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ABSTRACT: Principal Component Analysis (PCA) is a popular statistical method for large dataset analysis and has established 

itself in many fields, ranging from environmental modeling to spectroscopy. In this work, we bring to light its use in monitoring 

NO2 air pollution from satellite data during the lockdown periods of COVID-19, incorporating the strengths of Weighted PCA and 

Rescaled PCA to achieve improved predictability. Additionally, PCA has been applied in resonant ultrasound spectroscopy to 

optimize measurement points, especially in samples with complex geometries, demonstrating its effectiveness in reducing data 

points of collection while maintaining accuracy. Further, PCA's application coupled with classification methods like LDA and SVM 

has effectively determined the geographic origin of Indonesian coconuts, demonstrating its effectiveness in enhancing classification 

accuracy and chemometric analysis. The versatility of PCA is also evidenced in its use in clustering high-dimensional data through 

Adaptive Local PCA, which employs a neural network-based approach with adaptive learning rates to enhance clustering quality in 

dynamic data environments. These examples show the flexibility and utility of PCA in big data analysis across different fields, and 

a greater application of PCA in gaseous pollutant analysis and other complex data issues is needed. 

KEYWORDS: Principal Component Analysis (PCA), Dimensionality Reduction, High-dimensional Data, Pattern Recognition, 

Big Data Analytics, Spectroscopy, Adaptive Learning. 

 

1. INTRODUCTION 

Principal Component Analysis (PCA) has been extensively 

utilized for analyzing big datasets to explain intricate patterns 

and gain useful information [1]. applied PCA for analyzing 

the NO2 air pollution changes during the COVID-19 

lockdown periods based on satellite images. They proposed 

two novel PCA models: Weighted PCA (WPCA) and 

Rescaled PCA (RPCA), both of which were found to be 

efficient in forecasting changes in the level of air pollution. 

The research determined that Principal Component Analysis 

(PCA) serves as a dependable method for recognizing and 

forecasting air pollution trends, advocating for its utilization 

in analyzing other gaseous pollutants. Within the framework 

of resonant ultrasound spectroscopy, Beardslee[2]. 

investigated the implementation of PCA to enhance the 

selection of measurement points, especially in relation to 

specimens with intricate geometries. Their approach 

minimized the number of measurement points utilized with 

preserving accurate spectral data, thereby making data 

processing more efficient. This was one illustration of how 

PCA can be applied to improve data acquisition and 

processing in complex systems. PCA has also seen 

application in classification and chemometric analysis. [3] 

integrated PCA with LDA and SVM classifiers for 

determining the geographic origin of Indonesian coconuts. 

The model had high accuracy, thereby demonstrating the 

effectiveness of PCA in classification and its capability in 

maximizing visualization results in chemometric research.[4] 

presented Adaptive Local PCA for improving clustering of 

high-dimensional data. Their approach employed a neural 

network-based algorithm with adaptive learning rates and 

ranking metrics, which improved the quality of clustering, 

especially for non-stationary data distributions. This work 

highlighted PCA's capacity to adaptively process complex 

and dynamic data environments. These investigations 

illustrate the efficacy and versatility of PCA in big data 

analytics, ranging from environmental modeling and 

spectroscopy to classification and high-dimensional data 

clustering. PCA continues to be a powerful statistical method 

for uncovering informative patterns and interpreting large 

datasets[5]. 

 

2. BACKGROUND THEORY 

2.1. Big Data Fundamentals 

Big data is greatly important in today's digital age for 

revolutionizing industries and advancing new ideas in 

different industries. Big data, due to its enormous a 

mount, different types, and high velocity, requires advanced 

methods for processing and handling it to extract valuable 

information. Methods like Principal Component Analysis 

(PCA) are greatly needed for reducing dimension and 

facilitating the understanding of big data. PCA is very useful 

for unsupervised data analysis. It determines principal factors 

and is used in areas like finance and biomedical research [6] 
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. Big data brings issues like privacy and security, especially 

in cloud and Internet of Things (IoT) environments. In such 

environments, techniques like encryption are used to improve 

the protection of data during the processing of data using 

techniques like PCA and LDA. This helps to protect the 

privacy of sensitive data [7] . Additionally, big data enables 

business model innovation by the capacity of businesses to 

reimagine processes and create new value propositions, 

founded on thoroughly analyzed and intelligent data [8] . 

2.2. Statistical Foundations 

In the context of data analysis, a grasp of fundamental 

statistical concepts such as variance, covariance, and the 

application of eigenvalues and eigenvectors is valuable. 

Variance quantifies the extent to which data points differ from 

their mean, offering insightful information regarding the 

spread of a dataset. Covariance builds upon this by 

quantifying the extent to which two variables change in 

tandem and thereby offers an understanding of the correlation 

between variables in a dataset. Variance and covariance 

together are the building blocks of covariance matrices, 

which capture the covariance of more than one variable and 

play a central role in multivariate statistical analysis [9] [10] 

.  Aside from this, eigenvalues and eigenvectors also 

play a significant role in data transformation through methods 

such as Principal Component Analysis (PCA). PCA employs 

them for the purpose of decreasing the dimensionality of data 

sets without sacrificing their most important aspects. 

Eigenvalues tell us the significance or magnitude of every 

axis in the new feature space established, and eigenvectors 

specify their orientations. This conversion assists in the 

recovery of the highest amount of variance, or information, 

present in the data and hence provides a simpler and 

improved analysis. Moreover, this process not only makes 

large volumes of data easy but also makes data interpretation 

used in different areas, ranging from engineering to social 

sciences, more transparent and effective [9] [10]. 

2.3. Linear Algebra Concepts 

Principal Component Analysis (PCA) uses basic ideas of 

linear algebra, i.e., diagonalization and orthogonality, to 

successfully deal with and reduce the complexities involved 

in high-dimensional datasets. Through the process of 

converting the covariance matrix to a diagonal matrix using 

eigenvectors, PCA guarantees that the resulting principal 

components have the highest possible variance. This step is 

crucial in dimensionality reduction while retaining valuable 

information and hence plays a fundamental role in various 

areas, including finance and biomedical research [2] [11] . 

The orthogonality of eigenvectors ensures the principal 

components are uncorrelated, a feature that plays a key role 

in ensuring no information is lost in the process of 

dimensionality reduction. 

To improve the performance and robustness of Principal 

Component Analysis (PCA), particularly in the presence of 

outliers and noisy data, various robust PCA methods have 

been proposed. These methods modify the covariance matrix 

estimation to limit the effects of anomalies, thus leading to 

principal components that are more representative of the 

intrinsic data structure [12] . Furthermore, sparse PCA has 

been proposed to introduce sparsity in the components. This 

adjustment not only helps maintain the interpretability of the 

results but also highlights the most relevant features, thus 

enhancing the applicability of Principal Component Analysis 

(PCA) to real-life scenarios that require simple and accurate 

feature selection  [13] . 

Besides, newer approaches such as the utilization of 'data 

nuggets' have been suggested for effective management of 

very large datasets. This approach summarizes data into 

manageable chunks while maintaining the structural 

information of the dataset, thereby enabling the use of 

Principal Component Analysis (PCA) where the classical 

approach is computationally infeasible  [11] [14] . 

2.4. PCA Fundamentals 

Principal Component Analysis (PCA) is a fundamental 

statistical method in data analysis and machine learning that 

is utilized to highlight variations and uncover significant 

patterns within a dataset. PCA reduces the complexity of 

high-dimensional data by projecting it onto a lower-

dimensional space that retains most of the significant 

information. The method starts with normalizing the dataset 

such that each variable has zero mean and unit variance to 

provide equal weightage to them in analysis. The covariance 

matrix is then computed to identify correlations between 

variables. By computing the eigenvectors and eigenvalues of 

this matrix, PCA effectively reduces the dimensionality of the 

data without losing its most significant variability. This step 

involves choosing the most important features, i.e., the 

leading k eigenvectors that encompass the prevailing variance 

and hidden patterns within the data [15] [11]. 

Assumptions PCA makes are the assumption of linearity, 

which states that the principal components are linear 

combinations of the original variables. The assumption is 

crucial as it dictates that directions of maximum variance will 

be most informative regarding the data structure. Secondly, 

PCA also assumes that the most significant variances contain 

the most important information about the data, thus the 

transformation to a space where the maximum of these 

variances is obtained. Normalization or scaling of data is also 

important before applying PCA so that all the variables 

contribute equally to the analysis and remove any bias 

towards variables with inherently larger scales. 

Standardization is required for a fair comparison and 

appropriate contribution of features based on various scales 

of measurement [16] [17]. 
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The significance of PCA is in its ability to reduce data 

dimensions without loss of required information, thus 

rendering it valuable for exploratory data analysis, signal 

denoising, and as a pre-processing step before applying other 

machine learning techniques. The reduction in dimensionality 

enables improved data visualization and promotes more 

efficient processing of the data in subsequent analysis, which 

in large datasets, where excessive dimensionality may render 

effective analysis and interpretation cumbersome [11] . The 

use of Principal Component Analysis (PCA) encompasses an 

extensive variety of areas, from genomics to finance, where 

the identification of the underlying structure of complicated 

data is crucial [18] [19] . 

 

3. LITERATURE REVIEW 

3.1. Historical Perspective and Evolution 

Li et al. (2024) [16] discuss that Principal Component 

Analysis (PCA) was initially developed as a statistical 

method for dimensionality reduction and data interpretation. 

Its application has expanded to high-dimensional data in 

contemporary big data contexts, ranging from basic statistical 

tests to sophisticated machine learning and artificial 

intelligence models. Developments in scalability and noise 

removal have enabled PCA to become more effective and 

precise in data analysis. 

Ikegwu et al. (2024) [6] say the field of big data analytics for 

climate change has developed from conventional data 

processing techniques to sophisticated machine learning and 

artificial intelligence techniques. This was on account of the 

increasing amount and sophistication of climate data, such as 

satellite images and sensor networks, hence the need for more 

effective data processing and predictive modeling techniques. 

Wang et al. (2024) [20] explain that PCA was initially a basic 

statistical method but evolved into a complex method 

combined with machine learning and deep learning. PCA is 

now handling intricate high-dimensional data with greater 

effectiveness and accuracy in many fields, including wind 

power forecasting. 

Perez and Toraman (2024) [21] explain how PCA evolved 

from simple statistical methods to advanced tools in 

combination with gas chromatography and spectrometry. The 

innovation increased accuracy in analyzing complex 

chemical reactions, especially polypropylene decomposition 

and pyrolysis. 

Baidya et al. (2024) [22] explain that PCA and multivariate 

statistical analysis evolved from basic statistical methods to 

advanced techniques integrated with machine learning. What 

was originally used for covariance analysis is now used to 

process complex geochemical data, making mineral 

exploration even more efficient in identifying fluid sources 

and deposit types. 

Christensen et al. (2023) [23] explain that PCA evolved 

from a statistical method to a sophisticated methodology 

coupled with Density Functional Theory (DFT) for 

improving CO and HCOOH selectivity classification in 

electrochemical CO2 reduction. 

Mehmood et al. (2024) [24] discuss that the development of 

big data analytics in manufacturing SMEs originated from 

conventional data processing approaches, yet it has 

proceeded to incorporate dynamic capabilities such as green 

innovation. The development illustrates an increasing 

demand for sustainability and competitiveness, and thus 

enhanced efficiency in operation and environmental 

performance. 

Faaique (2024) [12] explains that big data astronomy 

evolved from simple data processing to complex machine 

learning as a result of huge datasets from projects like SDSS 

and LSST. 

Wu et al. (2024) [25] describe how tourism and hospitality 

forecasting developed from conventional statistical 

techniques to sophisticated machine learning and artificial 

intelligence techniques. This shift was driven by growing 

availability of real-time, high-frequency data that had been 

collected from online sources, thereby improving the 

accuracy of forecasts and facilitating informed strategic 

business decision-making in the industry. 

Zhao and Liang (2024) [26] explain how the teaching of 

foreign languages evolved from traditional methods to using 

big data models like cross-lingual embeddings and self-

encoders to improve bilingual translation and learning 

outcomes. 

Sharma and Gurung (2024) [27] describe how predictive 

maintenance has developed from conventional preventive 

and reactive strategies to sophisticated systems involving big 

data analytics and machine learning technology. This 

development has been motivated by the demand for 

minimizing unexpected downtime and enhancing 

maintenance in highly automated production setups. 

Jin et al. (2024) [18] outline how big data analytics in 

additive manufacturing (AM) evolved from basic data 

processing to advanced machine learning and digital twins, 

with improved process optimization, quality control, and 

predictive maintenance. 

Migenda et al. (2024) [4] state that Principal Component 

Analysis (PCA) has evolved into adaptive local PCA to 

improve clustering performance for high-dimensional, 

dynamic data sets. This extension uses variable learning rates 

with possible functions to deal with non-stationary data more 

effectively. 

Gandaglia et al. (2024) [28] explain that big data analytics 

in prostate cancer treatment evolved from traditional clinical 

decision-making to advanced real-world data analysis. The 

evolution was driven by the need to improve conservative 

management strategies using large international databases, 

with better patient characterization and outcome prediction. 
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Beardslee et al. (2024) [2] state that Principal Component 

Analysis (PCA) designed to optimize resonant ultrasound 

spectroscopy (RUS) by reducing arbitrary point choice and 

measurement time, while also boosting accuracy for samples 

with complex geometries. 

Nyangon and Akintunde (2024) [29] explain how PCA 

evolved into an advanced electricity price forecasting 

technique, improving accuracy and grid control in renewable 

energy markets through the handling of heteroskedastic 

noise. 

Xie et al. (2024) [13] explain that True Sparse PCA (TSPCA) 

was created in order to maximize the use of sensors in virtual 

metrology for cost savings and efficiency by reducing the 

number of sensors required. 

Mukherjee et al. (2024) [30] explain that multi-omics data 

analysis evolved from classical biologic studies to advanced 

integration methodologies through the power of big data and 

machine learning, with augmented insights into disease 

mechanisms and precision therapeutics. 

Ali et al. (2023)  [15] explain that big data analytics in ICS 

IDS evolved from traditional security practices to AI-based 

models for dealing with advanced cyberattacks, enhancing 

threat detection and real-time analysis. 

3.2. Empirical Studies and Applications 

Li et al. (2024) [31] illustrate that PCA has wide-ranging 

applications in fields including image processing, genomics, 

financial modeling, and environmental science. PCA 

effectively reduces dimensionality, improves model accuracy, 

and reveals patterns in multidimensional data. In machine 

learning, PCA optimizes accuracy and reduces overfitting by 

preprocessing data. 

Ikegwu et al. (2024) [6] observe that heightened big data 

analytics enhances climate change research through more 

accurate forecasts of season changes, weather extremes, and 

health risks. AI and machine learning facilitate real-time 

processing and accurate climate modeling, which enhances 

environmental monitoring and disaster management. 

Wang et al. (2024) [10] note that PCA enhances the precision 

and effectiveness of offshore wind power forecasting by 

reducing dimensionality and eliminating noise. It optimizes 

prediction models like BiLSTM with excellent precision and 

stability for wind power systems. 

Perez and Toraman (2024) [21] note that PCA is used to 

reduce dimensionality and identify patterns in chemical 

reaction data to enhance predictive modeling and 

understanding of reaction mechanisms. It finds wide use in 

environmental studies, chemical kinetics, and materials 

science. 

Baidya et al. (2024) [22] highlight that PCA is used for 

analyzing hydrothermal biotite chemistry to distinguish 

between types of ore deposits and fluid sources. It enhances 

predictive modeling and facilitates greater precision of 

classification in geochemical data sets in mineral exploration 

and environmental studies. 

Christensen et al. (2023) [23] point out how PCA classifies 

CO vs. HCOOH selectivity in examining reaction pathways 

to enhance the design and optimization of catalysts in CO2 

reduction. 

Mehmood et al. (2024) [24] point out how big data analytics 

improves economic and environmental performance in 

manufacturing SMEs through facilitation of green 

innovation. Empirical research proves its capability for 

enhancing decision-making, efficiency in operations, and 

sustainability practices, translating into improved economic 

performance and reduction of environmental impact. 

Faaique (2024) [12]explains that big data analytics enhances 

pattern recognition, noise reduction, and predictive modeling 

in astronomy, accelerating celestial discovery and 

exploration. 

Wu et al. (2024) [25] point out that big data analytics is 

heavily applied in the tourism and hospitality sectors for 

forecasting demand, enhancing operational effectiveness and 

customer satisfaction. Empirical studies indicate its 

suitability in utilizing web-based volume information, social 

media metrics, and online text information to improve 

accuracy in prediction and respond to fast-changing market 

developments. 

Zhao and Liang (2024) [26] highlight that big data corpus 

analysis enhances vocabulary, sentence comprehension, and 

reading ability, leading to more effective foreign language 

teaching. 

Sharma and Gurung (2024) [27] highlight how predictive 

maintenance increases equipment availability and reduces 

maintenance cost in manufacturing by using machine 

learning algorithms to foreca 

st failures prior to their occurrence. South Korean 

applications illustrate how it can be used to increase 

operational efficiency and minimize disruption. 

Jin et al. (2024) [18] note that big data analytics enhances 

material analysis, design optimization, defect detection, and 

sustainability in AM. Integration of digital twins enables real-

time monitoring and predictive maintenance, which improves 

product quality and operational efficiency. 

Migenda et al. (2024) [4] note that adaptive local PCA is 

better than traditional approaches at clustering high-

dimensional data, especially real-time data streams. Its 

adaptive learning rates enhance accuracy and efficiency, with 

efficacy for dynamic data environments. 

Kovács and Haidu (2023) [1] point out that WPCA and 

RPCA both successfully modeled the NO2 concentration 

variability with Sentinel-5P data, demonstrating long-term 

effects of COVID-19 on air quality with precise predictions 

reinforced by ground observations. 

Gandaglia et al. (2024) [28] note that big data analysis 

effectively characterizes prostate cancer patients undergoing 
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conservative management, reporting patterns of comorbidity, 

hospitalization rates, and symptomatic progression patterns. 

It improves decision-making and personalized treatment 

through the use of real-world evidence in different 

international datasets. 

Beardslee et al. (2024) [2] point out that PCA successfully 

selects the optimal RUS measurement points, reducing the 

number needed without loss of accuracy and improving 

elastic constant inversion for challenging geometries. 

Nyangon and Akintunde (2024) [29] highlight that PCA 

enhances day-ahead price prediction by reducing skewness 

and streamlining regression models, making it easier for 

renewable energy to grow in integrated energy markets. 

Xie et al. (2024) [13] highlight that TSPCA efficiently 

reduces the number of required sensors without sacrificing 

predictive performance in semiconductor manufacturing, 

thus cutting costs and ensuring accurate data acquisition. 

Mukherjee et al. (2024) [30] note that multi-omics improves 

disease classification, diagnosis, and therapeutic targeting 

through the integration of high-throughput data, effectively 

modeling disease networks and validating drug targets. 

Ali et al. (2023) [15] note that AI-based IDS achieve 99% 

detection accuracy for ICS cyberattacks, enhancing the 

security of critical infrastructure through real-time threat 

detection. 

3.3.  Comparative Analysis 

Li et al. (2024)  [31]compare PCA with other dimensionality 

reduction methods like LDA and t-SNE. PCA is favored 

because of variance preservation and simplicity, while LDA 

is better for supervised use. t-SNE is more appropriate for 

visualization but lacks interpretability. The choice is based on 

the data and analysis objectives. 

Ikegwu et al. (2024) [6] compare analytics methods, pointing 

out that deep learning and machine learning are highly 

accurate but at the expense of high computing power, while 

traditional methods are quicker but less effective with 

complicated data. Where to apply is dictated by application 

needs, taking into account accuracy, speed, and data 

complexity. 

Wang et al. (2024) [20] show that PCA combined with 

complex algorithms like SSA and VMD outperforms 

traditional methods. Hybrid models of PCA and BiLSTM 

yield improved prediction precision and efficiency for 

complex time-series data. 

Perez and Toraman (2024) [21] illustrate that PCA in 

combination with two-dimensional gas chromatography 

achieves higher resolution and pattern recognition than is 

possible with standard methods. The combination enables 

better analytical accuracy in analyzing chemical mixtures and 

pyrolysis products. 

Baidya et al. (2024) [22] contrast PCA with other 

multivariate techniques such as PLS-DA, demonstrating that 

PCA is efficient in dimensionality reduction and pattern 

identification. Nevertheless, PLS-DA provides superior 

classification accuracy in intricate mineralogical data sets. 

Integration of PCA with machine learning algorithms 

enhances predictive capabilities. 

Christensen et al. (2023) [23] demonstrate that PCA is 

superior to conventional DFT methods through the 

application of multiple descriptors in predicting precise metal 

catalyst behavior. 

Mehmood et al. (2024) [24] contrast big data analytics with 

the traditional decision-making process, stipulating those 

analytics provides more precise outputs and greater 

predictability. Analytics surpasses traditional approaches in 

competitiveness and sustainability through dynamic 

capabilities, including green innovation and proper resource 

allocation. 

Faaique (2024) [12] illustrates how machine learning 

algorithms are more efficient and precise than traditional 

methods for analyzing astronomical data, enabling detailed 

cosmic research. 

Wu et al. (2024) [25] compare conventional techniques of 

prediction with big data analytics, showing how machine 

learning and AI models produce better accuracy and 

versatility. These newer techniques surpass conventional 

models as they use unstructured data from social media, 

images, and videos to provide finer demand forecasting. 

Zhao and Liang (2024) [26] illustrate that big data models 

outperform the traditional approaches to teaching by 

improving vocabulary memorization and sentence 

comprehension via cross-lingual embeddings. 

Sharma and Gurung (2024) [27] contrast predictive 

maintenance with conventional methods, demonstrating data-

driven techniques to be more precise and economical. In 

contrast to preventive maintenance, which adheres to fixed 

schedules, predictive maintenance employs real-time data to 

fine-tune timing and resource distribution. 

Jin et al. (2024) [18] compare traditional manufacturing and 

big data-driven AM, stating that data analytics offers better 

accuracy, flexibility, and cost-effectiveness with adaptive 

optimization and automatic quality control. 

Migenda et al. (2024) [4] show that adaptive local PCA is 

more effective compared to k-means and Gaussian Mixture 

Models for high-dimensional clustering. It is more 

computationally efficient as it skips full covariance matrix 

computation, thus is suitable for changing data distributions. 

Gandaglia et al. (2024) [28] compare conventional clinical 

practices and big data analytics, illustrating that real-world 

data yields greater precision in patient characterization and 

outcome prediction. In contrast to conventional 

methodologies, big data analytics enables a broad range of 

comorbidity analysis and long-term outcomes in 

heterogeneous populations. 

Beardslee et al. (2024) [2] illustrate that PCA outperforms 

traditional point selection by reducing time, removing 
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redundancy, and optimizing modal information extraction for 

accurate material property analysis. 

Nyangon and Akintunde (2024) [29] demonstrate that PCA 

performs better than conventional approaches in noise 

filtering and identifying intricate patterns, thereby providing 

higher accuracy in volatile renewable energy markets. 

Xie et al. (2024) [13] show that TSPCA outperforms classical 

sparse PCA in that it explains the same variance using fewer 

sensors, which enhances cost-effectiveness and 

computational efficiency. 

Mukherjee et al. (2024) [30] illustrate how integration of 

multi-omics outperforms single-omics approaches by 

providing a comprehensive perspective on disease 

mechanisms and enhancing predictive performance via 

machine learning. 

Ali et al. (2023) [15] state that AI-based IDS are more 

accurate, flexible, and capable of processing dynamic attack 

patterns than traditional models, providing improved security 

against sophisticated cyber threats. 

3.4.  Gaps and Future Directions 

Li et al. (2024) [16] recognize shortcomings in PCA's non-

linear data processing capability and sensitivity to outliers. 

Future directions include the creation of robust PCA variants 

and the incorporation of deep learning for improved pattern 

recognition. Quantum computing advancements and hybrid 

models may improve PCA's efficiency and scalability. 

Ikegwu et al. (2024) [6] identify processing difficulties of 

unstructured data, computational costs, and adaptive, real-

time models. Scalable, low-power algorithms, quantum 

computing, and hybrid models that combine machine 

learning, deep learning, and traditional approaches need to be 

taken into account in future research to enhance climate 

forecasting. 

Wang et al. (2024) [20] identify potential for improvement 

of PCA in handling non-linear and unstable data patterns. 

Future research should integrate PCA with deep learning 

models, explore quantum computing, and develop adaptive 

hybrid models to enhance prediction precision. 

Perez and Toraman (2024) [21] mention difficulty in 

dealing with non-linear data and high computational 

expenses. The future direction of research should be on 

combining PCA with machine learning for better pattern 

recognition and on using quantum computing for quicker 

processing. 

Baidya et al. (2024) [22] recognize difficulty in processing 

non-linear data and high computational expense. Future 

studies need to combine PCA with sophisticated machine 

learning models and investigate quantum computing for 

quick data processing. Creating adaptive models for dynamic 

geochemical data would further improve the effectiveness of 

PCA. 

Christensen et al. (2023) [23] acknowledge the limitations 

of modeling adsorbate interactions and non-linear 

mechanisms. Augment PCA with adaptive algorithms and 

quantum computing in future research. 

Mehmood et al. (2024) [24] recognize obstacles to complete 

fusion of big data analytics and green innovation from both 

organizational and technological limitations. The future 

research direction should revolve around adaptive 

algorithms, improved data management processes, and 

innovative strategies for green innovation in a bid to achieve 

optimum economic and environmental returns. 

Faaique (2024) [12] foresees difficulty in dealing with 

unstructured data and requires adaptive, scalable analytics 

models and quantum computing to process at higher speeds. 

Wu et al. (2024) [25] acknowledge challenges in the 

integration of unstructured data and the need for dynamic and 

adaptive forecasting models. Future research must enhance 

real-time processing of data, develop scalable algorithms, and 

explore cloud computing for more efficient tourism demand 

forecasting. 

Zhao and Liang (2024) [26] find difficulties in mapping 

cross-lingual embeddings to pedagogical models and call for 

adaptive learning approaches and more advanced 

unsupervised algorithms. 

Sharma and Gurung (2024) [27] note issues in integrating 

data, expensive implementation, and requirements for highly 

technical expertise. The way forward for research lies in 

scalable, adaptive algorithms and better data management 

systems to make predictive accuracy cost-effective. 

Jin et al. (2024) [18] identify challenges in big data, digital 

twin, and machine learning integration due to data complexity 

and high costs. Scalable algorithms, real-time processing, and 

adaptive hybrid models are what future research should focus 

on. 

Migenda et al. (2024) [4] acknowledge problems with 

keeping all PCA units active during training. Future research 

is needed to improve adaptive learning, integrate PCA with 

neural networks, and enhance non-linear pattern processing 

and scalability. 

Kovács and Haidu (2023) [1] identify problems with 

meteorological bias modeling and suggest the application of 

adaptive algorithms and real-time data processing for better 

prediction. 

Gandaglia et al. (2024) [28] point out the difficulty of 

merging heterogeneous international datasets and the 

necessity for adaptive algorithms in order to improve 

predictive accuracy. Future research should be directed at the 

creation of data standardization, real-time analysis 

techniques, and individualized treatment plans for prostate 

cancer. 

Beardslee et al. (2024) [2] refer to challenges in scaling PCA 

to complicated geometries and suggest blending adaptive 

algorithms and hybrid models with machine learning for 

improved precision. 
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Nyangon and Akintunde (2024) [29] identify issues in real-

time processing and noise handling. The future research must 

integrate PCA with adaptive algorithms and machine learning 

for improved prediction. 

Xie et al. (2024) [13] acknowledge challenges for using 

TSPCA on non-linear data and suggest integrating it with 

machine learning and exploring real-time manufacturing 

applications. 

Mukherjee et al. (2024) [30] highlight integration challenges 

relating to data, computational complexity, and ethics. Future 

research is needed to enhance scalability, interpretability, and 

data privacy in multi-omics analysis. 

Ali et al. (2023)  [15]acknowledge data imbalance issues and 

suggest enhancing AI scalability and the integration of 

machine learning with deep learning to strengthen ICS 

cybersecurity. 

 

4. DISCUSSION AND TABLE COMPARISON  

Table 1: Summary About Literature Review on Details 

Author(s) Context of Evolution Application Domain 
Complexity 

Level 
Remarks 

Li et al. (2024) 
PCA from statistical tool to 

complex ML and AI model 

Dimensionality 

reduction, data 

interpretation 

High 

Handles high-dimensional data 

with scalability and noise 

reduction 

Ikegwu et al. 

(2024) 

Big data analytics evolution 

driven by climate data 

complexity 

Climate change 

research, predictive 

modeling 

Very High 

Integrates satellite imagery and 

sensor networks for accurate 

climate predictions 

Wang et al. 

(2024) 

PCA integrated with ML and 

DL for complex data analysis 
Wind power prediction High 

Enhances efficiency and 

accuracy in renewable energy 

systems 

Perez and 

Toraman (2024) 

PCA combined with gas 

chromatography for 

chemical analysis 

Chemical reactions, 

pyrolysis studies 
Medium 

Improves accuracy in complex 

chemical decomposition 

analysis 

Baidya et al. 

(2024) 

PCA and multivariate 

analysis advanced for 

geochemical data 

Mineral exploration, 

environmental studies 
High 

Enhances classification 

accuracy and predictive 

modeling 

Christensen et 

al. (2023) 

PCA integrated with Density 

Functional Theory (DFT) 

Electrochemical CO2 

reduction 
High 

Improves selectivity 

classification in complex 

chemical reactions 

Mehmood et al. 

(2024) 

Big data analytics for 

dynamic green innovation 
Manufacturing SMEs Medium 

Supports sustainability and 

competitive advantage 

Faaique (2024) 

ML for astronomical data 

analysis due to massive 

datasets 

Astronomy, celestial 

mapping 
Very High 

Advanced ML models handle 

complex multi-wavelength data 
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Wu et al. (2024) 
Transition from traditional to 

ML/AI forecasting 
Tourism and hospitality Medium 

Enhances demand forecasting 

accuracy using high-frequency 

web data 

Zhao and Liang 

(2024) 

Big data models for foreign 

language education 

Language teaching, 

cross-lingual 

embeddings 

Medium 
Improves bilingual translation 

and learning outcomes 

Sharma and 

Gurung (2024) 

Evolution to ML-based 

predictive maintenance 

Manufacturing, 

predictive maintenance 
Medium 

Reduces downtime and 

optimizes maintenance 

strategies 

Jin et al. (2024) 
Digital twins and ML for 

additive manufacturing 

Additive 

manufacturing 
High 

Enhances process optimization, 

quality control, and predictive 

maintenance 

Migenda et al. 

(2024) 

Adaptive local PCA for high-

dimensional clustering 

Clustering in dynamic 

data 
High 

Uses variable learning rates and 

potential functions for non-

stationary data 

Kovács and 

Haidu (2023) 

Advanced PCA models 

(WPCA, RPCA) for air 

pollution modeling 

NO2 pollution 

modeling, satellite data 
High 

Accurate temporal-spatial NO2 

predictions during COVID-19 

lockdowns 

Gandaglia et al. 

(2024) 

Big data analytics for 

prostate cancer management 

Prostate cancer, 

outcome prediction 
Medium 

Enhances patient 

characterization using 

international datasets 

Beardslee et al. 

(2024) 

PCA for optimizing RUS 

measurement in material 

analysis 

Material property 

analysis 
Medium 

Reduces point selection and 

improves accuracy in complex 

geometries 

Nyangon and 

Akintunde 

(2024) 

PCA for electricity price 

forecasting 

Renewable energy 

markets 
High 

Improves grid management and 

forecasting accuracy 

Xie et al. (2024) 
True Sparse PCA (TSPCA) 

for sensor optimization 

Semiconductor 

manufacturing 
High 

Minimizes sensors while 

maintaining predictive accuracy 
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Mukherjee et al. 

(2024) 

Multi-omics integration 

using big data and ML 

Disease mechanisms, 

targeted therapies 
Very High 

Enhances predictive accuracy 

and therapeutic targeting 

Ali et al. (2023) 
AI-enhanced IDS for 

cybersecurity in ICS 
Cybersecurity, ICS IDS Very High 

Achieves 99% accuracy in 

detecting complex cyber threats 

 

The table 1: gives a detailed summary of the evolution, areas 

of application, levels of sophistication, and key contributions 

of Principal Component Analysis (PCA) and big data analysis 

in various fields, showing how it has progressed from a 

conventional statistical technique for dimensionality 

reduction to a sophisticated technique that is combined with 

machine learning (ML), deep learning (DL), and artificial 

intelligence (AI). It is a response to the growing demand for 

analyzing high-dimensional data, predictive accuracy, and 

operational efficiency. Works like Li et al. (2024)[16] 

showcase PCA’s ability to scale and filter noise, and Ikegwu 

et al. (2024) [6] show how it is applied with satellite images 

for climate modeling. Specialized applications comprise 

chemical analysis (Perez and Toraman, 2024) [21] , 

electrochemical CO2 reduction (Christensen et al., 2023) [23] 

, and semiconductor manufacturing sensor optimization (Xie 

et al., 2024) [13] , all indicating PCA's adaptability to 

domain-specific challenges. Complexity varies between 

Medium and Very High with the greater complexity observed 

in dynamic high-dimensional data applications such as 

climate research (Ikegwu et al., 2024) [6] , astronomical data 

analysis (Faaique, 2024) [12] , multi-omics data integration 

(Mukherjee et al., 2024) [30] , and cybersecurity applications 

(Ali et al., 2023) [15] . Comparative studies highlight PCA's 

superiority in dimensionality reduction, pattern recognition, 

and predictive capabilities, particularly in hybrid models 

(Wang et al., 2024; Xie et al., 2024) [20][13] , and new 

combinations with scientific techniques (Perez and Toraman, 

2024; et al., 2023) [21] [23]. However, there are issues with 

handling non-linear data, dynamic system precision, and 

computational efficiency, demanding hybrid models, 

adaptive algorithms, and real-time processing, especially in 

renewable energy markets (Nyangon and Akintunde, 2024) 

[29] and cybersecurity (Ali et al., 2023)[15] . Research in the 

future needs to focus on integrating PCA with ML, DL, and 

AI for improved scalability and interpretability, and 

expanding its applications in quantum computing, precision 

medicine, and smart manufacturing. In summary, PCA's 

history highlights its stability, scalability, and applicability in 

contemporary data analytics, the way forward to innovative 

solutions in new fields, with its application as a core 

dimensionality reduction and pattern identification tool 

becoming increasingly vital as data complexity increases. 

 

5. APPLICATIONS OF PCA IN BIG DATA 

PCA plays a key role in big data analytics in numerous 

industries for enhancing operational and strategic decision-

making. PCA has been utilized to reduce intricate data 

structures, for example, by identifying the subspace where the 

majority of variance in big datasets resides, thus serving as a 

requisite tool in contemporary analytics [32]. Additionally, 

Principal Component Analysis (PCA) is used for electricity 

price forecasting in some of the California Independent 

System Operator (CAISO), enhancing accuracy through the 

management of heteroskedastic noise, thereby benefiting grid 

operations and integration of renewable sources [29]. Also, in 

the field of manufacturing, True Sparse PCA (TSPCA) has 

been employed to minimize the number of sensors required 

in virtual metrology, thereby reducing equipment expenses 

without sacrificing data analysis quality [13]. PCA plays a 

key role in big data analytics in numerous industries for 

enhancing operational and strategic decision-making. PCA 

has been utilized to reduce intricate data structures, for 

example, by identifying the subspace where the majority of 

variance in big datasets resides, thus serving as a requisite 

tool in contemporary analytics [6]. Additionally, Principal 

Component Analysis (PCA) is used for electricity price 

forecasting in some of the California Independent System 

Operator (CAISO), enhancing accuracy through the 

management of heteroskedastic noise, thereby benefiting grid 

operations and integration of renewable sources [31]. Also, in 

the field of manufacturing, True Sparse PCA (TSPCA) has 

been employed to minimize the number of sensors required 

in virtual metrology, thereby reducing equipment expenses 

without sacrificing data analysis quality [13]. 

 

6. EXTRACT STATISTICS  

The figure 1 highlights effectively displays the prevalence of 

complexity levels in a dataset with categories well separated 

by color for readability. The most prevalent is high 

complexity with nine cases, suggesting a dataset with the 

majority of challenging tasks needing high skill or 

knowledge. Medium complexity has the second highest with 

seven cases, suggesting a high volume of moderately 

challenging content. The extremely high complexity 

category, although occurring only four times, represents the 

most challenging tasks, perhaps emphasizing specialized or 

unusual challenges within the research's subject area. This 



“Expanding the Horizons of Principal Component Analysis: Versatile Applications from Environmental Monitoring to 

Chemometrics” 

4108 , ETJ Volume 10 Issue 03 March 2025 1 Firdaws Rizgar Tato 

 

kind of pattern demonstrates a skew toward high complexity 

levels, which may influence resource planning and strategic 

direction, such as giving priority to enhancement in areas 

demanding greater expertise or more rigorous training 

programs. 

 
Figure 1: Complexity Level Frequency Distribution 

 

The figure 2 below is a clear, colorful illustration of the 

spread of various research fields, with each field representing 

an equal proportion of 5% of the dataset. The even 

distribution indicates that every research field is represented 

singly, implying a wide range of both applied and theoretical 

fields. The distribution spans across many sectors, from 

energy, manufacturing, health, environmental studies, and 

cybersecurity, just to name a few. This depiction not only 

stresses the interdisciplinary character of contemporary 

studies but also brings to the fore the equitable representation 

of each discipline in this specific dataset. Such distribution 

could be suggestive of the presence of an equilibrated 

research agenda or a collection to encompass a diversified 

range of interests and issues intrinsic to contemporary science 

and technology. The provided chart elegantly portrays the 

wealth of research objects and their possible interconnections 

that can be instrumental in advancing interdisciplinary 

collaboration and novel ideas. 

 

 
Figure 2: Distribution of Research Topics across Diverse Domains 

 

The figure 3 shows how many words there are in comments 

on different research improvements. The x-axis shows the 

number of words per comment, and the y-axis shows how 

often these numbers occur. The data peaks at 7 words, which 

shows that most comments are short, tending to be about 7 

words. There are a number of comments that contain 8 words. 

There are fewer comments that contain 5, 6, 9, and 10 words. 

This spread suggests a tendency for brief descriptions of 

research improvements. The preference for brevity could be 

the result of the need to convey the gist of the improvements 

with speed in situations like executive summaries, 

presentations, or reports where there is limited space and 

reader attention. The focus on 7-8 words shows a nice way of 

giving enough details without being too wordy. The mix of 

brief and longer comments shows different levels of detail, 

which may be in line with how complex or important the 

changes are. 
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figure 3: Distribution in Research Improvement Remarks 

 

7. RECOMMENDATIONS 

1. Enhance Non-Linear Data Handling: Integrate Kernel 

PCA or deep learning to manage non-linear data more 

effectively. 

2. Adaptive Learning Techniques: Use adaptive algorithms 

and neural networks for dynamic data environments. 

3. Quantum Computing Integration: Explore quantum 

computing for improved scalability and computational 

efficiency. 

4. Hybrid Models: Combine PCA with other 

dimensionality reduction methods (e.g., t-SNE, LDA) for 

better interpretability and accuracy. 

5. Real-Time Data Processing: Develop real-time 

algorithms with big data frameworks like Apache Spark. 

6. Emerging Technologies: Integrate PCA with AI and deep 

learning for advanced predictive analytics. 

7. Enhanced Data Preprocessing: Implement rigorous data 

preprocessing to improve PCA outcomes. 

8. New Application Domains: Expand PCA applications to 

emerging fields such as genomics, finance, and 

autonomous systems. 

 

8. CONCLUSION 

Principal Component Analysis (PCA) across diverse 

applications underscores its pivotal role in handling and 

interpreting complex datasets. By showcasing PCA's 

effectiveness in environments ranging from 

environmental monitoring to intricate geometrical data 

analyses and high-dimensional clustering, the study 

highlights the adaptability and precision of PCA in 

extracting meaningful patterns and reducing 

dimensionality. Furthermore, the integration of PCA with 

advanced classification techniques and its enhancement 

through neural network-based algorithms emphasize its 

potential to evolve alongside emerging data analysis 

technologies. As we continue to navigate the expanse of 

big data, PCA remains a fundamental tool, demonstrating 

not only the capacity to improve current methodologies 

but also to innovate new applications that respond to the 

evolving demands of data science. The ongoing 

refinement and adaptation of PCA methodologies will be 

crucial in harnessing the full potential of big data across 

various scientific and commercial fields, ensuring that 

data analysis remains both manageable and insightful. 
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