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ABSTRACT: In this work, the nonlinear vibration arising in the micro-electromechanical system is investigated by using the 

equivalent linearization method based on a weighted averaging concept. The analytical solution of the system is carried out, and the 

relationship between the frequency and the initial amplitude is established in a closed analytical form. In order to verify the accuracy 

of the present method, some illustrative examples are analyzed in detail and the results are compared with other analytical and 

numerical solutions. 
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1. INTRODUCTION 

Micro-beams are major parts of micro-

electromechanical systems (MEMS). In a MEMS device, 

besides the fixed electrodes, the movable components are 

often modeled as micro-beams. The applied voltage causes an 

electrostatic force to act on the micro-beams, making them to 

vibrate. MEMS devices including micro-switches, micro-

actuators, micro-sensors,... have many applications in the 

high-tech fields such as electronics engineering, aerospace 

engineering, biomedical engineering and optical engineering 

[1]. 

While working, electrostatic actuation, large 

deflection and damping caused by different sources give rise 

to nonlinear behavior. Nonlinearity in MEMS may cause 

some difficulties in computations. Until now, several 

techniques have been used to find numerical solutions, for 

example, the shooting method [2], the differential quadrature 

method [3] and the Adomian decomposition method [4]. 

Although it is difficult to obtain analytical approximations for 

different phenomena in MEMS, there are some analytical 

techniques for nonlinear problems of MEMS such as 

perturbation techniques [5], the energy balance method [6], 

the homotopy analysis method [7] and the He’s Variational 

Approach [8]. 

The equivalent linearization method is one of the 

common approaches to an approximate analysis of dynamical 

systems. The original linearization for deterministic systems 

was proposed by Krylov and Bogoliubov [9]. Then Caughey 

[10] expanded this method for stochastic systems. However, 

the accuracy of the equivalent linearization method with 

conventional averaging normally reduces for middle or strong 

nonlinear systems. Thus, this method has been developed by 

many authors [11, 12]. Recently, Anh [13] has developed this 

method in the following way: instead of applying the 

conventional averaging method, the author has introduced 

weighted coefficient functions and averaging values are 

calculated in a new way which is called the weighted 

averaging values. This proposed method was then applied by 

Anh et al. [14] to analyze some strong nonlinear oscillations. 

In this work, this method will be applied to analyze a 

nonlinear vibration arising in the micro-electromechanical 

system.  

 

2. MODELING AND FORMULATION 

Consider a fully clamped micro-beam placed between 

two stationary electrodes with length L, thickness h and width 

b whose sketch is shown in Figure 1. Employing the classical 

beam theory and taking into account of the mid-plane 

stretching effect as well as the distributed electrostatic force, 

the following dimensionless equation of motion for the 

micro-beam can be formulated via the Galerkin method [6, 

7]: 

4 2 3 5 7

1 2 3 4 5 6 7( ) 0a u a u a u a u a u a u a u       (1) 

where u is the dimensionless deflection of the micro-beam, a 

dot denotes the derivative with respect to the dimensionless 

time variable
4/( )t EI bhl  , in which I and t are the 

second moment of area of the micro-beam cross-section and 

time, respectively; ρ is the mass density of the micro-beam; 

2/(1 )E E   is the effective modulus depending on 

Young’s modulus (E) and Poisson’s ratio ( ) of the micro-

beam. The complete formulation of Eq. (1) can be referenced 

from Refs. [6, 7] for details and the expressions of the 

parameters ai (i=1-7) are presented as below

: 

https://doi.org/10.47191/etj/v10i02.14


“Analysis of Nonlinear Vibration Arising in Micro-Electromechanical System”                                                                                                                                                                                                

3852 Dang Van Hieu, ETJ Volume 10 Issue 02 February 2025 

 

 

 

 

 

1 1 1

6 4 2

1 2 3

0 0 0

1

'''' '' 2 2

4

0

1 1
2

'''' 3 '' 3 '' '

5

0 0

1 1
2

'''' 5 '' 5 '' 3 '

6

0 0

1 1
2

'' 5 '

7

0 0

; 2 ; ;

;

2 2 ;

2 ;

.

a d a d a d

a N V d

a N d d

a N d d

a d d

     

     

        

        

    

   

  

 
    

 

 
   

 

 
   

 

  



 

 

 

    (2) 

in which 
2 4 22

20 0

2 3 3

0

6 24
, , , ,

g L VNL x
N V

h EI Eh g L


        (3) 

where a prime ( ' ) indicates the partial derivative with respect 

to the coordinate variable  . In Eq. (3), the parameters 

0, ,N V  and g0 are, respectively, the applied axial force, 

applied electrostatic voltage, vacuum permittivity and initial 

gap between the micro-beam and the fixed substrates. Owing 

to the micro-beam is fully fixed at both the ends, the trial 

function ( )  in Eq. (2) can be is chosen as follows [6, 7]: 

2 2( ) 16 (1 )     .  

 
Figure 1: Geometry for an electrostatically actuated micro-beam with fixed substrates 

 

In the next section, the equivalent linearization method with a weighted averaging is employed to study this nonlinear 

vibration. 

 

3. APPLICATION OF THE EQUIVALENT LINEARIZATION METHOD WITH A WEIGHTED AVERAGING 

At first, Eq. (1) is solved by applying the equivalent linearization method. The linearized equation of Eq. (1) is taken as: 
2 0.u u                    (4) 

The equation error between Eq. (1) and Eq. (4) is:  
4 2 3 5 7 2

1 2 3 4 5 6 7( ) ( ) .e u a u a u a u a u a u a u a u u u                    (5) 

There are some criteria for determining the coefficient ω2 in Eq. (4). However, the most common criterion is the mean square error 

criterion: 

2

2 ( ) .e u Min


       (6) 

Thus, from the condition: 

2

2
( ) 0,e u






   
 

it leads to: 
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5 3 2 4 6 8

1 2 3 4 5 6 72

2 2
.

a u u a u u a uu uu a u a u a u a u

u u


     
                (7) 

The periodic solution of Eq. (4) has a form: 

   ( ) cos( ).u A                   (8) 

Here, let's consider the weighted coefficient proposed by Anh as follows [13]: 

     
2 2( ) sh s e     , s>0,      (9) 

The weighted coefficient (9), obtained as a product of the optimistic weighted coefficient τ and the pessimistic weighted coefficient  

e–sωτ, has one maximal value at τmax=1/(ωs), and then decreases to zero as   . The properties of the weighted coefficient h(τ) 

in Eq. (9) can be reviewed in Refs. [13, 14]. Based on the weighted coefficient (9), the new weighted averaging value is proposed 

[13]: 

2 2 2 '

0 0

( ) ( ) ' ( ') ', ' .s su s e u d s e u d          
 

        (10) 

With the periodic solution given in Eq. (8), and by using Eq. (10), we can calculate the averaging values in Eq. (7) as follows: 

4 2
2 2 2 2 2 2 2 2 2 2 ' 2

2 2

0 0

2 8
cos ( ) cos ( ) cos ( ') ' ' ,

( 4)

s s s s
u A A s e d A s e d A

s

        
 

   
   

     (11) 

similarly, we get: 
4 2 6 8

4 4 4 4

2 2 2 2

248 416 1536 28
cos ( ) ,

( 4) ( 16)

s s s s
u A A

s s


   
 

 
        

                 (12) 
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6 6 6 6

2 2 2 2 2 2
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( 4) ( 16) ( 36)

s s
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      (14) 
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s s
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    (17) 

Substituting Eqs. (11)-(17) into Eq. (7), the approximate frequency can be obtained as: 

   

2 4 6

4 5 2 6 1 7 3

4 2

1 1 2 2 3

( ) ( ) ( )
,

( ) ( )

a a A s A a A s A a A s A

a A s A a A s A a


  


 
    (18) 

where: 
2 4 6 8 10 12

1 4 2 2 2 2 2

1658880 440064 282496 45712 3168 94
( ) ,

( 2 8)( 16) ( 36)

s s s s s s
A s

s s s s

     

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   (19) 

4 2 6 8

2 4 2 2 2
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s s s s
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s s s
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 According to Eqs. (8) and (18), we can obtain the following approximate solution: 

2 4 6

4 5 2 6 1 7 3

4 2

1 1 2 2 3

( ) ( ) ( )
( ) cos .

( ) ( )

a a A s A a A s A a A s A
u A

a A s A a A s A a
 

   
 
  
 

         (22) 

 

It is noted that the approximation frequency (18) depends not 

only on the parameters of the problems a1, a2, a3, a4, a5, a6 

and a7 but also on the initial amplitude A and tuning 

parameter s. 

 

4. NUMERICAL RESULTS AND DISCUSSION 

In order to show the efficiency of the proposed 

method, the results obtained in this work are compared with 

those obtained by using the energy balance method (EBM) 

[6] with different values of A, N, α and V. Comparing the 

approximate frequencies obtained by two analytical methods 

are shown in Table 1. It can be observed the accuracy of the 

current results compared with the results obtained by the 

energy balance method [6]. In this comparison, several values 

of the tuning parameter s are selected as  s = 1, 2, 3 and 4. 

 

Table 1: Comparison of frequencies corresponding to various parameters of system 

 

case 

 

A 

 

N 

 

Α 

 

V 

 

exact  [7] 

 

EBM  [6] 
present  

s=1 s=2 s=3 s=4 

1 0.3 10 24 0 26.8372 26.3867 

(1.68%)* 

26.7089 

(0.48%) 

26.7577 

(0.29%) 

26.9112 

(0.28%) 

27.0291 

(0.71%) 

2 0.3 10 24 20 16.6486 16.3829 

(1.51%) 

16.5431 

(0.63%) 

16.5865 

(0.37%) 

16.7173 

(0.41%) 

16.8165 

(1.01%) 

3 0.6 10 24 10 28.5382 26.5324 

(7.03%) 

28.0471 

(1.72%) 

28.2199 

(1.12%) 

28.6501 

(0.39%) 

28.9704 

(1.46%) 

4 0.6 10 24 20 18.5902 17.5017 

(5.86%) 

18.4460 

(0.78%) 

18.5507 

(0.21%) 

18.6938 

(0.54%) 

18.7690 

(0.83%) 
* difference from the exact frequency 

 

It can be observed from Table 1 that for s = 2 and s = 3 the 

current method gives very accurate results. From Eqs. (18) 

and (22), in case of  s = 2, the approximate expressions of 

frequency and solution, respectively, can be obtained as 

below: 

2 4 6

4 5 6 7

4 2

1 2 3

0.72 0.575 0.4836
,

0.575 0.72

a a A a A a A

a A a A a


  


 
    (23) 

and 

2 4 6

4 5 6 7

4 2

1 2 3

0.72 0.575 0.4836
( ) cos .

0.575 0.72

a a A a A a A
u A

a A a A a
 

   
 
  
     

                 (24) 

The comparison of the analytical solution u(τ) obtained in 

Eq. (24) with the analytical solution achieved by the energy 

balance method [6] and the numerical solution is presented in 

Figure 2. It can be observed from this figure that the motion 

of the system is a periodic motion and the vibration amplitude 

is a function of the initial condition.  Also, the accuracy of the 

obtained analytical solution can be observed. 

 
     (a)                                                             (b)  

Figure 2:  Comparison of solutions corresponding to various parameters of system: (a) A=0.3, N=10, α=24, V=0; (b) A=0.6, 

N=10, α=24, V=10. 
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The effects of V, N and α parameters on the nonlinear 

frequency are presented in Figure 3. It can be observed from 

Figure 3 that the nonlinear frequency of the micro-beam 

decreases as the applied voltage (V) increases, and increases 

as the axial compressive force  (N) and initial gap between 

the micro-beam and the fixed substrates (α) increase. 

However, when value of the applied voltage V is large, the 

micro-beam will be unstable, i.e., when V exceeds the critical 

value Vcr, the frequency of the micro-beam will approach to 

zero.  

 
(a)                                        (b) 

 
(c) 

Figure 3: The effects of V, N, α parameter on the nonlinear frequency: (a) α=24, N=10; (b) α=24, V=10; (c) N=10, V=10 

 

5. CONCLUSIONS 

In this paper, the equivalent linearization method with a 

weighted averaging is applied to analyze the nonlinear 

vibration arising in the micro-electromechanical system. The 

technique is considered as an approach to develop the 

classical equivalent linearization method. This method 

inherits the convenience of the equivalent linearization 

method combining with the advantage of the weighted 

averaging operation. The relationship between frequency and 

amplitude is established. The accuracy of the solution is 

compared with the previously published results. Moreover, 

the effects of parameters of the system are also investigated. 

The results indicate that the solution procedure is easy to 

apply and can provide a remarkable accuracy. 
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