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ABSTRACT: To identify cyber-physical threats in additive manufacturing systems, this study proposes an advanced technique 

utilizing data from side-channel monitoring. The method combines several key approaches for preprocessing, analyzing, and 

classifying time-series data, ensuring robust attack detection capabilities. A predefined Window Sliding (FWS) preprocessing 

method segments continuous time-series data into manageable windows of specified size, making analysis more efficient. Next, we 

employ Discrete Wavelet Transform (DWT) to extract features from each window, capturing essential information across various 

frequency bands. Particle Swarm Optimization (PSO) is then used to refine the DWT coefficients, isolating the most valuable 

features to enhance classification performance by focusing on the most informative characteristics. The optimal feature set is used 

to train a deep learning (DL) model capable of identifying anomalies through reconstruction errors, specifically an LSTM-A 

autoencoder. Our results demonstrate that this approach can distinguish between normal and attack scenarios with an accuracy rate 

of 99% when applied to side-channel attack detection in additive manufacturing. This method provides a scalable and adaptable 

solution to safeguard cyber-physical systems against sophisticated cyberattacks while improving detection accuracy. 

KEYWORDS: Deep Learning (DL), Discrete Wavelet Transform (DWT), Particle Swarm Optimization (PSO), Long-short Term 

Memory-autoencoder (LSTM-A). 

 

INTRODUCTION 

Additive manufacturing (AM) presents two unique value 

propositions: the potential for personalization with financial 

benefits and the flexibility to create intricate designs. This 

technology's ability to meet niche demands has garnered 

significant interest from various industries. For instance, the 

pharmaceutical sector can customize prescription dosages 

based on individual weight and metabolic rate. In the 

biotechnology field, the removal of design limitations related 

to complexity enables the production of prosthetics such as 

tracheal splints, heart valves, and bone implants. 

Other industries, such as aerospace, automotive, and 

electronics, have also embraced similar concepts in their 

production processes. Advances in materials science have 

enabled consumers to benefit from customized 

manufacturing without compromising product performance 

due to production constraints. 

Detecting cyber-physical attacks is just one of many 

security challenges that have leveraged machine learning 

models. Traditional machine learning techniques like Support 

Vector Machines (SVMs), Random Forests (RFs), and k-

Nearest Neighbors (k-NN) have shown effectiveness across 

various applications. One significant advantage of these 

models is their ability to utilize domain knowledge for feature 

engineering, resulting in high accuracy and interpretability. 

For example, SVMs excel in categorizing instances based on 

linear separability and managing high-dimensional data. 

When resources are limited, these models are often more 

suitable than deep learning approaches due to their lower 

computational costs. However, they do have limitations. 

In contrast, deep learning has significantly impacted 

industries like cybersecurity by effectively handling 

complex, high-dimensional data. Models such as LSTM 

networks and Convolutional Neural Networks (CNNs) offer 

numerous advantages, including automated feature 

extraction. Deep learning can automatically perform feature 

engineering by learning hierarchical representations from raw 

data. 

LITERATURE SURVEY 

This research presented a multi-modal sabotage detection 

system for additive manufacturing (AM) equipment, 

developed by Shih-Yuan Yu et al. The use of multiple side 

channels significantly outperformed traditional uni-modal 

approaches in system state estimation. The machine control 

parameters leveraged mutual information to assess the value 

of each side channel, enhancing attack detection capabilities. 

Our algorithm achieved an impressive accuracy rate of 

98.15% in detecting real-world attacks. 

The FLAW3D bootloader, created and analyzed by 

Hammond Pearce et al., poses a threat to AVR-based Marlin-

compatible 3D printers (over 100 commercial models). 
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Despite stringent design constraints (under 1.7 KB), the study 

demonstrated that this Trojan can evade detection by 

programming tools and reduce tensile strengths by up to 50%. 

A novel method for process authentication was 

introduced by Abdullah Al Mamun et al., utilizing layer-wise 

in-situ video image texture analysis. The geometric features 

of the segmented textures are organized layer-wise in a layer-

wise texture descriptor tensor (LTDT). To address the high 

dimensionality and sparsity of the recovered LTDTs, we 

applied multilinear principal component analysis (MPCA) for 

dimensionality reduction. Subsequently, we employed the 

Hotelling control charting technique for change detection 

using the extracted low-dimensional layer-wise features. This 

proposed framework was validated through case studies 

based on a fused filament fabrication (FFF) process. 

Zhangyue Shi et al. investigated two prevalent types 

of cyber-physical attacks on G-code security: accidental 

design alterations and intellectual property theft. Their work 

introduces an innovative approach to safeguarding G-code 

against these threats by combining an effective asymmetric 

encryption method with a pioneering blockchain-based data 

storage system. 

A model proposed by Muhammad Ahsan et al. 

involves layer-by-layer printing of a 3D object from the 

ground up. Fused filament fabrication (FFF), one of the most 

popular additive manufacturing technologies, has gained 

traction in both commercial and residential applications. The 

integration of metal filaments into FFF has expanded its 

capabilities to meet a wider range of industrial needs. 

Ongoing research is focused on cybersecurity and quality 

assurance (QA) within FFF processes. Like other cyber-

physical systems, FFF generates a variety of side channels 

(SCs), including vibrations, heat, and noise. 

 

METHODOLOGY  

Figure 1 illustrates the proposed approach, which integrates 

several advanced methods to enhance the detection of cyber-

physical attacks in additive manufacturing (AM) through 

side-channel monitoring. The first step is Fixed Window 

Sliding (FWS) pre-processing, which segments continuous 

time-series data into fixed-size windows. This division 

simplifies the analysis by breaking the time series into 

smaller, manageable segments, ensuring consistent and 

systematic evaluation for further analysis. 

Once segmented, each window undergoes Discrete Wavelet 

Transform (DWT) for feature extraction. DWT performs a 

multi-resolution analysis by decomposing the time series data 

into various frequency bands, capturing both high- and low-

frequency components. The resulting coefficients represent 

different frequency bands, providing valuable insights into 

the signal's behavior and facilitating the identification of 

suspicious patterns or outlier’s indicative of potential attacks. 

To enhance the relevance of the extracted features, Particle 

Swarm Optimization (PSO) is employed for feature selection. 

PSO is a heuristic optimization technique inspired by the 

coordinated behavior of swarms. It identifies the most 

informative features within the feature vectors based on their 

classification performance. By focusing on the most 

significant characteristics, PSO optimizes the feature set, 

making subsequent analyses more efficient and accurate. 

The selected features are then used to train an LSTM-based 

autoencoder (LSTM-A). This deep learning model learns and 

reconstructs the input data through a combination of 

autoencoder architectures and Long Short-Term Memory 

(LSTM) networks. The LSTM component addresses the 

sequential nature of time-series data, while the autoencoder 

focuses on data reconstruction to capture typical operating 

trends. Anomaly detection is based on reconstruction errors; 

deviations from expected patterns indicate potential cyber-

physical attacks or other anomalies. 

Ultimately, empirical testing validates the effectiveness of the 

proposed approach. 

 
Fig. 1. Proposed methodology for cyber-physical attack detection in AM 
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Data Preprocessing: 

For effective management and analysis of continuous sensor 

inputs, Fixed Window Sliding (FWS) is a robust data pre-

processing technique. This approach facilitates a thorough 

examination of sensor signals by segmenting time-series data 

into manageable, fixed-size windows, which is particularly 

beneficial for detecting cyber-physical attacks in additive 

manufacturing (AM). Examples of the time-series signals 

generated from continuous sensor data collection include 

power consumption, electromagnetic emissions, and auditory 

outputs. Given the complexity and volume of this data, FWS 

simplifies its analysis and usability. 

The method divides a continuous data stream into fixed-

duration windows, which may either overlap or remain 

distinct. Each window represents a separate segment of the 

time-series data. The time-series data is represented as 

X={x1,x2,…,xT}X = \{x_1, x_2, \ldots, x_T\}X={x1,x2

,…,xT}, where TTT is the total number of data points, and 

the fixed window size is denoted by WWW. The sliding step 

size, or stride SSS, indicates how much the window shifts 

after processing each segment. The total number of windows 

NNN can be calculated using the total data points TTT, 

window size WWW, stride SSS, and the floor function

. 

 
Fig. 2. Proposed LSTM-autoencoder 

 

RESULTS AND DISCUSSION 

Experimental Setup 

In this case study, we utilized a Prusa i3 MK3S desktop FFF 

3D printer to collect data. Vibration sensors were chosen for 

their ability to detect motion-related changes during the 3D 

printing process. These modifications serve as auxiliary 

channels for G-code detection, as they are closely linked to 

G-code alterations. The additive manufacturing (AM) 

process depends on the relative velocity of the extruder and 

the printing bed to execute the G-code paths. Consequently, 

both the printing bed and the extruder are equipped with 

MEMS accelerometers, which can monitor changes in the 

AM process. These sensors capture three-dimensional 

vibrations in real-time at a sampling rate of approximately 3 

Hz. All data from the side channels was collected using an 

Arduino MEGA 2560 REV3 microcontroller. 

Key Performance Indicators (KPIs) 

A. Precision 

The effectiveness of an attack detection model can be 

evaluated by its accuracy, defined as the percentage of 

predictions that correctly identify both attacks and non-

attacks. 

B. Comparative Experiment with Existing and 

Proposed Models 

Table 1 presents the results of the comparative study, 

demonstrating that deep learning models enhanced with 

optimization algorithms and advanced techniques 

significantly outperform others. Fine-tuning Basic LSTM 

models and Traditional Recurrent Neural Networks (RNNs) 

leads to notable improvements in accuracy, precision, recall, 

and F1-score. Specifically, RNNs optimized using gradient 

descent improve accuracy by 3% compared to their non-
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optimized counterparts, while Basic LSTMs optimized with 

Adam show a 4% increase in accuracy.  

The proposed LSTM-based autoencoder (LSTM-A) exhibits 

even more remarkable performance gains. LSTM-A without 

optimization is about 1% more accurate than basic models. 

However, when integrated with Particle Swarm Optimization 

(PSO), these models achieve a 3% enhancement in recall, 

accuracy, precision, and F1-score, highlighting significant 

advancements in feature selection and optimization. 

Incorporating Discrete Wavelet Transform (DWT) into the 

LSTM-A framework further boosts results. When comparing 

models trained with both DWT and PSO to those trained with 

PSO alone, the former shows an additional 2-3% 

improvement in performance metrics. 

 

 
These advanced methods strike a balance between enhanced 

accuracy and computational efficiency, significantly 

reducing inference time while increasing complexity and 

training duration. Overall, the sophisticated models that 

utilize Discrete Wavelet Transform (DWT) and Particle 

Swarm Optimization (PSO) outperform conventional 

methods by a notable margin, achieving accuracy 

improvements of up to 6 percentage points. Their superior 

performance and enhanced processing efficiency make them 

valuable for tasks such as time-series anomaly detection. 

 

CONCLUSION 

In summary, this approach provides a comprehensive 

framework for detecting anomalies in time-series data, 

including cyber-physical attacks on automated systems. The 

method effectively employs Fixed Window Sliding (FWS) to 

partition time-series data into smaller windows, enabling 

detailed analysis without overwhelming computational 

resources. By applying DWT within each window, the 

approach facilitates the extraction of rich features across 

various frequency bands. PSO further enhances the model's 

performance and accuracy by optimizing feature selection to 

identify the most relevant characteristics for classification.  

The incorporation of an LSTM-based autoencoder (LSTM-

A) simplifies anomaly detection through reconstruction error 

analysis, leveraging its ability to learn complex temporal 

patterns and reconstruct input sequences. The system's 

effectiveness in identifying cyber-physical threats is 

validated through additive manufacturing side-channel 

monitoring. For the model to successfully detect security 

breaches in real-world applications with a 99% accuracy rate, 

it must first perform well under controlled conditions, 

highlighting the importance of this validation. This multi-

faceted strategy aims to create a more robust automated 

system, improve anomaly detection capabilities, and enhance 

overall system security. 
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