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ABSTRACT: Effective handling of water resources in dams is important for guaranteeing consistent water supply, flood 

management, and food safety. This research introduces a method for assessing the dependability of Galma's dam reservoir operations 

by utilizing a specific stochastic modeling technique. The stochastic optimization model includes the natural uncertainties in 

hydrological inflows, water demands, and operating conditions. The stochastic optimization model is created by selecting the 

probability distribution of two parameters from the Weilbull distribution, with a scale factor of 25.3522 and a shape factor of 

0.55190. This model is converted into a chance-constrained programming problem to determine the yield for a specified demand. 

The input discharge levels were optimized to achieve the Maximum-Minimum yields at reliability levels of 25%, 50%, 75% and 

85%. The highest amount of water produced was 669.890 Mega Cubic Meters (MCM) with an 85% assurance level, while the 

lowest amount was 334.2666 MCM at a 25% confidence level. This demonstrates the need to find the best operational strategies 

that consider trade-offs between different goals and guarantee a specific level of system dependability. The results of this research 

offer important information for water resource managers and decision-makers to create resilient and sustainable reservoir 

management plans, especially amidst growing uncertainties from climate change and other environmental influences. 
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INTRODUCTION 

Complex societies and economies have evolved and grown in 

many regions, with water resource infrastructure having been 

significantly developed. Lund [1], reported that more 

complex water management problems have arisen that go 

beyond the optimal operation of a single component or class 

of water system components. These contemporary water 

management problems call for a more integrated and 

comprehensive optimization of water management within a 

much larger and more diverse economy, and within an 

institutional structure which is far more de-centralized than 

traditionally assumed. In this light, effective management of 

reservoir system has become critical. Reservoir operations are 

increasingly important in the water cycle [2], [3]. Reservoir 

operations also support regional growth and development by 

increasing water availability for various economic sectors, 

contributing renewable electricity production, and reducing 

flood risks [4]. The management of river systems by 

constructing dams has led to need to plan for future activities 

[5], and to ensure water and energy provision in rapidly 

advancing African and Asian nations [6]. Rapid changes in 

climate and society suggest an urgent need to re-operate 

existing infrastructures [7]. Changes in societal perceptions 

of natural resources and increasing environmental awareness 

are modifying and enlarging the number of objectives 

considered [8]. In addition, changing climate extremes and 

societal demands amplify and reshape uncertain stressors, 

ultimately altering decision makers' preferences and risk 

perception [9],[10], [11], [12]. Water systems are susceptible 

to different types of insecurity, such as problems associated 

with excess and scarcity of water. Thus, using practical 

operating rules for managing the available volume appears as 

an alternative to mitigate such difficulties [13].  

In the past, disputes involving water (too little, too 

much, too polluted, and too expensive water), provides 

opportunities for research on effective management of water 

resources systems are driven by zeal to improve benefits [14]. 

The most traditional way of operating reservoirs is the 

Standard Operating Policy (SOP). The SOP is a relatively 

simple operation model whose main objective is to meet the 

demands whenever possible, releasing the maximum amount 

of water possible and storing only the surplus [15]. The many 

and different conflicting users upstream and downstream of 

this system call for studies to promote its optimal operation. 

However, most of the studies carried out so far only evaluate 

the performance of the system under different inflow 

scenarios such as dry, normal and wet scenarios. These 

scenarios are used as input to simulation or deterministic 

optimization models and conclusions are taken from the 

results obtained. Although such procedure is important to 

evaluate the system under various conditions, but in the views 

of [16], the operator in practice will never be able to perfectly 

forecast the actual upcoming scenario. Hence, it is difficult to 

choose which operating policy to use (dry, normal or wet-
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scenario policy). Instead of evaluating the system’s 

performance under pre-defined inflow scenarios it may be 

advantageous to find operating policies taking the 

uncertainties into account. Against this backdrop, Using 

Implicit Stochastic Optimization (ISO) for deriving reservoir 

hedging rules is an option to mitigate the damages resulting 

from droughts. The procedure consists of optimizing the 

operation of the reservoir under different synthetic scenarios 

of inflows and defining operational rules through regression 

models, usually relating optimized allocations to water 

availability [17] [16]. 

Basically, in the face of climatic flux being experienced 

globally, the focus of water resource system analysis has 

turned into defining adequate operation strategies. Better 

management is necessary to cope with the challenge of 

supplying increasing demands and conflicts on water 

allocation while facing climate change impacts, [18]. Implicit 

Stochastic Optimization (ISO) procedures are techniques that 

implicitly consider the variability of the irregular space–time 

distribution of precipitation, and high evaporation rates. [19]. 

Stochastic optimization techniques account for the inherent 

variability and uncertainty associated with inflows, demands, 

and other system parameters [20], [21] 

Stochastic programming models provide a framework for 

incorporating uncertainty into reservoir optimization. These 

models consider multiple scenarios of inflows, demands, and 

other uncertain parameters and aim to optimize reservoir 

operations to achieve robust and efficient solutions. 

Stochastic programming approaches include two-stage and 

multi-stage models. However, challenges remain, including 

the selection of appropriate scenario generation techniques, 

the accurate estimation of uncertain parameters, and the 

computational complexity of stochastic optimization models. 

There is need for new research to focus on advancing the 

methodologies, integrating real-time data and forecasting 

techniques, and addressing the practical implementation 

challenges of stochastic reservoir optimization. 

Stochastic optimization is a powerful approach that considers 

uncertainty and variability in reservoir systems, enabling 

robust and efficient decision-making. Stochastic optimization 

models for reservoir systems aim to optimize system 

operations by considering uncertain parameters such as 

inflows, demands, and reservoir storage levels. [6], examined 

the effectiveness of seven stochastic models for determining 

optimal reservoir operating policies. These models were 

categorized into implicit stochastic optimization (ISO), 

explicit stochastic optimization (ESO), and parameterization-

simulation-optimization (PSO) approaches. The ISO models 

include multiple regression, two-dimensional surface 

modeling, and a neuro-fuzzy strategy. The widely used 

stochastic dynamic programming (SDP) technique represents 

the ESO model. The PSO models consist of a variant of the 

standard operating policy (SOP), reservoir zoning, and a two-

dimensional hedging rule.  To evaluate the models, a case 

study was conducted on a single reservoir in northeastern 

Brazil, which dams an intermittent river. The comparison also 

includes the standard operating policy, and deterministic 

optimization results based on perfect forecasts are used as a 

benchmark. Overall, the ISO and PSO models outperformed 

the SDP and SOP models. Moreover, the ISO-based surface 

modeling procedure and the PSO-based two-dimensional 

hedging rule demonstrated superior performance compared to 

the neuro-fuzzy approach. These models typically involve 

formulating an objective function to maximize benefits or 

minimize costs, subject to constraints on reservoir storage, 

release policies, and other operational limitations. Stochastic 

optimization models can be expressed as mixed-integer linear 

programs (MILPs) or non-linear programs (NLPs), 

depending on the complexity of the system and the decision 

variables involved [12[. Additionally, advanced algorithms 

such as genetic algorithms, particle swarm optimization, and 

simulated annealing have been applied to address the 

computational challenges associated with large-scale 

stochastic optimization problems [8], [17],[25] . These 

techniques focused on finding optimal or near-optimal 

solutions considering the uncertainties in reservoir systems. 

Stochastic optimization models enable the incorporation of 

risk analysis to assess the performance and robustness of 

reservoir operations. Risk analysis techniques, such as value-

at-risk (VaR), conditional value-at-risk (CVaR), and chance-

constrained programming, are commonly employed to 

quantify and manage the risk associated with reservoir 

operations. VaR and CVaR provide measures of the worst-

case and expected losses, respectively, under different 

confidence levels. Chance-constrained programming ensures 

that the probability of violating system constraints remains 

below a specified threshold [27]. These risk analysis 

techniques assist decision-makers in understanding and 

managing the trade-offs between system performance and 

risk levels. However, challenges remain in terms of selecting 

appropriate solution techniques, scenario generation 

methods, and computational complexity. Future research 

should focus on refining and advancing these models to 

enhance their applicability and practicality in real-world 

reservoir management. 

 

2.0 MATERIALS AND METHODS 

The study area is located in Kubau local government area of 

Kaduna state, Nigeria. It geographical coordinates lies 

between latitudes 10̊ 48’ 45” to 10̊ 48’ 49”and longitudes 8 ̊

23’ 9” to 8̊ 22’ 11”,(Figure 1).  Galma dam is drained by its 

numerous tributaries. These tributaries among others include 

river Baki, Anchau and Danwata. The Galma river catchment 

area belongs to the north eastern part of Kaduna River basin 

which borders the Chad basin to the north. Rainfall Data used 

for the study was obtained from Nigerian Meteorological 

Agency (NiMET) as show in Figure 1, its depict the rainfall 

pattern for 22 years (1971-2015) The rainfall contributes to 

the reservoir of the dam through run off, and it serve as the 

principal input data for the period of the study under review 
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Fig 1: Map of Kaduna State Showing study Area 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Annual rainfall data for Kubau 

The flow chart algorithm for the study is presented in Figure 3. 

 
Fig 3: Flow Chart Probability Distributions Fitting to the Outflow Data
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The inflow to a reservoir is the most important random 

variable that introduces uncertainty in reservoir planning and 

operation problems. In this work, a stochastic linear 

programming (LP), chanced constrained linear programming 

(CCLP) model was formulated to obtain the reservoir yield to 

meet a specified demand, Dt , during period t, at a specified 

level of reliability.Because the inflow is a random variable, a 

probability distribution is first fitted to the monthly inflow 

data.The MATLAB code was used for fitting the probability 

distribution to the data, of the cumulative distribution 

function (CDF) of the inflow discharge ( FQt
–1(α))  and the 

maximum yield (Rma ) and minimum yield (Rmin.) Where FQt
–

1(α) denotes the flow, Qt, at which the CDF value is α, 

computed is at the reliability levels of 25%, 50%, 75%, and 

85.27% . The goal then is to find maximum annual yield such 

that the monthly reservoir yield is able to meet demand fully 

at all time period with certain specified level of reliability 

(assurance) 

The method of Maximum Likelihood Estimation (MLE) is a 

common procedure to estimate parameters of a model’s 

distribution which are assumed to be independent and 

identically distributed. The parameters are estimated by 

maximizing the likelihood function. In this study, six PDF 

(Normal, Gamma, Weibull, Exponential, Inverse Gaussian, 

and Lognormal) were fitted to the inflow data and the best 

distribution model based on the Akaike information criterion 

(AIC) and the Bayesian information criterion (BIC) values 

was picked. The parameters of the six distributions were 

obtained or estimated using the Maximum Likelihood 

Estimation (MLE). The probability density function of a two 

parameter of Weibull distribution with scale parameter, α > 0 

and shape parameter, β > 0, is given by, 

𝑓(𝑥𝑖; 𝛼, 𝛽)

= (
𝛽

𝛼
) (

𝑥𝑖

𝛼
)

𝛽−1

𝑒𝑥𝑝 [− (
𝑥𝑖

𝛼
)]

𝛽

                                                             1 

The Cumulative Distribution Function is given by, 

𝐹(𝑥𝑖; 𝛼, 𝛽)

= 1

− 𝑒𝑥𝑝 [− (
𝑥𝑖

𝛼
)]

𝛽

                                                                            2 

Where 𝑥𝑖 is the ith value of the random variable X. 

The likelihood function is given by, 

𝐿 =

∏ 𝑓(𝑥𝑖 , 𝜃̂)𝑛
𝑖=1                                                                                                        3

  

The MLE of 𝜃̂ is the value 𝜃̂ that maximizes the likelihood 

function or the log-likelihood function. That is, 

𝑑𝑙𝑜𝑔 𝐿

𝑑𝜃̂
= 0                                                                                                                   4 

By substituting equation 1 into equation 3 

 𝐿(𝑥𝑖 ; 𝛼, 𝛽) =

∏ (
𝛽

𝛼
) (
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By taking the natural logarithms (ln) of both sides of Eqn. (5), 

this results to, 

𝑙𝑛 𝐿(𝑥𝑖; 𝛼, 𝛽) = 𝑛𝑙𝑛𝛽 − 𝑛𝛽𝑙𝑛𝛼 −
1

𝛼𝛽
∑ 𝑥𝑖

𝛽
𝑛

𝑖=1

+ (𝛽 − 1) ∑ 𝑙𝑛 𝑥𝑖

𝑛

𝑖=1
         6 

Now differentiating with respect to α and β and equating to 

zero, this results into Equation 7 and Equation 8, 

𝜕 𝑙𝑛 𝐿(𝛼, 𝛽)

𝜕𝛼
= −

𝑛𝛽

𝛼
+

𝛽
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𝛽
𝑛

𝑖=1

= 0                                                          7 
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By solving equations 7 and 8 through elimination method and 

simplifying, 

𝛼̂

= (
1

𝑛
∑ 𝑥𝑖

𝛽
𝑛

𝑖=1
)

1
𝛽

                                                                                                    9 

1

β
−

∑ xi
β

ln xi
n
i=1

∑ xi
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i=1

+
1

n
∑ ln xi

n

i=1

= 0                                                                    10 

The estimate β̂ must be solved numerically from equation 10 

by methods such as the Newton-Raphson method or other 

root-finding algorithms can be employed to find β. 

By defining equation 10 as, 

f(β)

=
1

β
−

∑ xi
β

ln xi
n
i=1

∑ xi
βn

i=1

+
1

n
∑ ln xi

n

i=1
                                                             11  

The value of β such that f(β) = 0 can be obtained through a 

combination of iterative and update process as given by 

equation 12 , 

βnew

= βold

−
f(βold)

f ′(βold)
                                                                                            12 

Where f ′(βold) is the first derivative of Equation 11 with 

respect to parameter β. Starting with an initial guess of βo, 

both the iteration and update processes must be carried out 

continuously until convergence as given by equation 13, 

|βnew − βold|

≤ 0.000001                                                                                        13 

The final estimate β̂ (shape parameter) thus obtained will then 

be substituted into equation 9 to obtain the scale parameterα̂. 

A  MATLAB function was used for estimating these 

parameters. 

Weibull distribution was fitted to the inflow data of each 

month and the result are as shown in table 1 below. 

Model Selection Criterion 

To compare the performance of the probability distribution 

functions, fitted on the inflow data, AIC and BIC approaches 

was  employed. The AIC is given by, 
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AIC

= −2 log L(θ̂)

+ 2k                                                                                          14 

Where L(θ̂) is the likelihood function of the data when 

evaluated at the maximum likelihood estimate of θ and k is 

the number of estimated parameters? The BIC is given by, 

BIC

= −2 log L(θ̂)

+ k logn                                                                                   15 

Chance Constrained LP Model 

The deterministic maximum reservoir yield problem can be 

written as: 

Max ∑ Rt
12
t=1   

Subject to: 

St + Qt – Rt – Et = St+1 for all t 

Rt ≥ Dt    for all t 

Rt ≤ Rt
max   for all t 

St ≤ K    for all t 

St ≥ Smin   for all t 

K ≥ 0 

Rt ≥ 0; St ≥ 0   for all t 

Where K is the reservoir capacity. 

St is the storage at the beginning of time period t. 

Qt is the inflow during time period t. 

Rt is the release/yield during time period t. 

Rt
max is the maximum release that can be made in period t. 

Dt is the demand to be met in period t. 

Smin is the minimum storage below which no release is made. 

In this model, reservoir demands are satisfied 100% of the 

time, assuming a feasible solution and deterministic 

variables. However, the inflow Qt is a random variable and 

thus introduces uncertainty in the problem. Its probability 

distribution can be estimated using historical inflow data. 

Since storage St and release RTdepend on the random variable 

Qt, they are also considered random variables. 

To solve the problem, the deterministic model above was 

formulated as a Chance Constraint Linear Programing model 

as follows: 

Max ∑ Rt
12
t=1   

Subject to: 

P[Rt ≥ Dt ] ≥ α1  for all t 

P[Rt ≤ Rt max ] ≥ α2   for all t 

P[St ≤ K ] ≥ α3   for all t 

P[St ≥ Smin] ≥ α4  for all t 

bt ≥ 0     for all t 

 K ≥ 0 

First the constraint relating the release, Rt (random) and 

demand, Dt (deterministic), is expressed as a chance 

constraint as follows: 

P[Rt ≥ Dt ] ≥ α1                                                           

16 

That is, probability of release equaling or exceeding the 

known demand is at least equal to α1 (reliability level). This 

can also be interpreted as the reliability of meeting the 

demand in period t is at least α1. 

Similarly, the maximum release and the maximum and 

minimum storage constraints are written as: 

P[Rt ≤ Rt max ] ≥ α2     

   17 

P[St ≤ K ] ≥ α3     

   18 

 P[St ≥ Smin] ≥ α4      

  19 

To apply constraints (Equation 2) to Equation 4) within an 

optimization algorithm, we need to determine the probability 

distributions of Rt and St based on the known distribution of 

Qt. However, due to the interdependence of St, Qt, and Rt 

through the continuity equation, deriving the probability 

distributions of both St and Rt is generally not feasible. To 

address this challenge and facilitate the use of linear 

programming, an appropriate linear decision rule is defined 

as follows.

Linear Decision Rule (LDR) 

The simplest form of LDR is defined as follows: 

Rt = St + Qt – bt     

  20 

bt is a deterministic parameter called the decision parameter. 

Equation 5 assumed that all the available amount of water is 

being considered while making release decision. Depending 

on the amount of water considered in making release 

decision, several linear decision rules could be written as 

follows: 

Rt = St + βQt – bt   0 ≤ β ≤ 1 

  21 

In this study, a conservative release policy in which the value 

of β is 1 (i.e. all of the available water is used in making 

release decision) is considered. 

note that the storage continuity equation is 

St+1 = St + Qt – Rt     

  22 

Therefore, from equation 5 and 7, St+1 = bt 

Deterministic equivalent of the CCLP 

The deterministic equivalent of the Chance Constrained LP 

model above can be expressed as follows: 

Min ∑ Rt
12
t=1   

subject to: 

Dt + bt – bt–1 ≤ FQt
-1 (1 – α1)  for all t  

Rt
max + bt – bt–1 ≥ FQt –1 (α2)  for all t  

bt–1 ≤ K    for all t  

bt–1 ≥ Smin    for all t  

bt ≥ 0     for all t 

K ≥ 0 

Putting in all the values the final model becomes: 

Max ∑ Rt
12
t=1   

subject to: 
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bt – bt–1 ≤ FQt
-1 (1 – α1) - Dt for all t  

 bt – bt–1 ≥ FQt –1 (α2) - Rt
max for all t  

bt–1 ≤ K    for all t  

bt–1 ≥ Smin    for all t  

bt ≥ 0     for all t 

Where K is the reservoir capacity. 

FQt –1 (1 – α1) is the flow, q at which the CDF value is 1 – α1. 

Rt
max is the maximum release that can be made in period t. 

Dt is the demand to be met in period t. 

Smin is the minimum storage below which no release is made. 

bt–1 is storage at the next time period t.

 

3.0 RESULTS AND DISCUSSIONS

Monthly Inflow Probability Distribution 

In order to determine the best probability distribution model 

to adopt, reservoir inflow data were put under probability 

distribution analysis, amongst which were normal, gamma, 

lognormal, exponential, weibull and inverse Gaussian. The 

best fit model was weibull. This is because it had the least 

value for AIC & BIC. Below is the inflow probability 

distribution for the month of January to December. 

The probability distribution with smaller values of AIC and 

BIC are thus selected. 

Table 1: Inflow Data at 25th, 50th, 75th and 85.27th Percentile and Reservoir Characteristics 

 
 

Table1 gives the FQt
–1(α) value for the inflows at the 

reliability levels of 25%, 50%, 75%, and 85.27% earlier 

chosen is presented in Table 1.  Rmax is the maximum monthly 

water release, Smin is the minimum storage or dead storage of 

the reservoir and K is the reservoir capacity of Galma dam. 

The Weibull distribution with scale factor A of 25.3522 and 

shape factor B of 0.551905 best fit the inflow data. 

The Monthly Inflow at Specified Reliability Levels (Figure 4) 

 
Figure 4: Inflows at different reliability levels 

 

By computing the inverse Cumulative Density Function at 

specified probabilities (reliabilities) for Weibull Distribution, 

the inflows at those probabilities were obtained and plotted as 

in Figure 14 above. The probability of meeting the water 

demend to the different parameters indicates that the water 

requirement will meet the demends in the month of August 

PERIOD

FQt
-1

(α1) = 

FQt
-1

(0.25)
**

(MCM*)

FQt
-1

(α2) = 

FQt
-1

(0.50)
**

(MCM*)

FQt
-1

(α3) = 

FQt
-1

(0.75)
**

(MCM*)

FQt
-1

(α4) = 

FQt
-1

(0.8527)
**

(MCM*)

K

(MCM*)

Rmax

(MCM*)

Smin

(MCM*)

D

(MCM*)

JANUARY 0.8279 1.7267 3.082 4.0381 186.1 129.6 18.99 15.9

DEBRUARY 0.3928 0.9481 1.8987 2.6249 186.1 129.6 18.99 16.9

MARCH 0.414 0.7361 1.1584 1.4312 186.1 129.6 18.99 16.9

APRIL 0.5148 1.1308 2.1027 2.8079 186.1 129.6 18.99 16.5

MAY 3.3219 6.1036 9.8589 12.3293 186.1 129.6 18.99 14.3

JUNE 8.9934 17.2549 28.8382 36.6425 186.1 129.6 18.99 10.6

JULY 37.042 50.918 65.4313 73.5486 186.1 129.6 18.99 3.6

AUGUST 90.7692 117.3779 143.7438 157.9891 186.1 129.6 18.99 2.8

SEPTEMBER 142.579 182.6475 222.0205 243.1799 186.1 129.6 18.99 7.1

OCTOBER 38.7526 59.7829 84.1355 98.6695 186.1 129.6 18.99 10.5

NOVEMBER 8.3681 12.7749 17.8311 20.8311 186.1 129.6 18.99 14.8

DECEMBER 2.2909 4.0457 6.334 7.8066 186.1 129.6 18.99 15.7

*MCM:- Mega Cubic Meter

** Flow at specified cdf
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and September and low probability of meeting demand in 

April. 

The optimized Reservoir Yield at Different Reliability Levels 

(Figure 5) 

 

Figure 5: Reservoir yields at different reliability levels 

 

Figure 5 is the LINGO plot of monthly release decisions at 

different reliability levels. The most dependable release 

decision is the one occurring at 85th percentile or 0.8527 

reliability level. This is because at this level of reliability, 

demand is always satisfied. At this level, the reservoir will 

meet the water demand at 85% capacity while it will not meet 

the demand at 20% capacity 

Reservoir Storage at Different Reliability Levels (Figure 6) 

 

Figure 6: Storage at different reliability levels 

 

Figure 6  is the LINGO plot monthly storage decisions. The 

plot is showing that from December to May when the storage 

is dropping, the release is also kept low as much as possible. 

Also from around June to September when the storage spikes, 

the release also increases. This behavior shown by the model 

is indeed correct. This is because it is only when the reservoir 

has much water in storage, that the yield is expected to spike. 

Reservoir Yield – Reliability Level Plot (Figure 7) 
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Figure 7: Plot of annual yield against reliability levels 

 

Figure 7 is the LINGO plot showing total annual yield at 

different levels of reliability, the maximum yield that can be 

realized annually is 669.8987 MCM. This occurs at 0.8527 

reliability level. Beyond this level, the model becomes 

infeasible. That is, at higher reliability level, no more water 

will be available to satisfy or meet up with the demand at all 

time.  Reservoir yield at different reliability level, with the 

maximum yield of 661.8987 (MCM) at 85.27% reliability 

level and the minimum yield of 334.2666  (MCM) at 25% 

reliability level, at this level, there is the chance of not 

meeting the water demand for 25% of the supply time 

(Months). This is necessary as it is used to reassess water 

demand that can be satisfied by the reservoir. The overall 

volume or storage is dependent on the total demand, 

reliability and the catchment supplying water to the reservoir.  

Monthly Release and Storage Policies 

 

 
 

Table 2 indicates the total volume of water  (MCM) that can 

be released at different reliability level for each month. The 

month in which the highest volume of water can be released 

in the 25th percentile reliability level is September, with 

112.5974MCM. In the 50th percentile reliability level, the 

months of September and October have the highest volume 

of release (129.6MCM). Also in the 75th percentile reliability 

level, August and September have 129.6MCM separately as 

the highest volume of released water. While in the 85th 

percentile reliability level, the months of August, September, 

October each have a total volume of 129.6MCM that can be 

released, which is the highest for this level. The above table 

will therefore guide in the water release policy for Galma 

dam. 

Month

Release MCM 

@ (25th Percentile)

Release MCM 

@ (50th Percentile)

Release MCM 

@ (75th Percentile)

Release MCM 

@ (85th Percentile)

Jan 13.6459 15.9000 18.1541 19.4328

Feb 15.3941 16.9000 18.4059 19.3076

Mar 16.1556 16.9000 17.6444 18.0499

Apr 14.9121 16.5000 18.0879 19.0045

May 7.7630 14.3000 20.8370 24.4218

Jun 8.9934 17.2549 30.4448 41.4373

Jul 37.0420 50.9180 65.4313 73.5486

Aug 90.7692 17.0742 129.6000 129.6000

Sep 112.5974 129.6000 129.6000 129.6000

Oct 0.0000 129.6000 94.2236 129.6000

Nov 5.3370 14.8000 24.2630 29.3332

Dec 11.6569 15.7000 19.7431 28.5630

Annual Yield (MCM) 334.2666 455.4471 586.4351 661.8987

Table 4.2: Monthly Release Decisions at Different Reliability LevelTable 2: Monthly Release Decisions at Different Reliability Level 
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The above table shows that the dead storage of Galma dam is 

18.99MCM occurring in the months of June and July. It also  

 

 

reveals the volume of water stored in every month of the year 

in the 25th, 50th, 75th and 85th percentile reliability level of the 

reservoir. 

Plot of Monthly Release Decisions against Monthly Demands 

 

Figure 8: Plot of Release/Demand against month 

 

From the plot above, it is obvious that the most dependable 

yield is the one at the maximum reliability level of 0.8527 

(85.27%). At this level of reliability (assurance), the release 

fully satisfied demand always. This is the maximum 

reliability level (level of assurance) beyond which the  

 

Solution becomes infeasible. The infeasibility means there is 

not much inflow to fully meet demand always and therefore 

the constraint that release will be equaled or exceed demand 

will be violated at a higher reliability than the maximum of 

85.27%.    

CONCLUSION 

This study presents a reliability analysis framework for 

optimizing the operations of Galma’s dam reservoir using an 

explicit stochastic modeling approach. The methodology 

incorporates the inherent uncertainties in hydrological 

inflows, water demands and other operating conditions 

through a stochastic optimization model. The stochastic 

optimization model is formulated as a chance-constrained 

programming problem, which aims to maximize the long-

term reliability of meeting various operational objectives, 

such as water supply, flood control subject to various 

physical, operational and environmental constraints. The 

model uses an explicit representation of the stochastic nature 

of the system variables, including inflows, water demands 

and other operating conditions, to quantify the probability 

distributions of the system’s performance indicators. The 

reliability analysis is conducted by evaluating the probability 

of satisfying the operational constraint under different 

reliability levels. This shows for the identification of optimal 

operating policies that balance the tradeoffs between 

competing objectives and ensure a desired level of system 

reliability. The proposed framework is applied to the Galma’s 

Month

Storage MCM

@ (25th Percentile)

Storage MCM

@ (50th Percentile)

Storage MCM

@ (75th Percentile)

Storage MCM

@ (85th Percentile)

Jan 68.5713 74.6714 80.5531 85.3753

Feb 53.5700 58.7195 64.0459 68.6926

Mar 37.8284 42.5556 47.5599 52.0739

Apr 23.4311 27.1864 31.5747 35.8773

May 18.9900 18.9900 20.5966 23.7848

Jun 18.9900 18.9900 18.9900 18.9900

Jul 18.9900 18.9900 18.9900 18.9900

Aug 18.9900 119.2937 33.1338 47.3791

Sep 48.9716 172.3412 125.5543 160.9590

Oct 87.7242 102.5241 115.4662 130.0285

Nov 90.7553 100.4990 109.0343 121.5264

Dec 81.3893 88.8447 95.6252 100.7700

Table 4.3: Monthly Storage Decisions at Different Reliability Level
Table 3: Monthly Storage Decisions at Different Reliability Level 
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dam reservoir system, and the results demonstrate the 

effectiveness of the stochastic optimization approach in 

enhancing the reliability and resilience of the reservoir 

operations. The findings of this study provide valuable 

insights for water resources managers and decision-makers in 

developing robust and sustainable reservoir management 

strategies, particularly in the face of increasing uncertainties 

due to climate change and other environmental factors. 
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