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ABSTRACT: Predicting housing unit price (HUP) is important for potential buyers and investors to make informed decisions. This 

study proposes a novel HUP prediction model based on neighbourhood component regression (NCR). The proposed NCR model 

was compared with other competitive methods such as principal component regression (PCR), multiple linear regression (MLR), 

partial least squares regression (PLSR), and generalised linear model (GLM). When tested with real datasets, the proposed NCR 

method revealed prediction superiority over the four state-of-the-art methods (PCR, MLR, PLSR, and GLM). This was evident from 

the Mean Absolute Percentage Error (MAPE), Correlation Coefficient (R), Scatter Index (SI), and Percentage Root Mean Square 

Error (PRMSE) utilised as model evaluation metrics. The results revealed that the NCR model had the lowest MAPE (0.0977), SI 

(0.0011), PRMSE (0.1130), and highest R (0.9999) as compared with the other investigated methods. This confirms the proposed 

NCR method’s strength for efficient and reliable HUP prediction. 
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1. INTRODUCTION 

Housing which is considered a portion of a sustainable 

economy is an important subbranch of the real estate market. 

In many countries, possessing a real estate property is 

perceived as having a high social status; and this has become 

the working-class goal. On the contrary, investors who are 

attracted by the housing market perceive real estate as an asset 

where money can be allocated to bring capital income; but 

not as a consumption good only (Hacıevliyagil et al., 2022).  

For decades, researchers have extensively carried out 

studies in developing predictive models for housing unit price 

(HUP), of which data, variables, and methods implemented 

are usually different. Some of the well-known methods in the 

literature include but are not limited to multiple linear 

regression (MLR) (Zhang, 2021), time series analysis (Boye 

et al., 2019), and cost methodology (Cunha and Lobão, 2021). 

These methods have the benefit of being easily understood, 

long history application, deep-rooted acceptance, and 

simplicity of application due to the availability of software. It 

is important to mention that principal component regression 

(PCR) has also been used by several researchers (Gupta and 

Kabundi (2010); Yingying and Dongxiao, 2010) to advance 

HUP prediction in different jurisdictions. Literature indicates 

that the PCR is a feasible and effective method that could 

predict the HUP satisfactorily. In Tao (2019), the partial least 

squares regression (PLSR) method was also employed to 

predict HUP. A similar work was also conducted by Bork and 

Møller (2018) and Phan (2018). These related studies have 

shown that the PLSR is capable of adequately predicting the 

HUP. The efficiency of generalised linear model (GLM) has 

also been explored to predict HUP with high prediction 

performance (Li, 2022). Although these mentioned 

regression methods (MLR, PLSR, PCR, and GLM) dominate 

the literature in HUP prediction with satisfactory results their 

implementation depends on firm assumptions that are hardly 

met in real-world situations leading to limited generalisation 

performance (Shang et al., 2019).  

For instance, the PCR may end up in information loss 

when mapped to lower dimensions (Bulut and Alma, 2011; 

Karamizadeh et al., 2013; Jolliffe and Cadima, 2016). The 

MLR models, on the other hand, perform well only when 

assumptions like multivariate normality, multicollinearity, 

and linear relationship among predictor variables are satisfied 

(Stigler, 1986; Gong et al., 2018). The PLSR finds it 

challenging to accurately eliminate redundancy and noise 

from the dataset to obtain more useful information to enhance 

its prediction robustness (Goodhue et al., 2012; Wentzell and 

Montoto, 2003). As useful as the GLM is, it suffers the 

drawback of imposition of a static model, which implies fixed 

relationships across observations. This restrictive assumption 

which contradicts reality often leads to inflexibility in 

modeling (West et al., 1985). The limitations posed by the 

mentioned methods can be overcome using neighbourhood 

component regression (NCR). 

The NCR as a supervised dimensionality reduction 

technique, can facilitate the HUP prediction process by 
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ensuring proper input variable selection and improving 

generalisation performance and execution speed. The NCR 

leverages its adaptive strength and feature selection capability 

to adequately learn the data (Shang et al. (2019). These 

characteristic features prevent the NCR method from getting 

overloaded and simplify the computational process. In 

addition, the NCR method is not subject to any specific 

assumptions and data conditions; and it has no information 

loss during the process of dimension reduction.  

Therefore, the main objective of this research is to 

explore the capability of the NCR approach for the first time 

in HUP prediction. The reason is that among the plethora of 

advantages offered by NCR, the approach is yet to be 

explored and tested in the domain knowledge of HUP even 

though it has been applied and evaluated in diverse 

disciplines (e.g., medicine, hydrology, and aviation) with 

promising results (Tuncer and Ertam, 2020; Durocher et al., 

2016; De Rivas et al., 2017). Hence, the authors deemed it fit 

to expand the frontiers of NCR application by implementing 

it in the housing industry. 

The efficiency of the developed NCR model was 

assessed by comparing it with state-of-the-art methods of 

PCR, MLR, PLSR, and GLM. So, this study's main 

contributions to previous works are to: 

 Examine and explore the capability of NCR as a new 

HUP prediction model; and  

 Evaluate the prediction performance of NCR against 

PCR, MLR, PLSR, and GLM. 

This research has therefore proposed a new regression 

methodology for improving HUP prediction accuracy. 

 

2. METHODS  

2.1 Principal Component Regression  

The HUP model was developed by employing principal 

components analysis. Thus, the model used a multivariate 

technique to transform correlated variables into a few 

uncorrelated linear variables called principal components 

(PCs) (Choi et al., 2019). The first PC contains the highest 

amount of information. The PCR algorithm transforms the 

correlated variables into a smaller number of linearly 

combined variables of the original variables. This applied 

regression methodology allows for association discovery 

between variables and reducing their number to ease their 

analysis and interpretation. Equation (1) shows the values of 

the predictor variables PCs for each observation (Figueroa-

Garcia et al., 2021; Jolliffe, 2011).  

U ZV     (1) 

where U is a matrix whose  ,
th

i k  element represents the kth 

PC value in observation ith. Matrix Z with  n p  

dimension, its  ,
th

i j  element represents the value of the 

thj  predictor variable in ith observation. V is a matrix whose 

thk  column is the unit eigenvector associated with 
thk  

greater eigenvalue of 
'1

;
n

Z Z  where 
'

Z  is the centered and 

scaled matrix Z. 

The PCR method is an estimation technique, its 

mathematical equation is given as Equation (2). 
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where g is the dependent variable, 
0  is the intercept, 

i  is 

the component coefficient, and 
iU  represents the PC. 

2.2 Multiple Linear Regression  

Considering multiple variables and one outcome dataset 

 1 2 , 1  .... ;i i i p it t t g
 for 1,2,...,i n  units of 

observations, MLR which formalises a simultaneous 

statistical relation between a single continuous outcome g and 

the predictor variables 
rT  1,2,..., 1r p   (Equation 

(3)) is an extension of the simple linear regression (Labban, 

2020).  
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where 0  is the intercept on the 
ig  axis. That is the average 

of g when all 0.rt  . Each 
r  represents the average with 

respect to 
rt . That is, the magnitude of the change in the 

average of g when rt  is larger by one unit when all the other 

predictors are held constant. 
i  is the random error of the 

thi  

observation for 1,..., .i n  Equation (3) can be written more 

compactly as shown in Equation (4): 

 G Tβ U       (4) 

 

where T is the vector having dimension of the n dependent 

observations, T is the independent (explanatory) matrix of 

dimension  1n r  . β  is the regression coefficients 

vector of dimension  1j  , and  20,N U  is the 

vector of random errors of dimension .n  
2  is the 

population variance. 

Using the maximum likelihood estimation method, the 

likelihood function (Equation (6)) of the function in Equation 

(5) which is from the normal distribution is given as (Jäntschi 

et al., 2016): 
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Since  , U G Tβ  the likelihood function becomes 
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Taking the natural log of the likelihood function gives 

Equation (8). 
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By differentiating Equation (9) with respect β  and equate to 

zero, results: 

   
'

0 G Tβ G Tβ                       (9) 

' ' ' ' '2 0  G G βTG βTTβ                      (10) 

To find the value of β  that minimises the model errors as 

much as possible, derivate with respect to β  is taken: 

' ' 02 ˆ2  T G T Tβ      (11) 

' ' ˆT G T Tβ      (12) 

 
1

' 'ˆ 

β TT TG     (13) 

β̂  is the vector of predictors.  

2.3 Partial Least Squares Regression  

For studies with strongly correlated predictor variables, 

PLSR is a technique often applied in the case of multivariate 

regression (Wold, 1975; Wold et al., 2001). The technique is 

also considered as latent variable regression. Thus, the 

technique extracts latent explanatory variables from the 

original set of correlated variables. Iteratively, the PLSR 

algorithm constructs an orthonormal latent components 

sequence (basic vectors) from the explanatory variables 

having maximal covariance with the response variable. 

Consequently, based on the latent variables, the regression 

vector is computed, and the process eliminates 

multicollinearity difficulties. In each iteration, a linear model 

(Equation (14)) is fitted, and the solution vectors and the 

dataset are projected onto low dimension subspaces. 

  y X       (14) 

where   is regression vector to be estimated and   is a 

constant error. The error is identically distributed having 

constant variance and zero expectation. 

2.4 Generalised Linear Model  

GLM which was proposed first by Nelder and Wedderburn 

(1972) provides a framework for relating response and 

predictor variables. The GLM is a flexible extension of linear 

regression. The method permits a nonlinear relationship 

between the explanatory and the response variables of a linear 

model, and diverse data generation processes (Khuri et al., 

2006; Paul et al., 2013). For a given random variable y, 

Equation (15) shows the probability density function (James, 

2002; Dunn and Smyth, 2018). 
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where   is the canonical parameter; and it is the parameter 

of interest.      . ,  . ,  and .a b c  are given functions.   

(constant) is the scale parameter. The linear regression 

relationship between the predictor X and the response Y is 

given in Equation (16) as 

   0
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j j

j
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     (16) 

where    '; ,E Y b        (17) 

g is known as the link function, 
0  represents the intercept. 

Each 
j  denotes the slope associated with Xj. GLM provides 

a very flexible class of procedures. However, they assume 

that the predictor has a finite dimension. 

2.5 Neighbourhood Component Regression 

The NCA is a nonparametric technique for choosing relevant 

features to maximise regression model prediction accuracy, 

using a constructed complete graph with each data point 

serving as its node. Consider a dataset G comprising H data 

points which is given as  ,i iG u v  for 1,2,...,i H . 

In learning distance metric, some form of supervision 

information is aimed at learning Mahalanobis matrix B. 

Mahalanobis distance metric (Equation (18)) is the distance 

squared between two data points .iu and 
iv  (Wang and Tan, 

2017). 

     
'

2
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where 0B   is a semidefinite positive matrix. , g

i ju v R  

is a pair of samples. Between any two nodes, let the weight 

of each edge be represented as ;ijT  which is interpreted as 

the probability that the data point 
iu  selects 

ju  as its 

neighbour and can be computed as shown in Equation (19) 

as: 
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where 
iH  denotes the set of neighbours of .iu  If 0ijT   

and 1,
i

ij

j H

T


  then 
ijT  is a valid probability measure. 

The NCA objective is to learn a linear transformation B 

(Equation (20)) that maximises the log-likelihood, that after 
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transformation each data point selects the points with the 

same labels as itself as neighbours.  

   max 

   log 1 .
i

i j ij

i j H

L B v v T


 
  

 
     (20) 

 

3. MODEL PREDICTION EVALUATION 

PERFORMANCE 

The developed regression model efficiency for HUP 

prediction was determined in this study by the following 

statistical indicators: Mean Absolute Percentage Error 

(MAPE), Correlation Coefficient (CC), Scatter Index (SI), 

and Percentage Root Mean Square Error (PRMSE) (Chicco 

et al., 2021; Li and Liu, 2020; Lin et al., 2016).  

3.1 Mean Absolute Percentage Error 

This index has a very intuitive interpretation in terms of 

relative error. The MAPE (Equation (21)) indicates an 

average of the absolute percentage of errors. The lower the 

MAPE value relative to the actual data, the higher the 

accuracy of the developed model.

1

1

100
m

i i

i i

O P
MAPE m

O






     (21) 

where in Equations (21) - (22) and (24) m is the total number 

of test samples, 
iO  and 

iP  represent the observed and 

predicted values respectively. 

3.2 Correlation Coefficient  

This index elucidates the inconsistency in the predicted 

values and their relation to the observed values. The ideal 

values lie between 0 and 1. Values closer to 1 indicate a better 

fit. The CC is expressed in Equation (22). 
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where O  and P  represent the mean of the observed and 

predicted values respectively. 
o  and 

p  are the standard 

deviations of the observed and the predicted values 

respectively. 

 

3.3 Percentage Root-Mean Square Error  

The PRMSE (Equation (23)) is a scale-independent measure 

that evaluates the accuracy of a model’s predictive 

performance.  

PRMSE 100
RMSE

x
     (23) 

where x  is the mean value of the observations, and 
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where SD represented the actual observation and the 

prediction values standard deviation, coverage factor of 1.96 

agreed to a 95% confidence level. Root-Mean Square Error is 

represented by RMSE. 

3.4 Scatter Index  

SI is a normalized measure of error often reported as a 

percentage. Lower values of SI indicate better model 

performance, and they are computed mathematically, as 

shown in Equation (25). 

  SI
RMSE

x
   (25) 

Where x  is the mean value of the observations? 

 

4. NUMERICAL APPLICATION 

4.1 Data Used 

The fifteen-year dataset for a one-bedroom housing unit from 

Regimanuel Gray Estates Ltd., an estate development 

corporation in Ghana, West Africa, was used for the model 

development. The dataset (cement, sand, iron rods, roofing, 

paint, and wood) served as independent variables, and half-

yearly HUP (dependent variable), spans from 2003 to 2017. 

In total, 30 observations were applied. Table 1 presents the 

statistical summary of the dataset used for the regression 

work. 

 

Table 1: Statistical Summary of One-Bedroom HUP Dataset 

Parameter Mean Value 

($) 

Median 

Value ($) 

Minimum 

Value ($) 

Maximum 

Value ($) 

Standard 

Deviation ($) 

Cement 2486.25 2109.89 60.59 6119.39 2034.56 

Sand 8949.44 10328.17 1467.16 15339.66 4180.64 

Iron Rods 560.53 560.83 319.52 819.10 151.08 

Roofing 3395.84 3418.23 1266.55 5464.05 1301.38 

Paint 801.46 802.13 5.75 1592.75 1592.75 

Wood 970.71 970.79 280.33 1661.63 424.99 

HUP 55225.48 52602.50 31455.00 83600.00 15011.80 
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4.2 Models Formulated 

To develop the various regression models, 24 data points (training data) were utilised. For model validation, 6 data points (testing 

data) were employed. In this study, five different regression models, namely MLR, PLSR, GLM, NCR, and PCR were developed. 

The formulated MLR model is given in Equation (26). 

 
MLRHUP 34452.18801 (0.5210 cement) (0.5184 sand) (24.2465 ironrods)

(14.5267 roofing) (37.5979 paint) +(30.5891 wood)

       

   
 (26) 

 

The PLSR model developed for predicting HUP is expressed in Equation (27). 

 

PLSR 22135.86166 1.912741291 0.30014

)

8713

0.915448285

HUP ( cement) ( sand)

( ironrods) ( roofin7.594306744 2.849

w

7g) ( paint)

( ood

4 9293

2.465646748

     

     

 

(27) 

 

From Figure 1, the optimal number of components is 3. Hence, the percentage variance explained in the HUP prediction by the 

model with the 3 components is greater than 99%; and this confirms the robustness of the choice made. 

 
Figure 1: Percent Variance Explained as a Function of Number of PLS Components 

 

Employed in the Analysis 

The final GLM model is expressed in Equation (28). 

GLMHUP 34452.18801 (0.5210 cement) (0.5184 sand) (24.2465 ironrods)

(14.5267 roofing) (37.5979 paint) (30.5891 wood)

      

     
 (28) 

 

In the application of the NCR methodology, a distinction 

between redundant and relevant input features is carried out 

during the model building. A feature is deemed relevant when 

its weight exceeds one. Features with zero weights are 

considered to have little impact on the response features and 

thus excluded. Figure 2 shows the three selected dependent 

features, cement, sand, and roofing, whose feature weights 

exceed one and thus was used as the input variables in the 

NCR model development. Figure 3 shows the schematic 

diagram for the NCA regularisation parameter    results. 

The optimal   value for the selected three features is 

28496.98 with an MSE value of 549.14. The optimisation 

algorithm used to fine tune the regularization parameter is the 

mini-batch-Limited-memory Broyden–Fletcher–Goldfarb–

Shanno algorithm. The gradient tolerance was set at 1×10-4 

with an iteration limit of 1000. 
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Figure 2: Feature Selection Results for NCA 

 
Figure 3: Result for Mean Loss Function and Regularisation Parameter 

 

The PCR model formed is expressed in Equation (29). 

PCRHUP ( cement) ( sand)

( ironrods) ( roofing) ( paint)

( wood)

29522.9284 4.130063053 1.120358574

0.191689931 1.354440398 0.530580747

0.463840007

     

    

 

 (29) 

4.3 Developed Model Efficiency Test Results 

During the development of the regression models (PCR, 

MLR, PLSR, GLM, and NCR), the acquired dataset was 

divided into an 80% training set (24 data points) and a 20%  

 

testing set (6 data points). The model fit was done using the 

training set, while the testing set served as independent data 

to validate the forecasting strength of the developed models. 

Table 2 shows the intercomparison among the applied 

methods. 

Table 2: Statistical Analysis Testing Results 

Model MAPE R PRMSE SI 

PCR 1.8646 0.9980 2.0873 0.0209 

MLR 1.3390 0.9987 1.6411 0.0164 

PLSR 1.2441 0.9987 1.5029 0.0150 
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GLM 1.3390 0.9987 1.6411 0.0164 

NCR 0.0977 0.9999 0.1131 0.0011 

From Table 2, the R statistic results indicate the degree of 

linear association between the actual and the predicted HUP 

values for each competing method. Thus, the R-value depicts 

the model prediction accuracy, and the larger the value the 

better the agreement between the actual and the predicted 

values. From Table 2, the NCR method revealed a strong 

positive R-value of 0.9999, with GLM, PLSR, and MLR 

closely following with 0.9987. The PCR obtained an R of 

0.9980. The interpretation is that the NCR method achieved 

the highest degree of closeness between its predictions and 

the actual HUP data. 

 

Besides the R-value, the MAPE, PRMSE and SI indices 

portray the models’ bias in estimating the HUP. 

Consequently, the lower the degree of dispersion of the 

values of these indices from zero, the better the model’s 

acceptable accuracy. Thus, the proposed NCR method had 

the lowest MAPE value of 0.0977 followed by PLSR and 

GLM competing together, and PCR having the worse value 

of 1.8646, respectively. Based on the PRMSE results, it is 

obvious that the NCR predicted HUP values are practically 

more acceptable than the other investigated methods. A 

similar assertion was observed for the SI values where the 

NCR produced 0.0011 as compared to the GLM, PLSR, MLR 

and PCR. Based on the statistical results it can be inferred that 

the NCR is the most superior in predicting HUP. Hence, the 

NCR can be regarded as an effective method for predicting 

HUP.  

 

5. CONCLUSIONS 

This study has developed five regression models (PCR, MLR, 

PLSR, GLM, and NCR) to predict HUP based on case study 

data obtained from Ghana, West Africa. For the first time, the 

study proposes a new HUP prediction model-based NCR. The 

proposed NCR method relied on its feature selection 

capability to improve HUP prediction accuracy. Generally, 

results of the statistical analysis revealed that the developed 

regression models are good and can be used to predict HUP 

based on their performance indicators. However, the 

proposed NCR method is the most suitable for predicting 

HUP based on its achieved low MAPE (0.0977%), PRMSE 

(0.1130%), SI (0.0011), and high R (0.9999) values as 

compared to the other contending methods. The proposed 

NCR method will be advantageous not only to potential 

buyers and investors but to stakeholders in policymaking and 

the housing industry as well as in developing countries like 

Ghana where planning and making policies about the 

availability of housing is paramount. 
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