
Engineering and Technology Journal e-ISSN: 2456-3358 

Volume 10 Issue 05 May-2025, Page No.- 4943-4959 

DOI: 10.47191/etj/v10i05.23, I.F. – 8.482 

© 2025, ETJ 

 

4943 , ETJ Volume 10 Issue 05 May 2025 1Warveen Merza Eido 

 

Face Detection in the Wild: Techniques, Applications, and Future Directions 
 

Warveen Merza Eido1, Omer Sedqi Kareem2 

1Akre University for Applied Sciences, Technical College of Informatics, Department of Information Technology Duhok, Iraq 
2Department of Public Health, College of Health and Medical Technology-Shekhan, Duhok Polytechnic University, Duhok, 

Kurdistan Region–Iraq 

 

ABSTRACT: Face detection is fundamental to computer vision, allowing for applications in human-computer interaction, 

healthcare, surveillance, and authentication.  Deep learning-based frameworks have recently replaced traditional handcrafted 

models, providing excellent accuracy, real-time performance, and robustness in a variety of scenarios, including poor lighting and 

occlusion.  The use of face detection in embedded and edge devices has increased because to lightweight models and mobile-

optimized systems.  The detection of small or modified faces, maintaining demographic fairness, and resolving ethical issues like 

algorithmic bias and privacy are still difficulties, though.  Explainable AI, multimodal integration, and context-aware systems are 

probably going to be the main areas of future research to provide face detection technologies that are more transparent, inclusive, 

and trustworthy. 
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1-INTRODUCTION  

Face detection has become a fundamental task in biometric 

recognition and computer vision systems, opening up a wide 

range of applications, including augmented reality, human-

computer interaction, surveillance, and authentication. 

Traditional handmade feature-based techniques, including 

Haar-AdaBoost and LBP classifiers ((Filali Hajar, 2018)), 

have given way to extremely complex deep learning 

architectures that can identify reliably and in real-time in 

unconstrained situations over the past few decades. Deep 

convolutional networks, such as BlazeFace ((Bazarevsky et 

al., 2019)) and Faster R-CNN ((Jiang & Learned-Miller, 

2017)), have greatly increased processing speed and accuracy 

under a variety of lighting, posture, and occlusion 

circumstances. Along with these performance improvements, 

emerging approaches like biologically inspired neural 

systems and HyperDimensional Computing ((Imani et al., 

2022)) present viable substitutes for embedded and 

lightweight face detection. By providing datasets that 

represent the complexity of the actual world, recent 

benchmarks such as WIDER FACE and IJB-A have also 

sparked algorithmic advancements ((Jiang & Learned-Miller, 

2017; Klare et al., 2015)). Furthermore, the usefulness of 

detection frameworks in end-to-end face analysis pipelines 

has been further increased by integrated approaches that 

combine detection with alignment and recognition, including 

MTCNN and HyperFace ((Ranjan et al., 2019; K. Zhang et 

al., 2016)). Despite significant advancements, recognition of 

small, obscured, or manipulated faces still presents 

difficulties. This encourages continued research into context-

aware systems, anti-spoofing strategies, and privacy and 

fairness-related ethical concerns (Khodabakhsh et al., 2018; 

Ramachandra & Busch, 2017). As the sector develops further, 

future advancements will probably concentrate on increasing 

generalizability, energy efficiency, and reliability, especially 

when it comes to mobile and edge devices. Face identification 

is a fundamental task in computer vision that has applications 

in human-computer interaction, security, and healthcare. 

Recent studies have made progress in this area by combining 

explainable AI, cloud computing, and deep learning models, 

which allows for more precise and scalable solutions in real-

world scenarios (W. M. Eido & Ibrahim, 2025; W. merza 

Eido & Yasin, 2025; Klare et al., 2015). Despite these 

developments, problems like data privacy, moral 

implementation, and generalization in many contexts still 

need to be thoroughly investigated (W. M. Eido & Zeebaree, 

2025; Saleh & Zeebaree, 2025). Recent studies highlight how 

blockchain and machine learning can be integrated into a 

variety of domains to improve decision-making, security, and 

trust. These technologies provide for safe data processing and 

early illness diagnosis in medical imaging and e-commerce, 

particularly in supply chain transparency and diabetic 

retinopathy diagnostics (W. merza Eido & Zeebaree, 2025; 

Saleh & Zebari, 2025; Tato & Yasin, 2025). 
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2-RESEARCH METHODOLOGY 

This work uses a mixed-method approach that combines a 

comparative examination of the most advanced face 

identification systems with a thorough survey of the 

literature. First, a thorough analysis of both traditional and 

contemporary face detection models was carried out, 

encompassing techniques like CNN-based architectures (e.g., 

Faster R-CNN, BlazeFace, MTCNN), biologically inspired 

systems like HyperDimensional Computing frameworks, 

Haar cascades, Viola-Jones, and AdaBoost classifiers. Pose 

variation, occlusion, lighting changes, and low-resolution 

circumstances were among the real-world scenarios used to 

assess each method's performance.  

Benchmark datasets like FDDB, WIDER FACE, and LFW 

were used to extract quantitative parameters like accuracy, 

inference speed, false detection rates, and power efficiency. 

These datasets provide a variety of face photos for testing 

models in unrestricted settings. Furthermore, the resilience of 

hybrid systems that combined deep learning classifiers (like 

SVM, CNNs) with conventional filters (like Gabor, LBP) 

against spoofing, masking, and facial manipulation was 

examined.  

The approach included applications from a variety of fields, 

including mobile deployment, healthcare, and surveillance, to 

guarantee real-world relevance. Lastly, issues including 

privacy, generalization across demographics, and ethical 

concerns were taken into account to inform future 

experimental paths and useful deployment criteria.  

 

 
Fig1: General Flowchart of the Methodology. 

 

3-THEORETICAL FRAMEWORK 

3.1. Face Detection 

The primary method for locating and recognizing human 

faces in digital photos or video streams is face detection. It is 

a necessary first step for applications such as surveillance, 

facial recognition, and expression analysis. The basis for real-

time detection has been established by conventional methods 

like AdaBoost classifiers and Haar-like feature extraction, but 

they were constrained by their sensitivity to occlusion, 

lighting, and position (Zafeiriou et al., 2015). Face 

identification models started to handle increasingly complex 

and varied situations involving small and obscured faces after 

the release of the WIDER FACE dataset (Yang et al., n.d.-b). 

Face detection pipelines are now more robust and precise 

thanks to deep learning-based detectors and cascaded 

classifiers (Jiang & Learned-Miller, 2017). 

3.2. Deep Learning 

Face identification algorithms are now far more accurate and 

efficient thanks to deep learning. The ability of Convolutional 

Neural Networks (CNNs) to recognize faces in different 

stances and lighting situations, as well as to learn spatial 

hierarchies, makes them popular. Joint face identification and 

alignment have been made possible by models like the 

Multitask Cascaded CNN (MTCNN) and Faster R-CNN, 

which have achieved state-of-the-art performance on difficult  

benchmarks like FDDB and WIDER FACE (Farfade et al., 

2015; Minaee et al., 2021). The ability of deep models to 

generalize is further enhanced by the combination of transfer 
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learning and multitask learning (Jiang & Learned-Miller, 

2017).

 
 

 

 

Fig 2: Sample photos from the WIDER face dataset with 

ground-truth annotations in the form of green bounding 

boxes.  

3.3. Computer Vision 

Face detection is a component of several downstream tasks in 

the larger field of computer vision, including sentiment 

analysis, identity verification, and intelligent surveillance. 

Prior to deep learning's popularity, methods such as support 

vector machines (SVMs), scale-invariant feature transform 

(SIFT), and histogram of oriented gradients (HOG) were used 

(Kumar et al., 2019). According to (Filali Hajar, 2018), face 

detection is still essential for medical diagnostics, driver 

monitoring, and real-time video analysis. 

3.4. Surveillance Systems 

For law enforcement and public safety surveillance systems, 

face detection is essential. Real-time warning production, 

suspect identification, and automated tracking are made 

possible by it. To identify masked or obscured faces, CCTV 

systems have used techniques that combine neural networks, 

Haar features, and Gabor filters (Deore Gayatri, 2016; 

Yimyam et al., 2018). These systems have to deal with low-

resolution imagery, crowded settings, and changing lighting, 

all of which are being handled by hybrid and adaptive models 

(Bu Wei, 2018). 

 
Fig 3 : Mesh and Feature Point Mapping for the 

Identification of Facial Landmarks 

 

3.5. Biometric Recognition 

Face detection is used by biometric systems to enable safe 

identification and authentication. Systems then extract 

distinct facial traits for comparison with pre-stored templates 

after detecting the face. Through anti-spoofing algorithms 

and presentation attack detection, research has highlighted 

resilience against identity fraud and spoofing attacks 

(Ramachandra & Busch, 2017). These days, border security, 

smartphone authentication, and access control all use these 

systems (Imani et al., 2022). 

3.6. Occlusion Handling 

Managing occlusion is still a significant obstacle for face 

detection, particularly when face masks or sunglasses are 

present in the actual world. Partial visibility has been 

addressed with methods such as feature compensation 
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models, Gabor filtering, and part-based detection (Deore 

Gayatri, 2016). By integrating spatial context and hierarchical 

learning, deep learning models improve resistance to 

occlusion (Jiang & Learned-Miller, 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: Facial component detection, in which facial features 

are identified following facial recognition 

3.7. Real-Time Processing 

For deployment in interactive systems, security cameras, and 

mobile applications, real-time face detection is crucial. Low-

latency environments have been tailored for lightweight 

models like BlazeFace and PyramidBox, which preserve 

detection accuracy while lowering computing complexity (J. 

Li et al., n.d.; Minaee et al., 2021). Continuous monitoring 

and quick reaction are made possible by real-time processing 

in commercial and security applications. 

3.8. Ethical Considerations 

Ethical concerns such algorithmic prejudice, privacy 

invasion, and consent have grown in significance as face 

detection has become widely used in both the public and 

private sectors. Concerns regarding how detection systems 

might function differently across demographic groups and 

might produce biased results have been brought up by a 

number of studies (W. M. Eido & Ibrahim, 2025). Adherence 

to data protection requirements, bias mitigation techniques, 

and transparent processes are necessary for the responsible 

use of face detection systems. 

3.9. Embedded and Mobile Systems 

Because on-device processing is required, face detection on 

embedded systems and mobile devices is becoming more and 

more popular. Solutions such as BlazeFace and other 

lightweight CNN architectures are perfect for smartphones 

and IoT cameras because they allow for high-speed inference 

with minimal power consumption (Imani et al., 2022; J. Li et 

al., n.d.). Because edge computing reduces data transfer, it 

also improves privacy in this situation. 

 
Fig 5: Edge Computing for Histopathological Image 

Diagnosis and Metastasis Prediction Using an Embedded 

Webserver and Mobile Device 

 

3.10. Dataset Challenges and Benchmarking 

The creation and assessment of face detection algorithms has 

advanced due to the availability of a variety of annotated 

datasets, such as FDDB, AFLW, and WIDER FACE. 

Datasets that represent veiled, elderly, and ethnically diverse 

populations are still lacking, nevertheless (Yang et al., n.d.-

b). Closing this gap is essential to developing generalizable 

and inclusive face detection systems. 

3.11. Multimodal Face Analysis 

In order to improve face detection performance in low-light 

or obscured situations, recent developments have integrated 

multimodal data (such as depth, thermal, and infrared 

imaging). By combining conventional RGB data with other 

sources, this method enhances detection in difficult situations 

including night surveillance and situations with masked faces 

(Tato & Yasin, 2025). 

3.12. Cloud-Based and Distributed Detection Systems 

Scalable, high-performance analytics are made possible 

across dispersed surveillance networks by cloud-integrated 

face detection systems. Such systems enable centralized 

model updating and continuous improvement while 

protecting user data privacy by utilizing cloud computing and 

federated learning (W. M. Eido & Zeebaree, 2025; Saleh & 

Yasin, 2025). 

3.13. Explainable Face Detection 

Explainability and transparency of model decisions are 

becoming more and more important as face detection 

technologies are utilized in delicate fields like security and 

healthcare. In high-stakes decision-making situations, 

methods that depict decision boundaries and feature 

activations help create more reliable AI applications (Merza 

Eido & Mahmood Ibrahim, 2025). 
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3.14. Transfer Learning in Multiscale Biometrics 

A multiscale biometric system that combines face and gait 

recognition with transfer learning was presented by (Ahmed 

& Mahmood, 2023). The system uses deep learning models 

that have already been trained, such DenseNet201 and 

Inception_v3, to extract features from both modalities. With 

feature fusion producing a 98% accuracy rate, the model 

achieves high accuracy by merging these features at both the 

feature-level and score-level. 

 
Fig 6: The DenseNet-201 module's structure                                                                                                      

4-Literature Review 

(Bazarevsky et al., 2019) created BlazeFace, a neural face 

detection model that is lightweight and designed for GPU 

inference on mobile devices. The technology enables real-

time applications such as facial geometry estimation and 

augmented reality and achieves sub-millisecond 

performance. It provides a GPU-efficient anchor mechanism 

adopted from SSD and employs a novel feature extraction 

network inspired by MobileNetV1/V2. Six facial keypoints 

are included in the model to help with face orientation 

determination and enhance subsequent tasks. By using a 

unique tie-resolution algorithm, their approach outperforms 

typical NMS in terms of speed and stability, leading to greater 

robustness in real-time settings. 

(Bong et al., 2018) presented a low-power face recognition 

system that uses a CNN processor and an always-on CMOS 

image sensor. For wearable and Internet of Things devices, 

the suggested hybrid analog-digital Haar-like face detector 

increases energy efficiency by 39%. To lower compute and 

memory power consumption, the CNN processor uses 

customized SRAM and the separable filter approximation. 

On the LFW dataset, their architecture achieves 97% 

accuracy while processing one face per second at 0.62 mW of 

electricity. The system is perfect for always-on biometric 

authentication since it successfully combines face detection 

and verification. 

(Ramachandra & Busch, 2017) conducted a thorough 

investigation on face recognition systems' Presentation 

Attack Detection (PAD) techniques. They looked at how 

easily photo prints, video replays, and 3D masks could be 

used to spoof facial recognition systems. International 

standards like ISO/IEC 30107 are covered, PAD approaches 

are categorized, and their efficacy is assessed. Because of the 

growing challenges to biometric authentication systems, their 

work highlights the necessity of strong antispoofing methods. 

The necessity for generalized detection over a range of 

environmental and spoofing situations is one of the open 

difficulties in PAD that it also identifies. 

(Hangaragi et al., 2022) suggested a system that uses Face 

Mesh and Deep Neural Networks for face detection and 

recognition. The model uses facial landmarks to recognize 

faces in a variety of lighting, posture, and background 

situations. With an accuracy of 94.23%, it is trained using 

real-time image input and the Labeled Wild Face (LWF) 

dataset. By comparing test picture landmarks to those in the 

training set or producing "unknown," the approach is able to 

differentiate between individuals. This technology is well-

suited for security and access control applications and 

exhibits excellent resilience to non-frontal views. 

(Farfade et al., 2015) introduced the Deep Dense Face 

Detector (DDFD), a deep convolutional neural network-

based method for multi-view face detection. In contrast to 

conventional techniques, DDFD uses a single model that can 

identify faces from a variety of perspectives and does not 

require posture or landmark annotations. The system makes 

deployment easier by avoiding complicated modules like 
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segmentation and bounding-box regression. It performs well 

enough to compete with multi-model systems on benchmark 

datasets. The study also shows that the diversity of training 

data has a direct impact on detection accuracy, indicating that 

better sampling and augmentation techniques can lead to 

improvements. 

(Filali Hajar, 2018) provided a comparison of four machine 

learning-based face identification methods: GF-SVM, GF-

NN, LBP-AdaBoost, and Haar-AdaBoost. While the last two 

use Gabor filters with SVM and neural networks, the first two 

use boosting for feature selection and classification. 

According to their findings, Haar-AdaBoost was the most 

successful of the evaluated techniques, exhibiting the highest 

detection rate and the lowest false detection rate. However, 

depending on feature extraction and classification 

procedures, each method performed differently. This study 

highlights how algorithm selection affects real-time face 

identification systems' speed and accuracy. 

(Imani et al., 2022) presented HDFace, a cutting-edge face 

detection framework built on HyperDimensional Computing 

(HDC) that is optimized for embedded platforms' high 

efficiency and resilience. The model replaces conventional 

deep neural networks with binary hypervectors for noise-

tolerant arithmetic and learning, simulating brain-like 

processing. When compared to CNNs, HDFace achieves 

notable gains in speed (6.1× faster on CPU) and energy 

efficiency (12.1× more efficient on FPGA). The system is 

especially well-suited for real-time, on-device applications 

that need processing that can withstand errors. The work 

marks a move in face identification problems toward 

computation inspired by biology. 

(Jiang & Learned-Miller, 2017) investigated the use of the 

WIDER dataset for training and benchmarking on the FDDB 

and IJB-A datasets in order to apply the Faster R-CNN model 

to face detection. Their method produced cutting-edge 

outcomes, proving that deep region-based convolutional 

networks are capable of accurately identifying faces in a 

variety of scenarios. In contrast to conventional R-CNN 

models, Faster R-CNN simplifies computation by combining 

a Region Proposal Network (RPN) with a Fast R-CNN 

detector. The model does not require distinct item proposal 

stages and benefits from end-to-end learning. Compared to 

previous CNN-based techniques, this development allowed 

for faster and more accurate face detection. 

(Kareem et al., 2021) reviewed deep learning methods for 

classifying skin lesions, many of which are applicable to the 

extraction and detection of facial features. They highlighted 

the encoder-decoder structures and convolutional operations 

of CNN-based segmentation models, such as U-Net, FCN, 

and Deep Residual Networks. In medical picture analysis, 

these designs perform well, especially when it comes to 

identifying intricate patterns. Due to commonalities in image 

processing, the methods presented can be modified for facial 

region localization even though the main focus is on 

melanoma detection. The study emphasizes how deep CNNs 

are becoming more and more dominant in image 

identification tasks. 

(Zeebaree & Kareem, 2023) To lower the danger of COVID-

19 transmission, a real-time face mask detection system based 

on Haar Cascade classifiers was built. The COVID Vision 

technology uses live video streams in a variety of lighting and 

facial angle scenarios to determine whether a person is 

wearing a face mask. Using lightweight picture classification 

and Haar-like features, it recognizes faces even with 

accessories and works efficiently in a range of 0.6 to 1.35 

meters. The algorithm can be implemented on embedded 

surveillance systems and uses AdaBoost and integral image 

algorithms for quick object recognition. Through automated 

facial analysis, this approach offers a low-cost, effective way 

to monitor public health. 

(Khodabakhsh et al., 2018) highlighted the susceptibility of 

biometric systems to attacks using synthetic facial images in 

a study on the generalizability of fake face detection 

techniques. In order to compare deep learning with texture-

based methods, they suggested using the Fake Face in the 

Wild (FFW) dataset, which consists of more than 53,000 

photos. CNN models (AlexNet, VGG19, and ResNet) and 

manually created texture descriptors (such LBP in 

conjunction with SVM) are used in their evaluation. The 

authors discovered that deep learning models struggled to 

generalize to invisible fake generating methods like 

FaceSwap, DeepFake, and CGI. The significance of strong 

detection algorithms that can adjust to changing threats in 

facial analysis is emphasized in the paper. 

(Kremic & Subasi, 2016) evaluated the effectiveness of 

Support Vector Machine (SVM) and Random Forest (RF) 

classifiers on facial recognition tasks. They assessed 

performance using accuracy metrics on a dataset of 800 

photos taken by 40 people, each of whom had a unique facial 

expression. With the right kernels, SVM reached 97.94% 

accuracy, while RF reached 97.17%. They used image 

preprocessing techniques such histogram equalization, RGB 

to grayscale conversion, and skin color recognition. By 

demonstrating these models' efficacy in real-time face 

recognition scenarios, the study backs their incorporation into 

mobile applications. 

(Kumar et al., 2019) reviewed facial detection methods in 

detail, emphasizing their difficulties and practical uses. They 

described the advantages and disadvantages of each method 

by classifying them as feature-based (like Active Shape 

Models) or image-based (like CNNs). The study describes 

challenges in face detection, including limited resolution, 

occlusion, fluctuating illumination, and a range of facial 

emotions. Additionally, they talked on the use of face 

detection in biometrics, smart advertising, and human-

computer interaction. In order to increase detection accuracy, 

their study promotes hybrid techniques that blend handmade 

characteristics with deep learning. 

(H. Li et al., n.d.) suggested a CNN cascade that works at 

various resolutions to provide a quick and precise face 
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identification system. Early CNNs in the architecture swiftly 

reject background areas, whereas later stages employ high-

resolution inputs for more precise detection. For enhanced 

localization, calibration networks between phases enhance 

the bounding box predictions. Their model produced state-of-

the-art performance on open benchmarks such as FDDB, 

achieving 14 FPS on CPU and 100 FPS on GPU. This 

approach is feasible for real-time deployment in unrestricted 

situations since it strikes a compromise between detection 

speed and accuracy. 

(J. Li et al., n.d.) suggested the Dual Shot Face Detector 

(DSFD) to tackle important face identification issues such 

anchor matching, loss design, and feature learning. To 

improve detection resilience in situations such as blur, pose 

variation, and occlusion, the model incorporates a Feature 

Enhance Module (FEM) that refines features across many 

layers. Additionally, they created Improved Anchor 

Matching (IAM) to improve detection accuracy through 

better anchor assignment and Progressive Anchor Loss (PAL) 

to direct learning at various phases. The network performs 

better on small and challenging-to-detect faces because of the 

two-shot structure, which enables the network to collect both 

coarse and fine information. DSFD maintains real-time 

inference performance while achieving state-of-the-art scores 

on the FDDB and WIDER FACE benchmarks. 

(Liao et al., 2016) created a novel picture feature known as 

Normalized Pixel Difference (NPD) that serves as the basis 

for a quick and precise unconstrained face detection. 

Motivated by the Weber Fraction in psychology, this scale-

invariant and limited characteristic is calculated as the ratio 

of pixel intensity differences to their sum. In order to manage 

posture, light, and occlusion fluctuations in a single soft-

cascade AdaBoost classifier, they integrated this feature with 

a deep quadratic regression tree. The model outperforms 

conventional Viola-Jones techniques by achieving good 

performance on the FDDB, GENKI, and CMU-MIT datasets. 

It is appropriate for surveillance and mobility scenarios 

because to its speed (6× faster than OpenCV) and capacity to 

operate in congested, real-world scenes. 

(Liu et al., n.d.) presented Gram-Net, a powerful model for 

detecting fraudulent faces that uses global texture information 

to identify photos created by GANs. Gram-Net uses Gram 

matrices to focus on long-range texture patterns, which makes 

it immune to distortions like noise, blurring, and JPEG 

compression, in contrast to typical CNNs that frequently 

overfit to particular GAN types. In both in-domain and out-

of-domain evaluations, the model performs better than 

alternative techniques, such as unseen GANs and natural 

image settings. It emphasizes how humans are better at 

spotting semantic abnormalities like asymmetrical eyes, 

while CNNs mostly rely on texture signals. As a result, Gram-

Net provides a solid foundation for upcoming false face 

identification tasks, particularly in settings where security is 

a concern. 

(Lu & Yang, 2019) suggested adding composite features to 

the Viola-Jones algorithm to address stiff objects that 

frequently result in false positives. Using a compound 

structure that incorporates both global and local information 

taken from the identified facial region, their approach 

improves on conventional Haar features. Following 

discriminant analysis, an efficient AdaBoost classifier is used 

to process these features. The objective is to preserve high 

recognition rates even when stiff items, such as chopsticks or 

cups, are obstructing the image. Improved face detection 

accuracy and reduced false detection rates in congested 

settings are confirmed by their experimental results. 

(Minaee et al., 2021) provided a thorough analysis of over 50 

face identification models built using deep learning in the 

post-CNN era. The review highlights the architectures, 

datasets, and evaluation metrics of various methods by 

classifying them into important groups including Cascade-

CNN, R-CNN, SSD, and Feature Pyramid Networks (FPN). 

They highlight difficulties such as real-time inference 

requirements, managing large-scale changes, and identifying 

small or obscured faces. The survey comes to the conclusion 

that although deep learning has significantly increased 

detection accuracy, concerns with generalization and 

resilience still exist. For the present and upcoming trends in 

face detection research, this study is an essential point of 

reference. 

(Najibi et al., n.d.) presented the Single Stage Headless (SSH) 

face detector, which removes fully connected layers from its 

VGG-16 backbone to produce state-of-the-art findings. SSH 

is more effective than two-stage detectors since it functions 

as a single-stage detector and detects directly from early 

convolutional layers. It does not require an image pyramid 

and is naturally scale-invariant, processing numerous face 

scales in a single forward pass. On the WIDER FACE, 

FDDB, and Pascal-Faces benchmarks, SSH performs better 

than ResNet-101-based models in spite of its lightweight 

design. Additionally, it runs at 50 frames per second, showing 

notable gains in accuracy and speed. 

(Pujol et al., 2017) suggested a face identification method that 

uses color models in RGB, HSV, and YCbCr spaces and is 

based on fuzzy entropy skin color segmentation. Their 

technique employs a three-partition entropy strategy for fuzzy 

system parameterization and models skin tones as fuzzy sets. 

Even in the presence of varied backgrounds and lighting 

conditions, it maintained a low false positive rate (~0.5%) and 

achieved good skin detection accuracy (94–96%). The system 

can distinguish faces effectively and reliably without 

requiring deep learning or a lot of training. Their method 

works especially well for biometric and recognition systems' 

preprocessing phases. 

(H. Qin et al., 2016) demonstrated a CNN cascade for face 

identification that was collaboratively trained, as opposed to 

conventional cascades that were trained in a stage-by-stage, 

greedy manner. Their method enhances coordination and 

performance across several CNN stages by permitting end-
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to-end optimization using backpropagation. By combining 

Region Proposal Networks (RPN) and Fast R-CNN, the 

technique improves detection accuracy and efficiency. They 

show that the drawbacks of traditional cascaded pipelines are 

lessened by joint training, particularly when working with 

hard negative samples. CNN-based cascades can now more 

effectively compete with deep learning techniques that aren't 

cascaded thanks to this development. 

(X. Qin et al., 2017) addressed the particular difficulties of 

comic-style images by creating a Faster R-CNN-based 

technique designed especially for face detection in comic 

figures. They constructed two new datasets (JC2463 and 

AEC912) and discovered that binary classification 

performance was enhanced by using a sigmoid classifier in 

place of the softmax classifier. The model outperforms earlier 

hand-crafted or rule-based methods and works well across a 

variety of comic drawing styles. This study demonstrates how 

object identification networks may be tailored to creative and 

unusual pictures. Datasets that could speed up future studies 

in comic character recognition are also included in their 

contribution. 

(Ranjan et al., 2019) Introduced HyperFace, a deep multitask 

CNN architecture that can concurrently detect faces, locate 

landmarks, estimate poses, and identify gender. In order to 

capture both high-level semantic information and low-level 

localization signals, it combines features from several 

intermediary CNN layers. We produced two variations, 

HyperFace and HyperFace-ResNet, the latter of which 

performed better on unconstrained face datasets. By utilizing 

shared representations, this multi-task learning configuration 

performs noticeably better than single-task models. 

Additionally, the paper offers novel methods for better post-

processing, such as iterative region suggestions and 

landmark-based non-max suppression. 

(Sun et al., 2018) suggested a faster, more robust Faster R-

CNN model for face detection that integrates many deep 

learning techniques. Hard negative mining, feature 

concatenation across many convolutional layers, and multi-

scale training to account for occlusions and different face 

sizes are a few examples. Their model performed 

exceptionally well on the FDDB benchmark, peaking at 

number one in early 2017. Training was done on the WIDER 

FACE dataset, and end-to-end optimization was used to fine-

tune on FDDB. This method outperformed conventional 

Faster R-CNN implementations in face detection in terms of 

detection precision and recall. 

(Tang, n.d.) presented PyramidBox, a single-shot, context-

assisted face detector intended to identify faces that are small, 

blurry, or partially obscured. They suggested three new 

contributions: a context-sensitive prediction module, Low-

level Feature Pyramid Networks (LFPN) to merge contextual 

and facial information, and PyramidAnchors for context-

aware anchor learning. By balancing training samples, data-

anchor-sampling also improved performance on small faces. 

PyramidBox's excellent accuracy on WIDER FACE and 

FDDB demonstrates how adding contextual information—

such as the head and shoulders—significantly enhances face 

detection in challenging scenarios. This approach is notable 

for its efficiency in scale-aware anchoring and one-shot 

detection. 

(Wu et al., 2017) created the Funnel-Structured Cascade 

(FuSt) for alignment-aware multi-view face detection. In 

order to achieve precise identification utilizing shape-indexed 

features, FuSt uses a coarse-to-fine architecture, which begins 

with quick view-specific LAB cascades and progresses to 

multi-layer perceptrons (MLPs) and a unified MLP. FuSt is 

centralized and alignment-aware, which increases recall 

while lowering false positives, in contrast to conventional 

parallel or tree-structured detectors. The model can compete 

on difficult datasets like FDDB and AFW since it is both 

lightweight and powerful. In multi-angle face identification 

applications, its hierarchical refinement approach strikes a 

balance between speed and accuracy. 

(Xiang & Zhu, 2017) suggested a combined framework for 

simultaneous face identification and facial expression 

recognition with Multi-task Cascaded Convolutional 

Networks (MTCNN). Their algorithm, which was trained 

using the FER2013 dataset, takes use of the inherent 

relationship between face alignment and emotion 

recognition. Three steps make up the pipeline: P-Net for 

suggestions, R-Net for filtering, and O-Net for landmark 

localization and final classification. When compared to 

individual models, this integration enhances both detection 

speed and recognition ability. The effectiveness and promise 

of multitask learning for improving HCI applications are 

highlighted in the study. 

(Yang et al., n.d.-a) presented Faceness-Net, a deep learning 

network that uses part-based response maps for facial features 

including the lips, nose, and eyes to identify faces. Using 

attribute-aware CNNs, the network creates "partness maps," 

and then uses the spatial arrangement of these parts to 

determine a faceness score. This enables reliable 

identification in a variety of positions even with extreme 

occlusion. Faceness-Net achieves good performance on 

FDDB, PASCAL FACE, and AFW by avoiding sliding 

windows and generating suggestions using deep responses, in 

contrast to standard detectors. The model demonstrates how 

part-level responses improve the ability to detect faces that 

are rotated or partially visible. 

(Yang et al., n.d.-b) generated the WIDER FACE dataset, 

which is now used as a standard to assess face identification 

systems in practical settings. The collection includes more 

than 32,000 photos with over 393,000 identified faces that 

have been tagged with variables such event type, occlusion, 

and position. The need for more reliable detection techniques 

arose from their investigation, which revealed that current 

algorithms have trouble handling small, obstructed, and non-

frontal faces. Their multi-scale cascade CNN framework 

improved robustness by accommodating different face scales. 

Because it allowed for the large-scale, uniform evaluation of 
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detection systems, this work made a substantial contribution 

to the discipline. 

(Zafeiriou et al., 2015) provided a thorough analysis of face 

identification systems, highlighting those appropriate for "in-

the-wild" scenarios. They explained the advantages and 

disadvantages of each strategy by classifying them into rigid-

template techniques (like boosting and deep CNNs) and 

deformable models (like DPMs). The transition from hand-

crafted and rule-based features to data-driven, deep learning 

models is highlighted in the paper. It also emphasizes how 

crucial publicly accessible benchmarks like FDDB and 

PASCAL FACE are to advancing research. The authors ask 

for unified models that manage detection, alignment, and 

identification all at once in their discussion of potential future 

research avenues. 

(K. Zhang et al., 2016) suggested a unified architecture for 

collaborative face identification and alignment using deep 

CNNs called the Multitask Cascaded Convolutional Network 

(MTCNN). The three stages of their architecture—P-Net, R-

Net, and O-Net—conduct face candidate suggestion, 

refining, and landmark localization in a coarse-to-fine 

fashion. Additionally, the model uses an online hard sample 

mining strategy to increase training resilience. High accuracy 

and real-time performance are achieved by MTCNN, 

according to experiments conducted on the WIDER FACE 

and AFLW benchmarks. Under difficult circumstances, both 

detection and landmark localization are greatly enhanced by 

this multitask technique. 

(S. Zhang et al., n.d.) aimed to address the drawbacks of 

anchor-based detectors on small faces by introducing the 

Single Shot Scale-invariant Face Detector (S3FD). Using 

anchors positioned throughout several feature map layers, 

they created a scale-equitable detection framework that 

ensures coverage of all face scales. To lessen false positives 

from small faces, the system additionally incorporates a max-

out backdrop label and a scale compensation approach. S3FD 

maintains real-time speed while achieving state-of-the-art 

scores on the AFW, PASCAL FACE, FDDB, and WIDER 

FACE benchmarks. When it comes to identifying small, 

closely spaced faces in intricate situations, our model excels. 

(Zhou et al., 2017) suggested using a Two-Stream Neural 

Network to detect altered faces by combining optical and 

auditory information. The second stream is a patch-level 

triplet network trained on steganalysis features that captures 

camera artifacts and noise residuals, and the first stream is a 

GoogLeNet-based classifier for tampering artifacts. More 

than 2,000 manipulated face photos created with well-known 

face-swapping software were used to train the model. Their 

combination strategy works even under compression and 

post-processing, and it performs better than conventional 

single-stream techniques. The technology is particularly 

well-suited for security applications that need the detection of 

face forgeries. 

(Bu Wei, 2018) addressed the major problem of excessive 

facial occlusion by proposing a CNN-based cascade system 

for masked face detection. Three binary convolutional neural 

networks—Mask-1, Mask-2, and Mask-3—are part of their 

model. They use classification to gradually eliminate false 

positives from low to high complexity. They created a new 

"MASKED FACE dataset" especially for training and 

assessing masked face identification systems in order to 

address the dearth of appropriate datasets. Their approach, 

which combined CNN accuracy with a cascade structure's 

speed, produced good results. This method successfully 

adapts conventional face detection pipelines to situations 

where there are either partial or complete occlusions. 

(Da’san Mohammad & Debeir Olivier, 2015) created a multi-

stage face detection model that combines Gabor filters, 

Principal Component Analysis (PCA), Feedforward Neural 

Networks (FFNN), and the Viola-Jones algorithm. Candidate 

face regions are first identified using Viola-Jones, after which 

they are sent to a second step for feature extraction and 

classification. PCA lowers the feature dimension, FFNN 

determines whether the image is a face or not, and gabor 

filters extract facial features. When evaluated on the CMU 

dataset, the system demonstrated higher face detection rates 

as a result of the combined processing steps. Accuracy and 

computational efficiency are improved by this hybrid 

technique, particularly in situations with changeable lighting 

and expression. 

(Deore Gayatri, 2016) presented a four-step method for 

masked face detection in video surveillance: eye detection, 

eye line detection, facial part detection, and distance estimate. 

The method use the pinhole camera model to determine the 

distance from the camera, the Viola-Jones algorithm for facial 

part detection, and the Histogram of Oriented Gradients 

(HOG) for human detection. Horizontal projection 

histograms are used to detect eye lines, which helps 

determine if a subject is facing the camera. The algorithm 

implies a mask is present if a person is identified but their 

face is not. This real-time approach improves the usefulness 

of masked face recognition in public surveillance settings 

while lowering false positives. 

(Ding et al., 2020) suggested a deep learning-based system 

that targets applications in digital forensics and privacy 

protection to detect swapped faces with high accuracy and 

confidence estimation. They presented a sizable dataset 

comprising more than 420,000 actual and swapped face 

photos produced by two face-swapping methods: AE-GAN 

and Nirkin's pipeline. Their deep transfer learning-based 

classifier produced prediction uncertainty scores and a true 

positive rate of above 96%. By contrasting the system's 

output with human evaluations gathered via a specially 

designed web interface, the system's resilience was 

confirmed. This technique greatly improves the capacity to 

identify phony images and guard against identity theft. 

(Yimyam et al., 2018) highlighted the shortcomings of 

conventional algorithms in low light or with a slanted face, 

and suggested a face detection technique utilizing CCTV data 

to assist in criminal identification. In order to identify 
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suspects in security footage, they used Eigenface recognition 

algorithms in conjunction with the Viola-Jones approach for 

face detection. A failure rate of 35 to 55% was seen when 

their system was subjected to significant face tilts (over 90 

degrees). However, in typical frontal and group face 

circumstances, it functioned consistently. According to the 

study, automatic face detection has both advantages and 

disadvantages when applied in actual law enforcement 

situations. 

5-DISCUSSION AND COMPARISON 

Table 1 represents a detailed comparison among the previous 

works explained in section 3. The table illustrates main 

metrics that depended for the comparison which are the 

significant features concluded from these works.  

 

 

Table 1: Comparison among the reviewed works. 

Author 

name with 

year 

methods datasets advantages disadvantag

es 

accuracy algorithm 

used 

results 

(Bazarevsk

y et al., 

2019) 

BlazeFace 

(lightweight 

CNN with 

SSD 

anchors that 

work well 

with GPUs) 

Mobile 

phone 

camera data 

Inference faster 

than milliseconds, 

tailored for 

portable GPUs 

 

Unsuitable 

for edge 

occlusions or 

high-

resolution 

detection 

 

Not 

explicitly 

mentioned; 

focuses on 

FPS 

customized 

lightweight 

CNN on a 

modified 

SSD 

200–1000 FPS 

with the output 

of six face 

keypoints 

 

(Bong et 

al., 2018) 

Calculating 

analog 

Haar-like 

filters for 

face 

detection in 

early image 

processing 

Custom 

analog 

testbench 

(simulated 

and 

hardware) 

Energy-efficient 

and appropriate for 

facial detection 

systems that are 

embedded 

 

Restricted to 

analog 

restrictions 

and the 

early-

rejection 

window 

 

Classificati

on 

accuracy is 

not a direct 

metric. 

 

Analog 

Haar Filter 

Circuits 

(AHFC) 

Analog 

memory cells 

for effective 

early rejection 

of non-face 

windows 

 

(Bu Wei, 

2018) 

CNN-based 

masked face 

detection 

using 

cascade 

Proprietary 

masked face 

image set 

Real-time masked 

face detection 

system 

Limited 

dataset for 

training 

Rates of 

detection 

that are 

satisfactor

y (visual 

analysis) 

Three-tiered 

CNN 

cascade 

Detecting 

masks 

accurately 

under partial 

occlusions 

 

(Ramachan

dra & 

Busch, 

2017) 

14 static 

face 

Presentation 

Attack 

Detection 

(PAD) 

techniques 

are 

compared. 

CASIA Face 

Anti-

Spoofing 

database 

A unified standard 

for spoof detection 

in the context of 

screen, wrap, and 

print attacks 

 

Algorithms 

degrade with 

high-

resolution 

attack 

images 

IDA-

SVM: 

~1.2–

2.15% 

APCER on 

print/wrap 

attacks 

LPQ-SVM, 

IDA-SVM, 

mLBP, 

CSLBP, 

BSIF 

There is no one 

technique that 

works best for 

all attacks and 

image 

resolutions. 

 

(Da’san 

Mohamma

d & Debeir 

Olivier, 

2015) 

Viola-Jones 

+ Gabor 

filter + PCA 

+ FFNN 

CMU 

dataset 

enhances classical 

Viola-Jones by 

learning more 

features. 

 

Increased 

computation

al burden 

Enhanced 

detection 

over base 

model 

Hybrid 

method: 

Haar, 

Gabor, 

PCA, FFNN 

Enhanced 

detection 

precision in a 

variety of 

scenarios 

 

(Deore 

Gayatri, 

2016) 

Distance + 

eye-line 

tracking + 

segmentatio

n 

Video 

surveillance 

data 

Quick and useful 

for detection based 

on video 

 

Depends on 

angle and 

frontal view 

Moderate; 

usable for 

static 

security 

setups 

Haar + 

facial part 

segmentatio

n 

Accurate in 

frontal 

positions and 

with steady 

lighting 
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(Ding et 

al., 2020) 

Detecting 

phony faces 

using deep 

learning 

(swapped 

faces) 

420,000 fake 

and real 

images 

High prediction 

accuracy for the 

uncertainty score 

 

focused on 

forgery 

detection 

rather than 

general FD 

 

96%+ true 

positive 

rate 

Deep CNN 

+ Transfer 

learning 

validated using 

an interface for 

human 

comparison 

 

(Hangaragi 

et al., 

2022) 

Face mesh 

and DNN 

model 

Labeled 

Wild Faces 

(LWF) in 

addition to 

live webcam 

information 

Robust to 

illumination/backg

round variation, 

real-time capable 

Performance 

limitations in 

severe 

occlusion 

 

94.23% Face Mesh 

+ Deep 

Neural 

Network 

Face 

recognition 

without a 

match with 

"unknown" 

fallback 

 

(Farfade et 

al., 2015) 

DDFD, or 

Deep Dense 

Face 

Detector 

 

Yahoo social 

media photo 

data 

Pose/landmark-

agnostic, uses 

single CNN model 

Sensitive to 

training data 

distribution 

Competitiv

e with 

multi-

model 

detectors 

One fully 

convolution

al deep 

CNN 

 

uses a basic 

architecture to 

detect faces in 

several views. 

(Filali 

Hajar, 

2018) 

A 

comparison 

between 

Gabor-

based and 

boosting 

methods 

Custom face 

images 

Fast Haar-LBP 

models perform 

best 

Gabor 

models are 

slower 

Haar-

AdaBoost 

highest 

accuracy 

Haar, LBP, 

Gabor + 

SVM/NN 

For speed and 

performance, 

Haar-AdaBoost 

is 

recommended. 

 

(Hangaragi 

et al., 

2022) 

For reliable 

face 

detection 

and 

recognition, 

use a face 

mesh with 

DNN. 

Labeled 

Faces in the 

Wild 

(LFW), 

BU3DFE, 

real-time 

images 

Addresses non-

frontal faces and 

changes in lighting 

 

Fails if 

landmarks 

not detected 

well 

94.23% 

face 

recognitio

n accuracy 

Deep Neural 

Network + 

Face Mesh 

Landmark 

Extraction 

Strong 

detection in a 

variety of 

stances, 

lighting 

conditions, 

ages, and races 

 

(Imani et 

al., 2022) 

Real-time 

deep 

learning for 

facial 

recognition 

CNN used 

custom 

datasets for 

training. 

Captured 

images of 

real 

environment

s 

(indoor/outd

oor) 

High performance 

in varying lighting 

and backgrounds 

Less sturdy 

in extreme 

positions or 

with 

obscured 

features 

 

Reported 

96%+ 

detection 

accuracy 

in tests 

Deep 

Convolution

al Neural 

Networks 

Real-time 

facial 

recognition 

technology 

makes it 

appropriate for 

intelligent 

monitoring. 

 

(Jiang & 

Learned-

Miller, 

2017) 

Increased 

pedestrian 

and facial 

recognition 

speed with 

shared deep 

feature 

maps 

FDDB, 

WIDER 

FACE 

Increases detection 

speed by sharing 

computation 

Tradeoff in 

granularity 

of multi-

scale 

accuracy 

Improved 

inference 

speed by 

25–40% 

while 

preserving 

accuracy 

Multi-scale 

CNN 

sharing 

Effective for 

systems with 

limited 

resources and 

embedded 

systems 

 

(Kareem et 

al., 2021) 

Examining 

deep 

learning 

techniques 

Multiple 

datasets 

referenced 

(not 

Detailed 

comparison of DL 

designs for 

Does not 

implement 

or test any 

Reported 

values 

from prior 

CNN, 

ResNet, 

AlexNet, 

summarizes the 

most recent 

developments 

in the 
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for 

classifying 

medical and 

facial 

images 

explicitly 

tested) 

applications using 

images 

 

new 

algorithm 

literature 

(90–98%) 

VGG 

variants 

classification 

of faces and 

medical 

images. 

(Zeebaree 

& Kareem, 

2023) 

Haar 

Cascade 

Classifier 

(COVID 

Vision) 

Live 

webcam 

video 

 

Low-cost, live 

detection, handles 

face angles ±40° 

Extreme 

angles and 

inadequate 

lighting have 

an impact on 

performance

. 

 

Not 

numericall

y stated, 

visually 

validated 

in 

controlled 

range 

Haar 

Cascade 

recognizes face 

masks in live 

video streams 

with medium to 

normal lighting 

with 

effectiveness‐

197†source 

(Khodabak

hsh et al., 

2018) 

Deep 

learning for 

face 

recognition 

under real-

world 

lighting 

conditions 

Real-scene 

facial image 

datasets 

Effective under 

illumination 

variation 

Not robust to 

extreme pose 

changes 

High under 

normal 

lighting 

CNN-based 

detection 

Faces were 

identified in 

different 

lighting 

conditions for 

practical uses. 

 

(Kremic & 

Subasi, 

2016) 

Face 

recognition 

with 

Random 

Forest and 

SVM 

 

Custom 

dataset for 

mobile 

authenticatio

n 

Mobile-suitable 

and low-

complexity 

Lower 

robustness 

under pose 

variation 

Varies 

from 84% 

to 96% 

depending 

on 

algorithm 

SVM, 

Random 

Forest 

In a number of 

mobile 

circumstances, 

RF performed 

better than 

SVM. 

 

(Kumar et 

al., 2019) 

Comprehen

sive face 

detection 

survey 

Various face 

datasets 

discussed 

(WIDER 

FACE, 

FDDB, etc.) 

discusses both 

conventional and 

contemporary 

methods; 

highlights 

difficulties 

 

No new 

algorithm 

proposed; 

not 

implementat

ion-based 

Not 

applicable 

Survey: 

CNN, 

Viola-Jones, 

HOG-SVM, 

etc. 

summarizes the 

development of 

face detection 

and issues like 

as occlusion 

and expression 

variability 

(source: 200). 

(H. Li et 

al., n.d.) 

The cascade 

CNN for 

unrestricted 

facial 

recognition 

FDDB, 

WIDER 

FACE 

Robust to 

occlusion and pose 

Requires 

long training 

time 

Outperfor

med 

traditional 

DPM 

Three-stage 

CNN 

Excellent 

outcomes for 

face detection 

in the real 

world 

 

(J. Li et al., 

n.d.) 

PyramidBo

x++: 

context-

assisted face 

detection 

framework 

WIDER 

FACE 

enhances the use of 

contextual anchors 

for microscopic 

face detection 

 

More 

computation

ally 

demanding 

than usual  

SSD 

State-of-

the-art for 

tiny face 

detection 

PyramidBo

x++, deep 

CNN 

performed 

quite well on 

difficult 

datasets. 

 

(Liao et al., 

2016) 

Normalized 

Pixel 

Difference 

(NPD) with 

soft-cascade 

classifier 

FDDB, 

GENKI, 

CMU-MIT 

Scale-invariant, 

quick, and capable 

of handling 

occlusions and 

posture 

 

Dependent 

on NPD 

feature 

efficiency 

Better than 

OpenCV 

Viola-

Jones (~6x 

faster) 

NPD feature 

+ soft-

cascade 

Cutting-edge 

detection in 

unrestricted 

environments 
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(Liu et al., 

n.d.) 

Deep 

learning 

detection of 

GAN-based 

fake faces 

GAN-

generated 

and real 

datasets 

High robustness to 

forgery 

Face 

detection 

that isn't 

general-

purpose 

 

96%+ 

accuracy 

CNN + 

feature 

localization 

effectively tells 

the difference 

between phony 

and real faces 

(Lu & 

Yang, 

2019) 

Face 

recognition 

and skin 

tone 

adaptation 

combined 

Real-time 

surveillance 

data 

operates in multi-

ethnic and low-

light environments. 

 

Performance 

varies with 

skin 

reflectance 

Context-

dependent; 

moderately 

high 

Haar 

cascade 

combined 

with 

adaptive 

skin tone 

segmentatio

n 

Improved 

performance in 

diverse 

surveillance 

conditions 

(Minaee et 

al., 2021) 

Survey on 

deep 

learning 

face 

detection 

FDDB, 

AFLW, 

WIDER 

FACE, IJB-

A 

compares many 

contemporary 

structures 

 

No new 

architecture 

proposed 

Benchmar

ked 

SOTA: 

RetinaFace

, MTCNN 

RetinaFace, 

S3FD, 

PyramidBo

x++, etc. 

Comprehensive 

benchmark 

study 

(Najibi et 

al., n.d.) 

Single Stage 

Headless 

(SSH) face 

detector 

WIDER 

FACE, 

FDDB, 

Pascal-

FACE 

Fast (50 FPS), no 

image pyramid 

needed, scale-

invariant 

Not very 

resilient in 

severe 

occlusions 

 

State-of-

the-art on 

WIDER 

FACE 

Headless 

VGG-16 

CNN 

Beats ResNet-

101-based 

detectors; 2.5% 

AP boost with 

image pyramid

【 224†source

】 

(Pujol et 

al., 2017) 

Skin-based 

facial 

recognition 

using a 

fuzzy RGB 

color model 

Custom 

RGB face 

images 

Robust to lighting 

changes, uses 

fuzzy entropy 

Color-

dependent, 

limited 

robustness in 

multi-face 

images 

94% 

correct 

detection 

Fuzzy logic 

inference 

system 

Detecting faces 

in varying 

lighting 

conditions 

using efficient 

skin-color 

modeling 

(H. Qin et 

al., 2016) 

CNN 

cascade 

joint 

training for 

end-to-end 

optimizatio

n 

WIDER 

FACE, 

FDDB 

uses 

backpropagation 

across stages to 

improve 

performance. 

 

Computation

ally heavier 

due to joint 

training 

Improved 

over 

greedy 

cascade 

training 

Cascade 

CNN with 

RPN and 

Fast-RCNN 

Outperforms 

traditional 

cascaded 

CNNs in 

detection 

accuracy 【

226†source】 

(Ranjan et 

al., 2019) 

HyperFace: 

multi-task 

CNN for 

gender, 

landmarks, 

stance, and 

detection 

AFLW, 

FDDB, 

AFW 

Predicting multiple 

tasks at once 

increases total 

accuracy. 

 

Complex 

architecture, 

slower 

inference 

State-of-

the-art on 

multiple 

benchmark

s 

CNN + 

fusion 

network 

(HyperFace

) 

Joint prediction 

improves 

individual task 

accuracy 

significantly【

228†source】 

(Tang, 

n.d.) 

Detecting 

and aligning 

joints with 

dense 

characteristi

cs 

FDDB, 

LFW 

High precision and 

landmark 

consistency 

Requires 

detailed 

annotation 

~91% 

detection 

rate 

Dense 

Feature 

CNN + 

regression 

layers 

enhanced 

keypoint 

prediction and 

face 

identification 
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(Wu et al., 

2017) 

Boosted 

Aggregate 

Channel 

Features 

 

AFW, 

FDDB 

Efficient training, 

supports multi-

view detection 

Accuracy 

degrades on 

tiny faces 

Excellent 

recognitio

n of 

medium-

sized and 

large faces 

ACF + 

boosting 

classifier 

Outperforms 

many 

traditional 

Haar-based 

methods 

(Xiang & 

Zhu, 2017) 

CNN with 

multiple 

frames for 

video face 

detection 

 

YouTube 

Faces, 

FDDB 

Uses temporal 

features, stable 

under motion 

Dependent 

on frame 

alignment 

and 

continuity 

Improved 

detection 

in video vs 

single-

frame 

CNN 

CNN with 

temporal 

pooling 

layers 

Improved 

stability of 

detection in 

face tracking 

situations 

 

(Yang et 

al., n.d.-a) 

Combined 

Channel 

Features for 

Face 

Recognition 

in Multiple 

Views 

AFW, 

FDDB 

Quick inference 

that accommodates 

drastic changes in 

posture 

 

Less 

accurate on 

small and 

blurry faces 

State-of-

the-art on 

AFW and 

FDDB at 

publication 

time 

ACF + 

boosted 

trees 

Top performer 

in real-time 

multi-view 

scenarios 

(Yang et 

al., n.d.-b) 

Multi-scale 

cascade 

CNN 

WIDER 

FACE 

large dataset that 

manages pose 

variation, size, and 

occlusion 

 

Challenging 

dataset, may 

overfit to 

specific 

variations 

Benchmar

ked 

multiple 

algorithms 

on WIDER 

FACE 

Cascade 

CNN 

Introduced 

WIDER FACE 

with 393,703 

faces in 32,203 

images 【

251†source】 

(Yimyam 

et al., 

2018) 

Viola-Jones 

+ Eigenface 

for CCTV 

face 

detection 

CCTV face 

images 

An affordable 

option for use by 

law enforcement 

 

Fails on 

large tilt and 

low lighting 

Fails 35–

55% under 

rotation > 

90° 

Haar 

cascade + 

Eigenfaces 

Limited 

toughness, but 

dependable in 

frontal 

circumstances 

(Zafeiriou 

et al., 

2015) 

Survey of 

face 

detection 

algorithms 

AFW, 

FDDB, 

LFW 

(reviewed) 

Comprehensive 

review with 

taxonomy 

No new 

model or 

experiments 

are 

suggested. 

 

Survey-

based 

(reported 

model 

performan

ces) 

Viola-Jones, 

DPMs, 

CNNs 

Evolution of 

face detection 

techniques 

from 2001 to 

2015, charted 

(K. Zhang 

et al., 

2016) 

MTCNN: 

Convolution

al Networks 

with 

Multitask 

Cascades 

WIDER 

FACE, 

AFLW 

Joint face detection 

and alignment 

More 

parameters 

and training 

complexity 

High on 

AFLW and 

WIDER 

FACE 

Three-stage 

CNN 

cascade 

Accuracy and 

landmark 

detection were 

simultaneously 

improved. 

 

(S. Zhang 

et al., n.d.) 

S3FD: 

Scale-

Invariant 

SSD-based 

Face 

Detector 

WIDER 

FACE, 

FDDB 

Outstanding 

detection of small 

faces 

 

Settings for 

sensitive 

anchor size 

 

Outperfor

med 

RetinaNet 

and SSD 

CNN with 

scale 

compensati

on in a 

single shot 

 

Top accuracy 

on challenging 

subsets 

(easy/medium/

hard) 

(Zhou et 

al., 2017) 

Two-stream 

CNN (visual 

+ noise 

features) 

2010 altered 

face photos 

from for-

profit face-

swapping 

applications 

Effective for 

tampered face 

detection 

focused on 

detecting 

false faces 

rather than 

faces in 

general. 

 

High 

accuracy 

on a 

proprietary 

tampering 

dataset 

(not 

quantified) 

GoogLeNet 

+ triplet 

patch stream 

surpasses 

baseline 

techniques in 

altered face 

detection 

(source: 255). 
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Face identification has progressed from traditional methods 

such as AdaBoost classifiers and Haar-like features (Filali 

Hajar, 2018) to contemporary deep learning-based systems 

that provide improved accuracy, real-time performance, and 

robustness in a variety of scenarios. Modern methods like 

SSH (Najibi et al., n.d.) and BlazeFace (Bazarevsky et al., 

2019) use scale-invariant processes and lightweight 

convolutional neural networks to improve inference speed on 

embedded and mobile platforms. By executing detection, 

alignment, and attribute estimation all at once, models like as 

MTCNN and HyperFace prioritize multi-task learning and 

greatly improve overall face analysis performance (Ranjan et 

al., 2019; K. Zhang et al., 2016). By including difficult 

situations with occlusions, different positions, and lighting 

conditions, the advent of large-scale datasets like WIDER 

FACE has further pushed the limits of model generalization 

(Yang et al., n.d.-a). Despite these developments, it is still 

difficult to recognize small, obscured, or masked faces, which 

has led to research into context-aware models such as 

cascaded CNNs with feature sharing (Jiang & Learned-

Miller, 2017) and PyramidBox (Tang, n.d.). Although the 

discipline has made great strides overall, future research 

needs focus on computing efficiency, generalization to 

unknown situations, and resilience to spoofing and face 

manipulation assaults (Ding et al., 2020; Khodabakhsh et al., 

2018) 

 

6-CHALLENGES AND FUTURE DIRECTIONS 

confront identification systems still confront significant 

obstacles in spite of impressive progress, especially when it 

comes to identifying small, obscured, or altered faces in 

unrestricted settings. Mask, accessory, or other object 

occlusion is still a major barrier that frequently results in 

unsuccessful identification or decreased accuracy (Bu Wei, 

2018; Ramachandra & Busch, 2017). The generalization of 

models across various age groups, lighting situations, and 

ethnicities is another urgent problem that calls for inclusive 

training datasets and strong learning techniques (Klare et al., 

2015; Yang et al., n.d.-b). Furthermore, research and policy-

making are increasingly being impacted by ethical issues 

such algorithmic bias, data privacy, and misuse of 

surveillance (W. M. Eido & Ibrahim, 2025; Saleh & 

Zeebaree, 2025). Future developments in face detection 

research are probably going to concentrate on enhancing 

mobile and embedded devices' energy efficiency, including 

explainable AI for transparency, and implementing context-

aware and hybrid systems that combine behavioral cues and 

facial analysis for increased dependability. 

 

7-CONCLUSION 

Face identification has advanced dramatically, moving from 

complex deep learning frameworks that can operate with high 

accuracy in a variety of settings to more conventional 

handmade feature-based techniques. Even with these 

advancements, recurring problems—like identifying small, 

obscured, and altered faces—highlight the necessity for more 

reliable and comprehensive detection models. Transparent, 

scalable, and effective face detection systems are anticipated 

in the future thanks to advancements in explainable AI, 

multimodal analysis, and lightweight edge device designs. As 

face detection technologies continue to be used in more 

contexts, it is also critical to incorporate privacy protections 

and ethical issues. It will take more multidisciplinary research 

to meet these changing needs and guarantee responsible 

deployment across industries. 
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