT 

As has already been mentioned, the wind turbines 

extract kinetic energy from the wind, whereby when the 

wind passes over the first turbine it will be slowed down, 

causing less energy production in the second turbine 

installed behind it. Said phenomenon of aerodynamic 

interference between turbines is called the wake effect. The 

modeling of this phenomenon has been the subject of a great 

deal of research giving rise to a variety of models for 

studying its characteristics, such as: speed at which the wake 

effect expands; diameter of the effect; speed variations at a 

certain distance, etc. [4] presents a compilation of the 
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available models, which are divided into two main groups:  

Kinematic Models and Wind Farm Models. According to 

[4], the model that stand out is the Jensen model, which 

belongs to the family of Kinematic Models. For this paper, 

we consider the Jensen model that is proposed in [2], which, 

in turn, is a model equivalent to the one proposed in [12].   

The use of this model is justified as a variety of s 

studies have demonstrated that the model is computationally 

efficient and has a high degree of precision for the purposes 

it has been set. 

The model consists of a cone with a linear expansion 

of the diameter of the wake effect and a linear decrease of 

the wind speed deficit inside wake effect. For a better 

explanation of the model, see Figure 3. 

 
Figure 3. Schematic representation of the wake effect 

 

Figure 3 shows a wind incident from left to right at a 

certain speed    and interact with a turbine (represented by 

a small vertical line in bold on the left of the Figure). The 

radius of this turbine’s rotor is   . At a particular distance x 

in the same direction as the wind, the wind speed is U and 

the radius of the wake (initially rr) is deduced as        

   . 

Scalar α determines that the wake effect expands as 

fast as it advances in relation to the distance and this is 

denoted as: 

  
   

  
 

  

                              (1) 

where z is the hub height of the turbine producing the 

wake effect and z0 is a constant, known as surface 

roughness, that depends on the characteristics of the surface 

of the land. Let be I the position of the turbine that creates 

the wake effect, j the position affected by position i,  the 

pure incident wind speed (without turbulence), and   the 

wind speed available at j. Then:   

                                  (2) 

 

where    is the speed deficit that is induced at position 

j by the wake effect created by i. therefore vdij is calculated 

suing the following equation: 

      
  

     
   

  
 
                          (3) 

The term a that appears in the numerator is known as 

the axial induction factor and is calculated as follows: 

                                   (4) 

 

In (4) the term    is the constant thrust coefficient, 

which assesses the proportion of energy captured when the 

wind passes through the blades of the wind turbine [13]. The 

manufacturers of wind turbines normally provide data and 

information about the thrust coefficient. 

In (3), the term rd,  that is presented in the denominator, 

is called downstream rotor radius (radius of the downstream 

wake effect) and is calculated with the following expression: 

       
   

    
                           (5) 

The term     is the distance between positions iand j. 

As most the wind farms have a large number of wind 

turbines installed, the wake effect can be interwoven and 

accumulated. These accumulations of wake effect may 

affect one or more downstream turbines at the same time. In 

the Jensen model, the total speed deficit          in a position 

j that is affected by more wake effects is obtained by using 

the following expression:  

                  
 

                    (6) 

 

where    ) is the set of wind turbines that affect position j 

with a wake effect. Therefore,         is substituted in (2) in 

the place of     to calculate   .  

 

GENETIC ALGORITHM 

The authors in this article use the Genetic Algorithm 

(GA) free code developed by [14] that is available in the 

‘windfarmGA’ package (Genetic Algorithm for Wind Farm 

Layout Optimization) (Version 1.2.1) of the Rstudio 

software (Version 1.1.456). The ‘windfarm GA’ package 

was downloaded from [15]. The GA included in the package 

is used to find the best wind turbine layout in a given wind 

farm employing the Jensen model to consider the wake 

effect. The package considers the Jensen model to assess the 

wind speed deficits between the affected turbines. Likewise, 

the package models full and partial wake effects [14]. As a 

global search tool, GA can avoid local optimal solutions by 

randomly generating solutions [16]. Genetic algorithms 

(GA) imitate the biological evolutionary process of 

“survival of the fittest”. Every feasible solution for a 

problem is treated as a chromosome that has been encoded 

by a set of genes. Binary genetic codes are the most 

common (0,1) [17]. In this research, the value of 0 in a 

chromosome represents the fact that there is no wind turbine 

installed in a centroid or possible location. While the value 

of 1 in a chromosome represents the fact that there is a wind 

turbine installed in the corresponding centroid. Therefore, 

the genetic algorithm from the package used in this research 

first randomly generates a set of binary chains or 
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chromosomes. Each chromosome is an individual that 

represents a design or layout of the wind farm being studied. 

The set of individuals is called the population.  

The genetic algorithm mainly works with three genetic 

operators: selection, crossover and mutation. The selection 

operator consists of selecting and retaining a certain number 

of individuals that can generate better fitness values in every 

iteration (generation) according to the predefined selection 

probability or the chosen selection method. In the 

optimization package used in this research, different 

adjustments can be made to the parameters or input 

variables such as, for example, in the “selstate” selection 

variable where the possible input values or selection 

methods are “FIX” and “VAR”. When the algorithm 

performs the selection process, based on the fitness values, it 

eliminates the four worst individuals from the population. 

Once the individuals (parents) have been selected, the 

algorithm will perform the crossover on the basis of 

probability or the chosen crossover method. The crossover 

operator does the job of combining the individuals’ genetic 

information in order to be able to procreate children from 

the selected parents and using it to find individuals that are 

fitter or better assessed in terms of fitness. Likewise, the 

crossover method’s input variable “crossPart1” can be 

defined as “EQU” or “RAN” as desired. Likewise, the 

mutation operator is performed after the crossover, whose 

function is to increase the diversity of the individuals to 

avoid a premature convergence on local optima. In the 

Rstudio package, the parameter for the mutation rate can 

also be adjusted in accordance with the percentage of 

individuals to be mutated in each iteration. After selection, 

crossover and mutation, the fitter individuals or the ones 

with better results are transferred to the next one to the next 

generation. At the same time, the individuals that are less fit 

are removed. The elitist selection may also be considered in 

the algorithm. If the elitism method is activated, the “nelit” 

input variable determines the number of individuals that 

must be saved to form part of the elite population. This elite 

population is not saved separately. However their fitness 

values increase by a factor of 10, mainly to simplify 

implementation. The probability of these individuals being 

selected is, therefore, much higher than that of the rest of the 

individuals, although the selection process will still be 

random. 

In [14] the characteristics and considerations of the 

selection, crossover, mutation and elitism methods 

considered in the algorithm package are explained in detail. 

Likewise, [14] gives a detailed description of other 

adjustable parameters in the package, that have nothing to 

do with the genetic algorithm but form an essential part of 

optimal wind farm design, such as: Grid Method and 

Surface Roughness. 

 Finally, the algorithm has two stopping criterion: the 

algorithm stops when the number of generations exceeds the 

predefined number of iterations in the “iteration” input 

variable or when a wind farm design is found with 100% 

efficiency. 

 Equation (7) shows the objective function to be 

optimized where the fitness values of each one of the 

solutions (individuals) generated by the algorithm are 

assessed. 

                                      

 

   

 

s.t. 

           

Where: 

   : Instant power or energy generated by turbine j, owing to 

the interference of i (continuous in units of power). 

 = Total power produced (continuous in units of power). 

 = Number of turbines to be installed. 

   

  
                                           

                                      
                                                                                                                                

  

Genetic Algorithm implementation strategy for the scenario 

proposed in section of Materials and Methods: 

1. Randomly generating an initial population of 

individuals P that shall be called parents. In the 

package used, the algorithm randomly generates for the 

initial population of 100 individuals or chromosomes. 

Each individual consists of a binary chain of 25 

positions or genes. Consider that a value of 1 in one 

position represents a turbine installed in the 

corresponding centroid and 0 another case. To locate a 

turbine in the discrete wind farm, the possible locations 

or centroids are enumerated in rows. Figure 4 shows an 

example of 5 randomly generated individuals (a-d), 

where each one corresponds to a specific wind farm 

design or layout. 

 

 
Figure4. Randomly generated individuals for the initial 

population 

 

2. Calculate the fitness function F(x)as per equation (7) 

for each one of the parents of P. 

3. The proportional values obtained from the assessment 

of the objective function of the individuals (parents) 
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shall be ordered from the lowest to the highest, by 

means of the following division: 
    

     
. 

4. While (according to the shutdown criteria). 

5. Select a population for the operator of variation 

crossover:  “FIX” Method or “VAR” Method. The 

Roulette Wheel Selection Method is used to select, 

according to the chosen selection method, the fitter 

individuals (parents) to create pairs and procreate the 

children. 

6. Crossing the individuals (parents): “EQU” Method or 

“RAN” Method. Therefore, as per the selected method, 

two parents are chosen to share their genetic 

information. For example, Figure 5 shows two 

individuals presented in step 1. 

 
Figure 5. Parents selected to share their genetic information 

in position 10 of the chromosome 

 

The parents (a) and (b) will procreate two new children 

(A-D, C-B) with new genetic information, in other words, 

new chromosomes with shared genes. Figure 6 shows the 

new individuals (children) created from the parents. 

 
Figure 6. New procreated individuals 

 

7. Mutating the children at a certain rate of probability. 

According to [14], the mutation rate would have 

treated as fairly small, so a range of 0.01% to 0.10% is 

recommended and even complementing a fixed 

mutation rate with a variable mutation rate is also 

recommended. In the chromosome or binary chain of 

the child selected for mutation, a position will be 

chosen by random probability and the gene will be 

modified in said position. If it contained a value 0, this 

is changed to 1 and vice versa, as the case may be. 

Figure 7 gives an example of mutation in position 14 

of child #1 procreated at step 6.The crossover and the 

mutation function change the number of wind turbines 

in the wind farms. However, the algorithm is designed 

to operate with a constant number of turbines. This 

occurs as the fitness value of an individual is the 

expected energy production. 

 
Figure 7. Child #1 mutated in position 14 

8. Calculate the fitness function F(x) of the procreated 

children.  The proportional values obtained from the 

assessment of the objective function of the new 

individuals (children) shall be ordered from the lowest 

to the highest, by means of the following division: 
    

     
. 

9. Insert children in P. The strongest or fittest children 

will be replaced by weak parents, P will be constantly 

updated until the individual with the best fitness value 

assessed in the objective function is procreated. Let us 

call this individual the best solution phenotype. The 

algorithm produces the phenotype found in all the 

iterations. 

 

Table 2 shows the Genetic Algorithm’s pseudocode. 

 

Table 2. Genetic algorithm’s pseudocode 

Genetic Algorithm 

1: t← 0; /* Iteration counter */ 

2: initialize (P) /* Initialize the population */ 

3: whilethere is no stopping criterion (t, P)do 

4:   Parents ← selection (P); /* Select parents */ 

5:   Children←reproduction (Parents) /* Crossover */ 

6:   mutation(Children) /* Mutate the children */ 

7:   evaluate(Children) /* Evaluate the children */ 

8:   newGeneration = replacement (P, Children) 

/*replaces the population with the current */ 

9:    t ← t + 1 /* One more iteration */ 

10:  end while 

11:  Return: best solution found. 

 

III. RESULTS and DISCUSSION 

Two instances proposed in [14] are solved in this section. 

Case 1 corresponds to one medium instance. Case 2 

corresponds to an instance of 100 possible locations and 30 

turbines to be installed.  Three varieties of Case 2 (Case 

2(a), Case 2(b) and Case 2(c)) solved. The characteristics for 

each variant in Case 2 are given at the start of each 

subsection.  

In order to find the right parameters, in other words 

those parameters that provide high quality solutions in 

reasonable computation time for the cases being solved in 

this research, an experimental design    is developed in 

Design Expert, where we consider 5 factors of manipulation 

in the Genetic Algorithm and 2 levels for each of the factors. 

The response variables contemplated in the experiment are 

Energy in kWh and CPU Time in seconds. The experiment 

is replicated 3 times. Likewise, 8 center points are 

considered for determining whether or not there is a non-

linear effect or curvature between the response variables and 

the factors included in the experiment. We decided to use a 

   design as the factors being considered have two levels 

each and because a full factorial design does not correlate 

the main factors or the interactions as in the case of 
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fractional factorials. It was also decided to use 3 replicas to 

estimate the mean and standard deviation of the data 

obtained in the response variables when the treatments were 

run. Additionally, to justify the use of 3 replicates and 8 

central points in the experiment, it was found in Minitab that 

the design power for both response variables considering 

this number of replicates and this number of central points is 

greater than 99%, so it is assumed that the probability of 

correctly finding a significant effect is greater than 99%. 

The experimental design was applied to Case 1 and 

then we take the parameters that give the maximum energy 

for this instance and propose their use in the variants of Case 

2. Table 3 shows the factors and levels of factors considered 

in the experiment. Figure 8 shows a fragment of the 

experiment done in Design-Expert. It is worth mentioning 

that the experiments were carried out in parallel computing 

with 2 cores in a computer with the following specifications: 

Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz, 2701 Mhz, 

2 main processors, 4 logical processors and installed 

physical memory (RAM) of 8GB. 

 

Table 3. Factors, types and levels of factors for the 

experiment 

 

Factor Name 

Type Low 

level 

High 

level 

Crossover 

method 

Categoric EQU RAN 

Selection 

method 

Categoric FIX VAR 

Elitism Categoric TRUE FALSE 

Mutation rate Numeric 0.01 0.1 

Number of 

iterations 

Numeric 50 100 

 
Figure 8. Fragment of experiment 2

5
 with 3 replicas and 8 

center points 

 

Therefore, having performed the experiment’s 104 total runs 

we discover that 5 runs or parameter configurations manage 

to reach the maximum expected energy for Case 1. The 

maximum expected energy for Case 1 is 17307.26 kWh. 

Table 4 shows the 5 runs in the experiment that achieve the 

maximum expected energy for the wind farm instance with 

its respective computation time. Note that standard runs 61 

and 62 correspond to two replicas out of the three that were 

performed using that parameter configuration. The use of 

these 5 runs is proposed to optimize the variants of the 

instance in Case 2. To optimize the corresponding instances 

of Case 2 standard run 64 is especially used, changing the 

mutation rate to 0.006 so that the algorithm performs an 

efficient search. 

 

Table 4. Configurations of the factors that achieved maximum expected energy in Case 1 

Std Run Crossover 

method 

Selection 

method 

Elitism Mutation 

rate 

Number of 

iterations 

Power kWh CPU Time 

(sec) 

19 27 EQU VAR TRUE 0.01 50 17307.26 170.64 

61 45 EQU FIX TRUE 0.01 100 17307.26 217.39 

62 43 EQU FIX TRUE 0.01 100 17307.26 213.64 

64 26 RAN FIX TRUE 0.01 100 17307.26 271.85 

68 8 EQU VAR TRUE 0.01 100 17307.26 352.23 

 

Likewise, as part of the factorial experiment developed 

in Design Expert, the Analisis of Variance (ANOVA) was 

performed for each one of the response variables considered: 

Energy and CPU Time. Figure 9 is the ANOVA Table 

corresponding to response number 1’s variable: Energy 

kWh. The ANOVA shows the factors and interactions that 

are significant or have an influence on this response 

variable. In this case, all the main factors (A, B, C, D and E) 

as well as the interactions CD, DE, BCD and ACDE are 

significant. Moreover, it is possible to appreciate that there 

is no evidence of curvature in the experimentation region. 

 

Table 5 gives the values of the main analyzed statistics 

corresponding to response variable 1. The    statistic is the 

coefficient of determination. In this case, the   value tells 

us that the 67.32% variability in the Energy is explained by 

the factors that are included in the model. The   -adj 

statistic is the adjusted coefficient of determination and is a 

means of identifying whether we have included insignificant 

factors in the model if they dramatically differ from the 

value of   . In this case, the values of    and   -adj do not 

differ significantly then is verified that the appropriate 

factors have been included to the model. The Adeq Precision 
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statistic is a measurement of the amount of variation or noise 

in the model, the desired value is 4 or higher. In this case, 

the Adeq Precision value is 11.504, which indicates that the 

amount of variation in the model corresponding to response 

variable 1 is minimum. 

 
Figure 9. ANOVA for response variable 1: Energy 

 

Table 5. Statistics corresponding to response variable 1: 

Energy 

   .6732 

  -adj .6390 

Adeq Precision 11.504 

Likewise, Analysis of Variance is performed for 

response variable number 2: CPU Time. Figure 10 gives the 

ANOVA table, which indicates that the main factors B and 

E together with their interaction have an influence on the 

CPU Time used by the algorithm. Likewise, the ANOVA 

reveals that there is no curvature in the experimentation 

region.  

Table 6 provides the corresponding analysis statistics. In this 

case, the    statistic indicates that the 85.77% of variability 

in CPU Time is explained by the factors that are included in 

the model. As the    value and the   -adj value do not 

dramatically differ, it is assumed that the appropriate factors 

have been included in the model. Lastly, the Adeq Precision 

statistic contains a value of 27.805, which indicates that the 

amount of variation in the model is minimum. 

 

 
Figure 10. ANOVA for response variable 2: CPU Time 

Table6. Statistics corresponding to response variable 2: 

CPU Time 

   .8577 

  -adj .8534 

Adeq Precision 27.805 

 

Case 1 

Table 7 gives the input values corresponding to Case 1, 

which is proposed in [14]. To solve this case note that in 

Table 7 considered the parameters of standard run 61 that 

was presented in Table 4. Figure 11 shows the 

characteristics and dimensions of the wind farm to be 

optimized. Said figure shows a discrete wind farm with 36 

squares, where every centroid of every square represents a 

possible location for a turbine. The dimension (resolution) 

of each square is 90m x 90m. In accordance with the input 

variable “n” that is specified in Table 7, 12 turbines that are 

planned to be installed in said wind farm. Figure 12 

corresponds to the wind rose, according to the information 

included in “data.in” found in Table 7. The “data.in” 

information indicates the direction and speed with which the 

wind considered for this case is propagated. For this 

scenario, an incident wind is considered with a uniform 

direction of 0° (North-South) and a constant speed of 12 

m/s. 

 

Table 7. Input values for Case 1 

 

Input Variable Value 

n (Number of turbines to be 

installed) 

12 

SurfaceRoughness(meters) 0.14 

Rotor Radius(meters) 30 

fcrR(value for grid spacing) 3 

RotorHeight(meters) 60 

referenceHeight(meters) 60 

Iteration 100 

Proportionality 1 

mutr(Mutation rate) 0.01 

vdirspe(wind speed and direction) data.in(12 m/s at 

0°) 

Topograp "FALSE" 

Elitism "TRUE" 

Nelit 6 

Selstate “FIX” 

crossPart1 “EQU” 

trimForce “FALSE” 
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Figure11. Characteristics and dimensions of the wind farm 

to be optimized 

 
Figure 12. Wind rose for Case 1 

 

Therefore, considering all of the above, the best layout 

solution for this case is shown in Figure 13. This is 

considered to be the best possible solution as there is no 

other wind farm design or layout that provides a higher total 

amount of energy. Therefore, this solution is considered to 

be the best layout solution for Case 1. Likewise, it is 

possible to appreciate in Figure 13 the points inside the 

squares where the wind turbines are installed in accordance 

with the optimum solution found. The colors and values that 

are given under these points indicate the loss of power 

caused by the wake effect. The points where the energy 

deficits caused by the wake effect are weak are represented 

in green, while the points where the energy deficits caused 

by the wake effects are high are shown of red. Figure 13 

also shows the minimum distance and the average distance 

at which all the turbines are to be found according to the 

solution that has been found. The CPU time that the 

algorithm invested in finding such solution, using parallel 

computing with 2 cores, was 227.67 seconds. 

Figure 14 shows that, in iteration number 61, the 

algorithm converged on the best possible solution. Figure 15 

shows the best evaluated individual or solution vector for 

Case 1, which agrees with the best wind turbine layout 

presented in Figure 13. On that vector we can see a 

chromosome or individual with 36 positions. Each one of 

these positions represents a centroid or a possible location 

for a turbine so we have a solution vector with 12 1’s in 

total, which represents the total number of turbines planned 

to be installed. 

Figure 16 shows the same solution found by the 

algorithm from a perspective is more real or similar to a 

wind farm. It is also possible to appreciate in said figure that 

the turbines shaded in green are the ones that are less 

affected by the wake effect, while those shaded in red are 

more affected by the wake effects.  

Figure 17 reports the progress of the amount of energy 

produced in each one of the generations. In said figure, the 

maximum energy value achieved by an individual in each 

generation is represented by the color green, the average 

energy values by blue and the minimum energy values by 

red. 

Figure 18 indicates the number of individuals from 

each population in all the generations. The numbers of 

individuals counted after the fitness, selection and crossover 

function. The number of individuals in each iteration is the 

same for both the fitness function and the crossover 

function. The black points represent the number of 

individuals after the fitness function, the red points the 

number of individuals after the selection function and the 

green points indicate the number of individuals once the 

crossover has been performed. 

Figure 19 shows the evolution of the wind farm’s 

energy efficiencies during all the generations or iterations. 

The maximum values found for energy efficiency are 

represented by green, the average values by blue and the 

minimum values by red. Likewise, said figure shows the 

influence of mutation in terms of the energy efficiency 

values. The vertical black lines indicate the iterations where 

the variable mutation rate is used instead the fixed mutation 

rate. In this case, the algorithm resorted to the variable 

mutation rate 7 times to explore others corners of the 

feasible solution space.  

Figure 20 shows the evolution of the wind farm’s 

energy efficiencies during all the generations. Vertical green 

lines are used to illustrate the generations where the 

percentage of selection was higher than 75%. According to 

Figure 18, some iterations had a fairly low number of 

individuals, in other words less than 20 individuals as the 

algorithm removes 4 of the worst individuals in every 

iteration. Therefore, in order to avoid the extinction of the 

population, the percentage of selection was set at 100% and 

the rate of crossover points was increased. Moreover, said 

figure shows that in order to avoid extinction, on 8 

occasions the algorithm selected 100% of the individuals to 

later cross them and create more individuals.  

Figure 21 gives the energy efficiencies for each one of 

the generations and vertical red lines are drawn for the 

generations where the number of crossed parts was higher 
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than 2. According to the figure, the algorithm used 3 crossed 

parts on 5 occasions for the same purpose of avoiding the 

extinction of the population. This was enough as, according 

to Figure 18, as soon as the number of crossover points were 

increased, the size of the population grew quickly, as 

occurred in iteration t=48.  

 
Figure 13. Best solution found by the algorithm 

 
Figure 14.  Best solution found since iteration 61 

 
Figure15. Solution vector that represents the best solution 

 

 
Figure 16. Alternative representation of the optimal wind 

farm design 

 
Figure17. Progress of the energy fitness values 

 
Figure18. Number of individuals in each iteration 

 
Figure 19. Influence of the mutation variable on energy 

efficiency values 
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Figure 20. Influence of the selection of individuals on 

energy efficiency values 

 
Figure 21. Influence of the crossover of individuals with 3 

crossover parts 

Case 2 

Case 2 corresponds to an optimization problem 

proposed in [14]. The characteristics and dimensions of the 

wind farm referred to in this subsection are used in the 

following subsubsections where the variants corresponding 

to Case 2: Case 2(a), Case 2(b) and Case 2(c) are solved. At 

the start of each subsubsection the pertinent changes in the 

input variables or parameters are described. The wind farm 

considered in the variants of Case 2 consists of a total area 

of 2km x 2km, which is divided into 100 squares, each with 

a resolution of 200m x 200m, as shown in Figure 22. Figure 

23 corresponds to the wind rose, which shows the direction 

and speed at which the wind considered in the variants of 

Case 2 is propagated. These cases consider an incident wind 

with a uniform direction at 0° (North-South) and a constant 

speed of 12 m/s. 

 
Figure 22. Characteristics and dimensions of the wind farm 

 
Figure 23. Wind rose used for the variants of Case 2 

 

Case 2(a) 

Using the input values included in Table 8 and the 

wind farm data given in the previous subsection, this variant 

of Case 2 is optimized. Notice that the parameters 

corresponding to standard run number 64 shown in Table 4 

are given in Table 8. To get a higher quality solution for this 

instance we decide to use a mutation rate of 0.006 instead of 

0.01. This is because the experiment has found that the 

smaller the mutation rate is, the better the solutions the 

algorithm finds.  

 

Table 8. Input values for Case 2(a) 

 

 

Input variable Value 

n (Number of turbines to be installed) 30 

SurfaceRoughness(meters) 0.3 

Rotor Radius(meters) 40 

fcrR(value for grid spacing) 5 

RotorHeight(meters) 60 

referenceHeight(meters) 60 

iteration 100 

Proportionality 0.99 

mutr(Mutation rate) 0.006 

vdirspe(wind speed and direction) data.in(12 

m/s at 0°) 

topograp “FALSE” 

elitism “TRUE” 

nelit 7 

selstate “FIX” 

crossPart1 “RAN” 

trimForce “TRUE” 
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Therefore, the use of a mutation rate of 0.006 is 

proposed, observing that this mutation rate effectively 

makes the algorithm capable of exploring remote solutions 

in the solution space and converging on very high quality 

solutions. Figure 24 shows the best solution found by the 

algorithm for this variant of Case 2. The CPU Time that the 

algorithm invested in finding said solution was 204.83 

seconds (3.4138 minutes of CPU), using parallel computing 

with 2 cores. A solution of 75605.96 kW, with an efficiency 

of 79.88% and a computation time of one and a half hours is 

reported in [14]. It is not possible to directly compare the 

time the algorithm took to find the solution reported in this 

research and the solution reported in [14], as it is not 

specified in [14] whether the time corresponds to the real 

time invested by the computer or to the CPU Time. 

However, if is possible to compare the quality of the 

solutions: the energy solution that is reported in this research 

is better by 720.02 units of energy in kW than the solution 

reported in [14], the equivalent of an 0.76% rise in 

efficiency. According to Figure 24, the wind turbine layout 

found in this research is different from the layout reported in 

[14]. 

Figure 25 shows the best solution found by the 

algorithm from a perspective that is closer to that of a wind 

farm.  

Figure 26 shows the development of the wind farm’s 

energy efficiencies across all the generations. Said figure 

illustrates the evolution of efficiencies in every generation, 

which maintain a positive incremental trend, particularly for 

the maximum and average efficiencies represented by green 

and blue respectively. Likewise, we can see that at iteration 

t=90 approximately, the algorithm converges on the best 

solution. 

 
Figure 24. Best solution found for the wind farm 

 
Figure 25. Alternative representation of the best wind farm 

design 

 
Figure 26. Evolution of the efficiencies throughout the 

generations 

 

Case 2(b) 

To optimize the second variant of Case 2 the same 

input values from Table 8 are used but the number of 

iterations are different. In this case, the algorithm is run with 

300 iterations as in [14]. The reason for using 300 iterations 

is based, according to the premise that if the algorithm is run 

with a high number of iterations, this could give better 

solutions as the variable mutation rate would be activated 

more often.  

Figure 27 shows the best solution found when running 

the algorithm for 300 iterations. The CPU time invested in 

finding said solution was 742.74 seconds (12.379 minutes) 

using computation in parallel with 2 cores. In [14] a solution 

of 76516.77 kW reported together with an efficiency of 

80.85% when the algorithm is run for 300 iterations. 

According to [14], the computation time invested by the 

algorithm in finding said solution was 5 hours. The energy 

solution reported in this research exceeds the solution 

reported in [14] by 437.3 units of energy in kW, the 

equivalent of a 0.46% increase in efficiency energy. The 

location of wind turbines corresponding to the solution 

reported in [14] differs from the resulting layout reported in 

this research. 

Figure 28 shows the best solution found from a more 

similar panorama to a wind farm.  

Figure 29 shows the evolution of the energy 

efficiencies in percentages throughout the generations. In 

said figure we can see that the algorithm converged on the 
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best solution at approximately iteration t=254, then it 

explores other feasible solution spaces where it finds lower 

quality solutions to once again converge on the best solution 

between iteration t=275 and t=278. 

 

 
Figure 27. Best layout of the wind farm using 300 iterations 

 

 
Figure 28. Alternative representation of the solution 

 
Figure 29. Evolution of the wind farm’s energy efficiencies 

per generation 

Case 2(c) 

This case was optimized in the same way, considering 

the wind farm data given in Case 2 and the input values 

given in Table 8, except for the rotor radius value and the 

fcrR value. Therefore, a rotor radius of 20m is considered in 

this optimization for all the turbines together with an fcrR 

value of 10.  

Figure 30 shows the best solution found by the 

algorithm for this variant of Case 2. The CPU Time that the 

algorithm invested in finding the solution shown in Figure 

30 was 287.64 seconds (4.794 minutes of CPU), using 

parallel computing with 2 cores. Likewise, this case is 

solved in [14] using turbines with a rotor radius of 20m and 

afcrR value of 10. Therefore, [14] reports a solution of 

21585.1 kW with 91.23% efficiency. The computation time 

that was invested to obtain said solution is not reported. The 

energy solution that is reported in this research is 11.96 units 

of energy in kW higher than the solution reported in [14], 

which is the equivalent of a 0.05% increase in efficiency 

energy. According to Figure 30, the wind turbine layout 

found in this research differs from the layout reported in 

[14]. 

Figure 31 shows the evolution of the energy 

efficiencies corresponding to the optimization of this case. 

Likewise, we can see in said figure that an incremental trend 

of the efficiencies is maintained as the algorithm advances 

in the generations; however it is possible to note that, in 

some iterations, particularly after the iteration t=80, the 

algorithm finds lower quality solutions to once again 

converge on the best solution that had already been found.  

 

 
Figure 30. Best wind farm layout 
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Figure 31. Evolution of the wind farm efficiencies per 

generation 

 

IV. CONCLUSIONS 
In this article, the authors give a general overview of the 

growing worldwide importance of wind power over the last 

few years, together with the main factors, such as the wake 

effect, that affect the optimal exploitation of the power 

produced in a wind farm. The purpose of this research was 

to tackle the wind farm optimization problem, which has 

become an extremely important and scientifically relevant 

topic. The relevance of this problem within the scientific 

community lies in the difficulty involved with solving this 

problem in practice, as repeatedly physically distributing a 

set of wind turbines on a wind farm is hugely complex and 

expensive. Wind farm designers often resort to a not very 

efficient layout as they do not take the energy deficits 

caused by the wake effect into account. This results in them 

not being able to achieve their main objective, which is to 

produce the maximum amount of energy possible through 

the exploitation of the wind resource, starting from a 

particular number of wind turbines and the dimensions of 

the available land. It is obvious that the energy production 

can be significantly increased if the phenomena of the wake 

effects among the wind turbines is reduced as much as 

possible and this is only possible if they design a suitable 

layout of wind turbines on a wind farm. This is why we 

proposed the use of a Genetic Algorithm that would, in a 

reasonable computation time, provide good quality solutions 

for different wind farm scenarios that are solved in this 

paper. The Jensen model, which models the wake effect and 

calculates the energy losses caused by said phenomena when 

two or more turbines are located close to each other and in 

an incident wind direction, is also considered in the 

algorithm.  

According to the Experiment Design carried out and the 

results of the cases solved in this paper, we have shown that 

the algorithm is capable of finding high quality solutions 

with little computational effort and this has an impact on 

two important aspects: the first is that it provides very good 

solutions and the second is that the energy resource the 

computer requires to find these solutions is relatively low. 

Likewise, the results presented in this paper represent better 

solutions in comparison to the solutions reported in [14]. 

The same thing happened with the computation time. The 

algorithm was capable of finding better solutions, owing to 

the fact that first a design of experiments was done using the 

Case 1 scenario for the purpose of identifying those 

parameter values that gave the wind farm the highest 

possible amount of energy. Once these parameter values 

have been obtained, we decide to use them to find the design 

of another instance with 100 possible locations and 30 wind 

turbines, such as the variants of case 2. Using said values for 

the variants in Case 2 we found that the algorithm 

effectively found very high quality solutions with a small 

investment of CPU Time. The values of the parameters that 

are recommended for optimizing instances of large-scale 

wind farms are given in Table 9. It is worth mentioning that 

the number of iterations recommended for running the 

algorithm is 100, however this number could be increased if 

the user has enough computer resources and means or if they 

want to find a better solution. Despite the fact that the 

increased number of iterations do not guarantee the best 

solution being found, it does increase the probability of 

finding one. 

 

Table 9. Recommended values for the key Genetic 

Algorithm parameters 

Parameter Crossover 

method 

Selecti

on 

metho

d 

Eliti

sm 

Mutation 

rate 

No. of 

iteration 

Value RAN FIX TR

UE 

0.006 100 

 

For a more realistic interpretation of the supply 

capacity represented by the electric power produced in a 

wind farm, see Table 10. Said table makes a supply analysis 

according to the energy solution found in each case that has 

been solved in this research. This analysis is based on 

information provided by the International Energy Agency 

(IEA) [18]. The IEA declares that, in 2014, the average 

power consumption per person in Mexico was 2090.17 

kWh.   

 

Table 10. Analysis of electric power supply in Mexico as 

per the solution for each case 

Case Energy solution 

in kWh 

Number of people 

benefited in Mexico 

Case 1 17307.26 8.28 

Case 2(a) 76325.98 36.51 

Case 2(b) 76954.07 36.81 

Case 2(c) 21597.06 10.33 

 

Likewise, Table 11 shows a monetary analysis of the 

solutions found in this paper versus the ones reported in the 

literature.This analysis is interesting for wind power 

producers, as profitability is extremely important for this 

type of project. The tariff that Federal Electricity 

Commission (Comisión Federal of Electricidad-CFE) 
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applies to the basic domestic electricity utility per kWh 

consumed in Mexico in the month of November 2018 is 

considered for the analysis. The applicable tariff, according 

to [19], is 0.793 MXN/kWh. Therefore, according to the 

analysis, the solutions reported in this research are more 

attractive for electric power producers as they offer higher 

earnings. 

 

 

Table 11. Monetary analysis 

Case Energy solution 

reported in this 

paper (kWh) 

Energy solution 

reported in the 

literature (kWh) 

Utility that provides 

the solution of this 

paper (MXN/kWh) 

Utility that provides 

the solution of the 

literature (MXN/kWh) 

Difference of 

utility 

(MXN/kWh) 

Case 2(a) 76325.98 75605.96 60526.50 59955.52 570.98 

Case 2(b) 76954.07 76516.77 61024.57 60677.79 346.78 

Case 2(c) 21597.06 21585.1 17126.46 17116.98 9.48 

 

It must be pointed out that the main goal of this 

research is to promote environmental sustainability through 

the optimal exploitation of renewable resources, like wind, 

which has become one of the resources that is most likely to 

replace fossil fuels in the production in the future.  The 

consumption of energy that is produced by renewable 

energies such as wind power implies a considerable 

reduction in the use of fossil fuels, which are extremely 

contaminating and unsustainable.  

Lastly, the code of the algorithm in R of the 

“windfarmGA” package used in this research was developed 

by [14] and is available for downloading at [15]. Therefore, 

in [15], researchers or users in general can go there to 

download the package and optimize real wind farms. Said 

package can be used as a refining tool to get better initial 

wind farm layout scenarios or wind farms designed on the 

basis of layout principles and rules recommended by expert 

designers or by others empirical design methods. It can also 

be used as an optimization tool for finding the best layout 

for a certain number of wind turbines to be installed in a 

wind farm with irregular shape. 
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