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ABSTRACT: Diabetic Retinopathy (DR) is a microvascular complication of Diabetes Mellitus caused by retinal blood vessel 

damage, potentially leading to permanent blindness. Early detection is crucial to preventing disease progression. However, studies 

show that DR is often detected only in its advanced stages. This research classifies DR images using the EfficientNet-B7 

Convolutional Neural Network (CNN) architecture with Hyperparameter Optimization (HPO) to achieve optimal results. 

Experiments were conducted with different data splits, dense layer configurations, and learning rates. The best training performance 

was achieved with a 90%-10% data split, 256 dense units, and a 0.01 learning rate, reaching 95.48% accuracy. The best testing 

performance was obtained with a 90%-10% data split, 32 dense units, and a 0.001 learning rate, achieving 95.81% accuracy. These 

results demonstrate that EfficientNet-B7, combined with optimized hyperparameters, enhances DR classification accuracy and 

provides a promising approach for early DR detection. 

KEYWORDS: Diabetic Retinopathy, Deep Learning, Convolutional Neural Network, EfficientNet-B7, Hyperparameter 

Optimization 

 

I. INTRODUCTION 

Diabetic Retinopathy (DR) is one of the most common and 

severe complications of Diabetes Mellitus (DM), a chronic 

metabolic disorder that affects millions of people worldwide 

(Aiello et al., 2001). DR occurs due to prolonged 

hyperglycemia, which causes damage to the retinal 

microvascular system, leading to progressive vision 

impairment and potential blindness if left untreated (Flaxel et 

al., 2019). Studies indicate that nearly one-third of diabetic 

patients develop some form of DR during their lifetime, 

making it a significant global health concern (Lee et al., 

2021). 

The early detection and accurate classification of DR are 

essential for effective treatment and vision preservation. 

Conventional DR diagnosis relies on ophthalmologists 

manually examining retinal fundus images using 

ophthalmoscopy or fundus photography (Gulshan et al., 

2016). However, research has shown that DR is often 

detected only at advanced stages, which limits timely 

intervention and increases the risk of irreversible vision loss 

(Farley et al., 2008). Given these challenges, automated and 

AI-driven solutions have been increasingly explored to assist 

in DR detection and classification. 

Recent advancements in Artificial Intelligence (AI), 

particularly Deep Learning (DL), have demonstrated 

remarkable success in medical image analysis. Convolutional 

Neural Networks (CNNs) have been widely adopted for DR 

detection due to their ability to learn complex hierarchical 

features from retinal images (Leibig et al., 2017). Various 

CNN architectures, including VGG16, ResNet, and 

InceptionNet, have been employed for DR classification, 

achieving significant improvements in accuracy (Nikhil & 

Angel Rose, 2019). However, more recent research has 

shown that EfficientNet, a family of CNN models, provides 

superior performance in image classification tasks by 

optimizing model scaling in terms of depth, width, and 

resolution (Tan & Le, 2019). 

This study explores the application of EfficientNet-B7, the 

most advanced model in the EfficientNet family, for DR 

classification. We employ Hyperparameter Optimization 

(HPO) to enhance classification accuracy by systematically 

tuning critical parameters such as learning rates, dense layer 

configurations, and data splits. By comparing different 

experimental scenarios, this research aims to identify the best 

hyperparameter settings for EfficientNet-B7 in DR 

classification, contributing to the development of more 

accurate and efficient automated screening tools for diabetic 

retinopathy. 

The structure of this paper is as follows: Section 2 reviews 

related studies on DR classification and deep learning-based 

approaches. Section 3 describes the methodology, including 

dataset selection, preprocessing, and experimental setup. 

Section 4 presents the results and discussions, followed by the 

conclusion and future work in Section 5. 
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II. RELATED WORK 

A. Traditional Approach for Diabatic Retinopathy 

Detection 

Early detection of Diabetic Retinopathy (DR) has 

traditionally relied on manual grading by ophthalmologists 

using fundus photography and fluorescein angiography 

(Flaxel et al., 2019). However, manual diagnosis is time-

consuming, prone to inter-observer variability, and requires 

trained specialists, limiting its accessibility in resource-

constrained settings (Gulshan et al., 2016). To address these 

limitations, automated methods based on classical machine 

learning techniques such as Support Vector Machines (SVM) 

and Random Forest classifiers have been explored (Jelinek et 

al., 2006). While these approaches provided moderate 

accuracy, their reliance on handcrafted feature extraction, 

including vessel segmentation and texture analysis, restricted 

their generalizability (Quellec et al., 2010). 

B. Deep Learning for DR Classification  

With the advancement of Deep Learning (DL), Convolutional 

Neural Networks (CNNs) have emerged as a powerful tool 

for DR detection. CNN-based models can automatically learn 

hierarchical representations from raw fundus images, 

eliminating the need for manual feature extraction (LeCun et 

al., 2015). Notable studies include Gulshan et al. (2016), who 

developed a deep learning system for DR classification using 

a large dataset from the EyePACS database, achieving an area 

under the curve (AUC) of 0.991. Similarly, Krause et al. 

(2018) demonstrated that CNN models could achieve 

performance comparable to ophthalmologists by leveraging 

transfer learning and large-scale retinal image datasets. 

C. Deep Learning for DR Classification  

EfficientNet, introduced by Tan & Le (2019), optimizes CNN 

architecture by balancing depth, width, and resolution using 

a compound scaling method. Several studies have shown that 

EfficientNet outperforms traditional CNN architectures in 

medical imaging tasks, including DR classification. For 

instance, Lam et al. (2021) demonstrated that EfficientNet-

B7 achieved superior accuracy compared to ResNet-50 and 

DenseNet-121 in classifying DR severity levels. 

Additionally, research by Chalakkal et al. (2022) confirmed 

that EfficientNet-based models required fewer parameters 

while maintaining high classification performance in retinal 

disease detection 

D. Hyperparameter Optimization 

Hyperparameter Optimization (HPO) plays a crucial role in 

enhancing deep learning model performance. Common 

techniques include grid search, random search, and Bayesian 

optimization (Yu & Zhu, 2020). Liu et al. (2021) investigated 

the impact of hyperparameter tuning on CNN-based DR 

classification and found that adjusting learning rates, dropout 

rates, and dense layer configurations significantly improved 

model accuracy. Given these findings, this study employs 

HPO to fine-tune EfficientNet-B7 parameters for optimal DR 

classification. 

E. Confusion Matrix 

Confusion matrix is often referred to as error matrix. 

Confusion matrix provides information on the comparison of 

classification results that have been carried out by the system 

or model with the actual results. Confusion matrix is a matrix 

table that displays the results of the model's performance in 

classifying test data (Nugroho, 2019). The figure below is a 

confusion matrix with four different prediction classes and 

actual values. 

 
Figure 1 Confusion Matrix 

(https://medium.com) 

 

The result of the classification process on the confusion 

matrix. There are four in the confusion matrix table, namely 

True Positive (TP), True Negative (TN), False Positive (FP) 

and False Negative (FN). The following formulas are applied 

in evaluating the performance of the model: 

• Accuracy 

This accuracy describes how accurate the model is 

in classifying the data correctly. 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

• Precision 

Precision describes the level of accuracy between 

the requested data and the prediction results 

provided by the model. 

 

Precission =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• Recall 

Recall describes the model's success in retrieving 

information. 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

• F-1 Score 

F-1 Score describes the weighted average 

comparison of precision and recall. 

 

F1 Score = 2 𝑥 
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛
 

 

• AUC (Area Under Curve) 

The AUC-ROC curve is a performance 

measurement for classification at various threshold 

settings. ROC is a probability curve and AUC 

represents the degree or measure of separation. It 

https://medium.com/
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gives information on whether the model is able to 

distinguish classes from the data. The higher the 

AUC value, the better the model is at predicting 

class 0 as 0 and class 1 as 1. So the higher the AUC, 

the better the model is at recognizing the class of the 

data. 

 
Figure 2 The AUC-ROC curve 

(https://medium.com) 

 

III.  METHODOLOGY 

A. Dataset 

This study utilizes a publicly available Diabetic Retinopathy 

dataset from https://www.kaggle.com/sovitrath/diabetic-

retinopathy-224x224-2019-data. The dataset consists of 

3,662 retinal fundus images, categorized into five severity 

levels: 

1. Normal – No visible signs of DR. 

2. Mild Non-Proliferative Diabetic Retinopathy 

(NPDR) – Presence of microaneurysms. 

3. Moderate NPDR – Increased microaneurysms and 

small hemorrhages. 

4. Severe NPDR – Extensive hemorrhages and venous 

abnormalities. 

5. Proliferative Diabetic Retinopathy (PDR) – 

Neovascularization and severe vision-threatening 

complications. 

To ensure balanced training, the dataset is preprocessed to 

handle class imbalance through data augmentation 

techniques such as rotation, flipping, and brightness 

adjustments. 

Figure 3 DR Image Dataset Example 

 

B. Data Preprocessing 

Prior to model training, several preprocessing steps are 

applied: 

• Image Resizing – All images are resized to 224×224 

pixels to match the input size of EfficientNet-B7. 

• Normalization – Pixel values are scaled between 0 

and 1 to improve convergence. 

• Data Augmentation – Techniques such as rotation 

(±30°), horizontal flipping, zooming (10%), and 

contrast adjustment are applied to enhance model 

generalization. 

• Contrast Limited Adaptive Histogram Equalization 

(CLAHE) – Applied to improve contrast and 

highlight key retinal structures. 

• Splitting Dataset – The dataset is split into training 

(90%) and testing (10%) sets, ensuring a fair 

distribution across classes. 

C. Model Architecture 

EfficientNet-B7, a state-of-the-art Convolutional Neural 

Network (CNN), is employed due to its optimized 

performance with fewer parameters. Key features include: 

• Compound Scaling – Efficiently balances model 

depth, width, and resolution. 

• Swish Activation Function – Enhances non-

linearity and improves training stability. 

• Batch Normalization & Dropout – Helps prevent 

overfitting and accelerates convergence. 

• Fully Connected Layers – Feature extraction is 

followed by dense layers with ReLU activation and 

a softmax classifier to predict DR severity. 

 

 
Figure 4 EfficientNet Architecture 

 
Figure 5 EfficientNet Accuracy Comparation 

 

D. Experimental Setup 

The model is trained using TensorFlow and Keras with the 

following hyperparameter configurations: 

• Optimizer: Adam 

• Loss Function: Categorical Cross-Entropy 

• Batch Size: 32 

• Epochs: 50 

• Learning Rate: Varied (0.001, 0.01, 0.1) 

• Dense Units: Varied (32, 128, 256) 

https://medium.com/
https://www.kaggle.com/sovitrath/diabetic-retinopathy-224x224-2019-data
https://www.kaggle.com/sovitrath/diabetic-retinopathy-224x224-2019-data
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To optimize performance, Hyperparameter Optimization 

(HPO) is conducted using grid search, systematically 

evaluating different parameter combinations. 

E. Evaluation Metrics 

To assess model performance, the following metrics are used: 

• Accuracy – Measures the percentage of correctly 

classified images. 

• Precision & Recall – Evaluates the model’s ability 

to distinguish between DR severity levels. 

• F1-Score – Provides a balanced assessment between 

precision and recall. 

• AUC-ROC Curve – Measures the ability of the 

model to differentiate between classes. 

• Confusion Matrix – Analyzes misclassification 

patterns and model robustness. 

These evaluation metrics ensure a comprehensive assessment 

of the model’s effectiveness in DR classification. 

 

IV.  RESULT AND DISCUSSION 

A. Training Performance 

The model was trained using various hyperparameter 

configurations to determine the best-performing model for 

Diabetic Retinopathy classification. The training accuracy 

and loss were monitored over 50 epochs, with results 

indicating that a 90%-10% training-testing data split, 256 

dense units, and a learning rate of 0.01 provided the best 

overall training performance. 

• Best Training Accuracy: 95.48% 

• Loss Convergence: The model's loss steadily 

decreased over the training period, with no 

significant overfitting observed due to the 

application of batch normalization and dropout 

regularization. 

• Hyperparameter Optimization Impact: The use of 

grid search for tuning learning rates and dense units 

significantly contributed to the model's ability to 

generalize effectively. 

•  

 
Figure 6 Best Training Accuracy 

 

Table Experimental Results 

 No Splitting Data Dense LR Result 

Training Validation Training Testing 

Training Validation 

Experiment 1  90% 10% 32 0,01 94.42% 95.28% 95.23% 

Experiment 2  90% 10% 32 0,001 94.60% 95.18% 95.81% 

Experiment 3  90% 10% 64 0,01 95.01% 95.43% 95.67% 

Experiment 4  90% 10% 64 0,001 95.53% 95.27% 95.56% 

Experiment 5  90% 10% 128 0,01 95.29% 95.33% 95.58% 

Experiment 6  90% 10% 128 0,001 95.42% 95.22% 95.04% 

Experiment 7 90% 10% 256 0,01 95.18% 95.48% 95.49% 

Experiment 8  90% 10% 256 0,001 96.30% 95.45% 95.32% 

Experiment 9  90% 10% 512 0,01 94.79% 95.29% 95.37% 

Experiment 10  90% 10% 512 0,001 96.26% 95.16% 95.45% 

Experiment 11 90% 10% 1024 0,01 95.22% 95.24% 95.23% 

Experiment12 90% 10% 1024 0,001 95.74% 95.31% 95.34% 

Experiment 13 80% 20% 32 0,01 94.33% 94.90% 95.32% 

Experiment 14 80% 20% 32 0,001 94.26% 94.96% 95.44% 

Experiment 15 80% 20% 64 0,01 94.86% 94.94% 94.85% 

Experiment 16 80% 20% 64 0,001 95.38% 94.98% 95.09% 

Experiment 17 80% 20% 128 0,01 95.09% 94.85% 95.41% 

Experiment 18 80% 20% 128 0,001 95.90% 94.97% 95.24% 

Experiment 19 80% 20% 256 0,01 94.53% 94.83% 94.74% 

Experiment 20 80% 20% 256 0,001 96.02% 94.99% 95.52% 

Experiment 21 80% 20% 512 0,01 95.37% 94.72% 94.73% 

Experiment 22 80% 20% 512 0,001 96.28% 94.89% 95.43% 

Experiment 23 80% 20% 1024 0,01 96.06% 94.74% 95.04% 

Experiment 24 80% 20% 1024 0,001 96.41% 94.90% 95.50% 

Experiment 25 70% 30% 32 0,01 93.59% 94.96% 95.34% 

Experiment 26 70% 30% 32 0,001 93.95% 95.01% 94.89% 

Experiment 27 70% 30% 64 0,01 94.15% 94.90% 95.16% 

Experiment 28 70% 30% 64 0,001 94.80% 95.20% 94.96% 

Experiment 29 70% 30% 128 0,01 93.99% 94.93% 95.19% 

Experiment 30 70% 30% 128 0,001 95.82% 95.05% 95.23% 

Experiment 31 70% 30% 256 0,01 94.29% 95.21% 95.14% 

Experiment 32 70% 30% 256 0,001 95.60% 94.99% 95.14% 

Experiment 33 70% 30% 512 0,01 95.34% 94.98% 95.00% 

Experiment 34 70% 30% 512 0,001 96.03% 94.87% 95.36% 

Experiment 35 70% 30% 1024 0,01 95.42% 94.77% 95.21% 

Experiment 36 70% 30% 1024 0,001 95.83% 95.07% 94.06% 
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B. Comparison with Previous Study 

Previous studies have explored various deep learning 

architectures for Diabetic Retinopathy classification, with 

notable models such as InceptionV3 and ResNet-50 

achieving promising results. Gulshan et al. (2016) 

implemented InceptionV3, attaining an accuracy of 92.1%, 

while Lam et al. (2021) employed ResNet-50 and reported a 

classification accuracy of 93.5%. Although these models 

demonstrated strong performance, there remained room for 

improvement in classification precision and recall. 

In contrast, this study leveraged EfficientNet-B7 combined 

with Hyperparameter Optimization (HPO), which yielded 

a superior classification accuracy of 95.81%. The significant 

performance gain can be attributed to EfficientNet-B7’s 

compound scaling approach, which optimizes depth, width, 

and resolution more effectively than previous CNN 

architectures. Additionally, the systematic tuning of learning 

rates and dense unit configurations through HPO further 

enhanced the model’s ability to generalize to unseen data. 

These results reinforce the effectiveness of EfficientNet-B7 

for DR classification, positioning it as a more accurate and 

efficient model compared to prior methods. The combination 

of optimized architecture and hyperparameter tuning 

contributes to improved feature extraction and classification 

precision, ultimately aiding in the early detection of DR and 

reducing the risk of blindness 

C. Discussion  

The improved classification accuracy achieved in this study 

can be attributed to several factors: 

• EfficientNet-B7 Compound Scaling: The optimized 

balance between depth, width, and resolution 

contributed to enhanced feature extraction. 

• Hyperparameter Optimization: The systematic 

tuning of learning rates, dropout rates, and dense 

layers led to performance improvements over 

previous models. 

• Effective Data Preprocessing: CLAHE and data 

augmentation techniques helped enhance image 

quality and model generalization. 

• Regularization Techniques: The use of dropout 

layers and batch normalization prevented overfitting 

and ensured stable training. 

Despite these advantages, certain challenges were 

encountered: 

• Class Imbalance Issues: The dataset contained an 

uneven distribution of DR severity levels, which 

required data augmentation strategies to mitigate 

bias. 

• Computational Cost: Training EfficientNet-B7 

requires significant computational power, making it 

less accessible for real-time deployment in low-

resource settings. 

 

 

V. FUTURE WORKS 

While this study has achieved promising results in DR 

classification using EfficientNet-B7, several areas can be 

explored for future improvement. One potential direction is 

the integration of multimodal data, such as optical 

coherence tomography (OCT) scans and patient clinical 

records, to enhance model accuracy and provide more 

comprehensive diagnostic insights.  

Another crucial area for future work is model 

interpretability and explainability. Although deep learning 

models achieve high accuracy, their decision-making 

processes often remain opaque. Implementing explainable 

AI (XAI) techniques, such as Grad-CAM or SHAP values, 

can help clinicians better understand model predictions and 

increase trust in AI-assisted diagnosis. 

Furthermore, addressing real-world deployment challenges 

is essential. Future studies should explore lightweight model 

compression techniques, such as knowledge distillation 

and quantization, to enable efficient model inference on 

mobile or edge devices, making AI-driven DR screening 

more accessible in resource-limited settings. 

Finally, expanding the study to include larger and more 

diverse datasets from multiple geographic and demographic 

backgrounds can improve model generalization and 

robustness. Future research should also focus on longitudinal 

studies, tracking DR progression over time and leveraging AI 

for predictive modeling to identify patients at high risk of 

developing severe DR stages. 

By exploring these directions, future research can further 

enhance the effectiveness and applicability of deep learning 

models for Diabetic Retinopathy detection, ultimately 

contributing to more accurate, explainable, and widely 

accessible AI-driven diagnostic tools. 
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