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ABSTRACT: The rapid progress in artificial intelligence (AI) has led to an increased use of shortcut methods like distillation-based 

training and prompt optimization. While these approaches offer quick performance improvements, they may hinder long-term 

innovation in the field.  

This study highlights the importance of a balanced research approach that combines short-term performance goals with long-term 

advancements in search and inference optimization. It also suggests redesigning educational systems to promote deep understanding, 

curiosity, and critical thinking. The paper concludes that while developing intelligent AI systems is important, nurturing a new 

generation of researchers who can think from first principles is crucial for sustainable AI advancement and innovation. 

 

INTRODUCTION 

AI research has experienced a dramatic shift with the 

emergence of models capable of complex reasoning. 

However, the focus on performance gains over transparent 

innovation has rendered traditional research methods 

inadequate for addressing the complexities of modern AI 

projects.  

The paper examines the challenges of shortcut approaches in 

AI, considering both their technical limitations and broader 

impacts on research culture and future AI researchers. A key 

concern is the decline in first-principles thinking, which is 

crucial for sustainable AI innovation. The discussion covers: 

1. Main paradigms in large language model (LLM) 

training, using the "shortcut vs. journey learning" 

framework by Qin et al. (2024) 

2. Primary reasoning methods in LLMs 

3. Overview of the Technical Transparency Index for 

evaluating LLM capabilities 

4. Lessons learned from current practices 

The paper concludes with recommendations for a balanced 

research portfolio that combines short-term performance 

goals with long-term advancements in search and inference 

optimization. 

Main Paradigms in Machine Learning 

The recent rise of artificial intelligence (AI) technologies has 

brought with it a surge in methodologies focused on rapid 

performance enhancements. On the other hand, several short-

cut methods such as distillation-based training and prompt 

optimization, emerged to deliver immediate results without 

any concerns about their long-term implications. These 

"shortcut methods," prioritize efficiency at the expense of 

foundational advancements, potentially leading to a 

performance ceiling effect and missed opportunities for 

transformative innovation. 

Qin et al. (2024) highlight a prevailing issue in contemporary 

machine learning and large language model training, which 

they refer to as "shortcut learning." While shortcut learning 

has driven significant progress, its inherent limitations 

underscore its inability to produce truly robust and adaptable 

AI systems.  

As seen in Figure 1, this approach, commonly associated with 

supervised fine-tuning, is characterized by several critical 

limitations: 

1. Quick Results Orientation: Emphasis is placed on 

achieving specific performance metrics or 

completing narrowly defined tasks within minimal 

timeframes. 

2. Heavy Data Dependency: Performance gains are 

frequently reliant on expanding the volume of 

training data, rather than improving the underlying 

algorithms. 

3. Limited Generalization: Models exhibit sharp 

performance declines when applied to scenarios 

beyond the distribution of their training data. 

4. Lack of Self-Correction: Current systems often fail 

to identify and rectify their own errors, rendering 

them inadequate for addressing the complexities of 

real-world challenges. 

https://doi.org/10.47191/etj/v10i03.31
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Fig.1 Main Paradigms in AI Training 

 

Qin et al. (2024) argue that the implications of this approach 

extend beyond technical inefficiencies to systemic challenges 

within AI research and education as seen in Figure 2: 

1. Transparency Deficits: The lack of transparency in 

methodology reporting complicates efforts to 

validate and build upon claimed advancements, 

often distorting the broader understanding of 

progress within the field. 

2. Innovation Stagnation: Increasing reliance on 

existing powerful models shifts focus from 

developing fundamentally novel techniques to 

refining prompt engineering, which may hinder 

long-term advancements. 

3. Model Limitations: Distillation-based training 

confines models to the capabilities of their 

predecessors, creating a "ceiling effect" that 

impedes breakthroughs in new domains. 

4. Educational Gaps: The current paradigm neglects 

opportunities to nurture foundational research and 

problem-solving skills among the next generation of 

AI researchers. 

Moreover, Qin et al. (2024) advocate for a comprehensive 

reimagining of the research ecosystem in the AI era, 

emphasizing the following pillars: 

1. Addressing Challenges in Modern AI Research: 

The rapid evolution of AI necessitates a shift 

towards greater transparency and real-time feedback 

within long-term, team-based research endeavors, 

thereby maintaining researcher motivation and 

enhancing information dissemination. 

2. Fostering Open Science: Encouraging the sharing 

of not just trained models but also the datasets, tools, 

and methodologies underpinning their development 

fosters collective progress and replicability. 

3. Laying Foundations for AI in Scientific 

Discovery: Detailed documentation of research 

processes, including failures, creates invaluable 

datasets for training AI models capable of 

understanding and replicating scientific 

methodologies. 

4. Promoting Responsible AI Development: A 

commitment to transparency and ethical research 

practices establishes public trust and sets a high 

standard for responsible AI innovation. 

By adopting these principles, the field of AI can transition 

from a narrow focus on performance metrics to a more 

holistic and sustainable paradigm of innovation. 

Acknowledging the limitations of current methodologies, Qin 

et al. (2024) propose a transformative framework known as 

"journey learning." Journey learning is designed to facilitate 

continuous progression in AI systems through iterative cycles 

of learning, reflection, backtracking, and adaptation. By 

fostering these capabilities, it seeks to cultivate higher levels 

of intelligence and flexibility in AI systems.  

Journey learning transcends conventional learning methods, 

introducing a paradigm that mirrors human-like cognitive 

processes. It promises the creation of more versatile, human-

like AI systems, capable of meaningful interaction and 

application across diverse domains. 
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Unlike shortcut learning, this paradigm envisions the 

development of AI systems that go beyond narrow, task-

specific applications to become adaptable, reasoning entities 

capable of addressing real-world challenges with 

sophistication and nuance.  

Building on these innovative approaches to learning, Qin et 

al. (2024) outline a broader framework for scientific 

exploration and collaboration in the AI era. Their framework 

emphasizes four foundational aspects: 

1. Addressing Challenges in Modern AI Research: 

Due to the rapid advancement of AI technologies, 

research projects often involve extended, 

collaborative endeavors which present unique 

challenges, including restricted information flow 

within the scientific community and diminished 

researcher motivation due to delayed gratification. 

To counter these issues, the proposed framework 

advocates for enhanced transparency, real-time 

feedback mechanisms, and recognition systems that 

sustain commitment to long-term research efforts. 

2. Fostering Open Science and Collective 

Advancement: 

Derived from the principles of open science, the 

framework emphasizes the importance of sharing 

both trained AI models and the documentation of the 

tools, datasets, and methodologies employed. This 

approach fosters a collective progress, enabling 

researchers to build upon existing knowledge and 

innovations effectively. 

3. Laying the Foundation for AI-Driven Scientific 

Discovery: 

Meticulous documentation of the scientific 

exploration process, including both successes and 

failures, is pivotal. Such records create a valuable 

dataset for training AI models to understand and 

replicate scientific methodologies. By capturing the 

entirety of the research journey, this framework 

aligns AI development with foundational scientific 

principles, enabling more robust and insightful 

discoveries. 

4. Promoting Responsible AI Development: 

Transparent documentation of research processes 

and decision-making sets a high standard for 

accountability and ethical AI practices. This 

transparency is critical for building public trust and 

a research culture that prioritizes responsible 

innovation. By adopting a holistic approach, the 

framework encourages long-term sustainability in 

AI research and development. 

In conclusion, journey learning represents a significant 

evolution in AI methodology, addressing the shortcomings of 

shortcut learning while establishing a foundation for 

collaborative, responsible, and impactful scientific 

exploration in the AI era. This paradigm holds significant 

potential to redefine the boundaries of what AI systems can 

achieve and how they integrate into society. 

Review of Existing Work on LLM Reasoning Methods 

Foundational models employ various techniques to construct 

long chains of reasoning necessary for solving complex 

problems. These chains often integrate reflection, error 

correction, and backtracking steps, with each method offering 

trade-offs between computational efficiency and the 

thoroughness of reasoning. 

Method I: Complete Human Thought Process Annotation 

Human problem-solving is rarely linear, often involving 

reflection, backtracking, and iterative revisions in the face of 

challenges. This natural problem-solving process mirrors the 

characteristics of long-chain reasoning. By meticulously 

documenting human strategies, researchers can generate 

authentic, comprehensive training data to enhance AI 

reasoning capabilities. 

Method II: Multi-Agent Approach 

In contrast to journey learning, where policy models do not 

directly respond to feedback, a multi-agent framework 
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involves assigning distinct roles to different agents. For 

instance, a multi-agent debate system can feature a policy 

model generating reasoning chains while a critique model 

evaluates whether to proceed or backtrack. This dynamic 

interaction naturally produces high-quality training data as 

solutions are collaboratively refined. 

Method III: Distillation from Advanced Models 

Advanced AI models, known for their robust reflection and 

self-correction abilities, serve as valuable mentors in the 

distillation process. Weaker models learn from the outputs of 

stronger models through careful prompting. However, access 

to internal reasoning processes is often restricted, 

necessitating meticulous design to ensure effective 

knowledge transfer. 

To further advance reasoning capabilities, several innovative 

methods have been introduced: 

1. Process-Level Reward Models (PRMs) 

Process reward models evaluate responses from 

large language models (LLMs) at a granular level, 

particularly in mathematical reasoning (Lightman et 

al., 2024; Uesato et al., 2022; Xia et al., 2024). 

Techniques such as Monte Carlo Tree Search model 

multi-step reasoning as a Markov Decision Process 

(Silver et al., 2016), enabling online (Chen et al., 

2024) and offline (Wang et al., 2024c) reasoning 

improvements. 

2. Chain-of-Thought (CoT) Theory 

CoT prompting enhances reasoning by 

incorporating intermediate reasoning steps, 

significantly improving performance on tasks like 

arithmetic and commonsense reasoning (Wei et al., 

2022). Recent work integrates error-correction data 

during pretraining, yielding higher accuracy without 

the need for multi-round prompting (Ye et al., 2024). 

3. Internal Thought 

Researchers have emphasized reflective and 

iterative processes within AI models. Early methods 

like STaR (Zelikman et al., 2022) enabled models to 

generate rationales that iteratively refine their 

outputs. Extensions like Quiet-STaR (Zelikman et 

al., 2024a) train models to predict and explain text 

step-by-step, fostering deeper reasoning 

capabilities. 

4. Inference Time Scaling 

Scaling inference time offers an alternative to 

traditional methods of expanding model parameters 

or data volume (Sardana and Frankle, 2023; Snell et 

al., 2024). Benefits include resource efficiency, 

adaptable computation for complex tasks, and 

enhanced reasoning through iterative problem-

solving. 

5. Search-to-Thought 

Modern approaches have shifted from explicit 

search-based methods, such as alpha-beta pruning 

(Campbell et al., 2002), to implicit reasoning using 

internal model states. Deng et al. (2023) demonstrate 

how distilling intermediate steps from teacher 

models enables efficient task-solving, reducing 

reliance on computationally expensive algorithms. 

To mitigate risks like model collapse, researchers suggest 

balancing human-authored and LLM-generated data during 

training (Gerstgrasser et al., 2024). In order to refine LLM 

reasoning and reduce hallucination risks, the following 

strategies are recommended: 

1. Enhanced Data Granularity: Problems are broken 

into finer, digestible steps to ensure comprehensive 

understanding at each stage. 

2. Gradual Reasoning: Models frequently pause to 

reflect, mirroring human thinking patterns, thereby 

improving engagement with the reasoning process. 

3. Student-Explorer Perspective: Adopting a tone of 

discovery in problem-solving fosters curiosity and 

critical thinking, simulating the learning process for 

users. 

Evaluating LLMs: The Technical Transparency Index 

To facilitate systematic evaluation and comparison of model 

replication efforts, scholars have proposed the Technical 

Transparency Index (TTI). This framework quantifies the 

transparency and reproducibility of implementations across 

key dimensions, offering a standardized approach to 

assessing foundational model performance and reliability. 

Index 1: Data Transparency 

This index evaluates the clarity and rigor with which datasets 

are documented and described, ensuring transparency in their 

origin, preparation, and application. Transparent data 

practices are crucial, particularly when datasets serve as seed 

data for generating synthetic long-thought datasets. 

• Data Source: Examines whether the origins of the 

data are clearly specified, including detailed 

descriptions of datasets and their sources. It 

evaluates the explicit mention of dataset names, 

providers, or related publications. 

• Data Selection Process: Focuses on the criteria and 

methodology used for filtering, cleaning, and 

preprocessing datasets before application in 

downstream tasks such as supervised fine-tuning 

(SFT), reinforcement learning (RL), or search 

algorithms. 

Index 2: Methodology Transparency 

Methodology transparency ensures that the techniques and 

processes employed are sufficiently detailed to enable 

independent reproduction and validation. This index 

evaluates various components of foundational models: 

• Foundation Model Details: Assesses the depth of 

information provided about the base model, 

including architectural specifics (e.g., transformer 

layers, attention mechanisms) and parameter size. 

• Search Algorithm: Evaluates the documentation of 

search algorithms used during inference, such as 

beam search or Monte Carlo Tree Search (MCTS). 
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Detailed descriptions of parameters, step-by-step 

processes, and any custom modifications are critical. 

• Reinforcement Learning (RL) Algorithm: 

Reviews RL or preference learning methods, 

including details on reward functions, optimization 

goals, and training dynamics. 

• Long-Thought Synthetic Algorithm: Examines 

processes for synthesizing long-thought datasets, 

including specific heuristics, rules, or algorithms 

used in data generation or selection. 

• Training Details: Assesses the documentation of 

training procedures, covering key hyperparameters 

(e.g., learning rate, batch size, optimizer types) and 

the overall training configuration. 

• Effectiveness Validation: Measures the rigor of 

validation processes for each method, ensuring 

empirical evidence supports claims about the 

importance of specific techniques. 

Index 3: Evaluation Transparency 

This index evaluates how clearly and comprehensively model 

performance is assessed: 

• Benchmark Usage: Considers the appropriateness 

of benchmarks selected for evaluating task and 

domain-specific performance. 

• Evaluation Metrics: Reviews the clarity and 

relevance of metrics used to quantify model 

performance, including any customizations 

introduced to address unique aspects of the 

evaluation. 

Index 4: Open-Source Resources 

Open-source contributions are integral to fostering 

reproducibility and enabling the research community to build 

upon existing work. This index evaluates the accessibility of 

critical resources: 

• Data: Assesses whether post-training raw data and 

synthesized datasets (e.g., O1-like datasets) are 

publicly available, significantly enhancing 

reproducibility and enabling broader 

experimentation. 

• Model Weights: Evaluates the availability of 

trained model weights, which facilitate replication 

and further optimization efforts. 

• Code: Considers the comprehensiveness of released 

codebases, particularly whether they include scripts 

for both training and evaluation, along with 

thorough documentation. 

• Documentation: Reviews supplemental materials, 

such as research papers, technical reports, or blog 

posts, to determine whether they clearly explain 

methodologies, results, and underlying ideas, 

providing actionable insights for researchers and 

practitioners. 

Lessons Learnt 

The trajectory of artificial intelligence (AI) research and 

technology faces a series of profound challenges that pose 

significant risks to the field’s long-term progress. These 

challenges span technical limitations, cultural shifts within 

the research community, and the erosion of foundational 

educational principles. 

Surface Appeal 

AI models can achieve rapid performance gains by leveraging 

sophisticated reasoning patterns with relatively 

straightforward implementations. This accessibility has 

driven widespread adoption, particularly among 

organizations eager to showcase capabilities quickly. 

However, the convenience of these methods often obscures 

their hidden costs, which could hinder the field’s growth and 

long-term sustainability. 

Performance Ceiling 

One of the most pressing technical concerns lies in the 

inherent limitations of distillation-based training approaches. 

Models trained through distillation are fundamentally 

constrained by the capabilities of their teacher models, 

creating a "ceiling effect."  

Regardless of the sophistication of the distillation process, 

these models are unable to surpass the original teacher’s 

performance. This limitation is especially problematic when 

extending model capabilities to new domains or addressing 

previously unseen challenges, thereby restricting their 

potential for innovation. 

Missed Opportunities for Innovation 

The popularity of widely adopted training methods has 

diverted attention away from critical areas of technical 

innovation. True breakthroughs in AI are likely to emerge not 

only from solving complex problems but also from advancing 

capabilities in inference-time scaling and search 

optimization. However, reliance on distillation often 

bypasses these foundational challenges. This trend risks 

creating a widening technological gap between organizations 

that develop core technologies and those that depend 

primarily on distillation. As this gap grows, bridging it may 

become increasingly difficult, further polarizing the AI 

research landscape. 

Shift in Research Culture 

The ease of achieving “quick wins” has begun to reshape the 

culture of AI research. Efforts to tackle fundamental 

challenges are increasingly deprioritized in favor of faster, 

more accessible solutions. This shift has led to reduced 

investment in advanced computational infrastructure and 

diminished emphasis on developing sophisticated search and 

reasoning algorithms.  

A self-reinforcing cycle emerges, where limited 

infrastructure restricts research possibilities, further 

encouraging reliance on simpler methods, and ultimately 

stifling innovation. 

Erosion of Foundational Skills 

The most alarming consequence of these trends lies in their 

impact on the education and training of future AI researchers. 

Widespread adoption of shortcut solutions risks eroding the 

ability of students and early-career researchers to engage with 
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complex technical challenges from first principles. 

Fundamental scientific skills, such as problem-solving and 

systematic algorithm design, are at risk of being 

overshadowed by a focus on optimization and prompt 

engineering.  

This transition from "understanding how it works" to 

"knowing what works" represents a significant shift in 

research mentality, with far-reaching implications for the 

field’s innovative capacity. 

Decay of First Principles Thinking 

The decay of first-principles thinking undermines the very 

foundation of scientific innovation. The process of designing 

search algorithms, optimizing inference, and building 

reasoning mechanisms from scratch forces researchers to 

deeply engage with model behavior, limitations, and 

algorithmic intricacies. These experiences develop critical 

intuition and systematic problem-solving skills. Without such 

challenges, future researchers may become adept at applying 

existing solutions but lack the ability to develop new 

innovations from fundamental principles. 

Impact on Academic Research 

The implications of these trends extend to the broader 

academic environment. Universities, traditionally at the 

forefront of fundamental innovation, face mounting pressure 

to prioritize quick results over deeper technical 

investigations. Students may be discouraged from pursuing 

challenging research directions, and the focus on 

performance metrics risks producing a generation of 

researchers skilled in optimization but deficient in creative 

and exploratory capacity. 

A Growing Divide 

Over time, these factors are likely to exacerbate disparities 

within the AI research ecosystem. Organizations with the 

resources to develop foundational technologies, such as 

advanced search and inference mechanisms, will gain an 

increasingly significant advantage. Meanwhile, those reliant 

on distillation may remain confined to incremental 

improvements. This growing divide threatens to concentrate 

genuine breakthroughs within a small number of well-

resourced entities, leaving the broader research community 

struggling to keep pace. 

 

RECOMMENDATIONS FOR FUTURE RESEARCH 

To confront the profound challenges facing the long-term 

development of AI technology and its research community, 

several key recommendations are proposed: 

Organizations should adopt a balanced approach to their 

research portfolios, integrating both widely-used training 

methods and foundational research into search algorithms and 

inference optimization. While investment in advanced 

computing infrastructure remains critical, equal emphasis 

must be placed on developing core competencies in search 

and inference techniques to drive sustainable innovation. A 

comprehensive strategy that couples immediate performance 

gains with the pursuit of groundbreaking advancements will 

position organizations for long-term success. 

In academia, the training of future AI researchers must be 

reimagined to cultivate both practical expertise and a deep 

understanding of fundamental principles. This requires: 

1. Balanced Curricula: Educational programs should 

equally emphasize practical applications and 

theoretical foundations, ensuring that students are 

equipped with both technical skills and a strong 

grasp of first principles. 

2. Structured Research Projects: Research initiatives 

should be designed to encourage students to engage 

deeply with the underlying mechanisms of AI 

systems, fostering a culture of exploration and 

innovation. 

3. Cultural Shift: Academic environments must 

prioritize long-term innovation over short-term 

achievements, valuing the process of inquiry and 

discovery as much as tangible outcomes. 

As the field progresses, maintaining a balance between 

immediate performance improvements and long-term 

development will be vital. By investing in both, we can 

ensure the continued advancement of AI capabilities while 

cultivating a new generation of researchers who prioritize 

innovation and critical thinking. 

 

CONCLUSION 

This paper examined the significant challenges these methods 

present, including performance ceiling effect, missed 

opportunities for fundamental innovation, changes in 

research culture and a decline in first-principles thinking 

among future researchers 

It addressed these challenges by proposing: 

1. Adoption of open science practices 

2. Redefinition of scientific communication 

3. Establishment of foundational principles for AI-

driven scientific discovery 

4. Promotion of responsible development in AI 

While this approach may yield significant performance 

improvements, its widespread yet opaque application raises 

serious concerns about the future of AI research.  

The ultimate mission lies in nurturing human minds capable 

of first-principles thinking. These individuals are the true 

architects of AI’s future, and their ability to innovate will 

determine the trajectory of the field. 
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