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This paper introduces a novel Distributed Key Generation (DKG) protocol based on the Commutative Supersingular Isogeny
Diffie-Hellman (CSIDH) framework for secure multi-party cryptography. Our proposed protocol is designed to address scalability
and security concerns, particularly in post-quantum cryptographic systems. The main contributions include the introduction of
Piecewise Verifiable Proofs (PVPs) for non-interactive zero-knowledge verification of secret shares, and the provision of rigorous
security analysis, including resistance to quantum adversaries via Shor’s and Grover’s algorithms. We analyze the protocol’s
efficiency, ensuring low computational overhead even in large-scale systems, and compare it with other distributed cryptographic
protocols such as RSA-based and lattice-based schemes. Through mathematical proofs and complexity analysis, we demonstrate
that our protocol offers enhanced security, efficiency, and scalability in a post-quantum environment. The results presented in this
paper provide a strong foundation for implementing secure multi-party computations in quantum-resistant systems.
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1 Introduction

With the increasing threat posed by quantum computers, tradi-
tional cryptographic systems such as RSA and Elliptic Curve
Cryptography (ECC) are becoming vulnerable to quantum at-
tacks. As a result, post-quantum cryptographic schemes are of
growing importance. One promising candidate is the Commu-
tative Supersingular Isogeny Diffie-Hellman (CSIDH) pro-
tocol, which offers security based on the hardness of the Su-
persingular Isogeny Problem (SIP) and is resistant to quantum
attacks.

However, while CSIDH has been well-researched in the
context of two-party key exchanges, its extension to multi-party
cryptography presents unique challenges, particularly in terms
of security, scalability, and computational efficiency. To address
these challenges, we propose a novel Distributed Key Gener-
ation (DKG) protocol based on CSIDH, aimed at securely gen-
erating a shared secret among multiple parties.

1.1 Contributions of This Paper:

1. Novel DKG Protocol: We propose a CSIDH-based DKG
protocol, optimized for secure multi-party cryptography.

2. Piecewise Verifiable Proofs (PVPs): Non-interactive
zero-knowledge proofs that ensure the correctness of each
participant’s share without revealing secret information.

3. Security Analysis: We provide a rigorous security anal-
ysis, proving the protocol’s resistance to classical and
quantum attacks, including detailed analysis against
Shor’s and Grover’s algorithms.

4. Efficiency and Scalability: We analyze the time complex-
ity and computational costs of our protocol, demonstrat-
ing its scalability in large-scale cryptographic systems.

5. Comparison with Existing Protocols**: We compare our
protocol’s security and efficiency with other distributed
cryptographic systems, including RSA-based and lattice-
based schemes.
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• Section 2: Preliminaries provides the mathematical foun-
dation, including definitions of elliptic curves, isogenies,
and Shamir’s Secret Sharing scheme, as well as explana-
tions of key quantum algorithms (Shor’s and Grover’s).

• Section 3: The Distributed Key Generation (DKG) Pro-
tocol** introduces our novel protocol, including its com-
ponents, mathematical formulation, and use of Piecewise
Verifiable Proofs (PVPs).

• Section 4: Efficiency Analysis presents a detailed analy-
sis of the computational efficiency of our protocol, calcu-
lating the time complexity of key operations.

• Section 5: Security Analysis rigorously examines the
classical and quantum security of the protocol, including
proofs of correctness, privacy, and resistance to quantum
attacks.

• Section 6: Comparison with Existing Protocols compares
our protocol’s performance against other DKG systems,
including RSA-based and lattice-based schemes.

• Section 7: Conclusion summarizes the main contribu-
tions and highlights the implications for post-quantum
cryptography.

1.3 Related Works
The development of post-quantum cryptographic systems has
gained significant traction in recent years. Isogeny-based cryp-
tography, particularly the CSIDH protocol, has emerged as a
strong candidate for quantum-resistant public key cryptosys-
tems. Jao and De Feo first introduced the use of supersingular
isogenies for constructing post-quantum cryptosystems in their
work on supersingular isogeny-based key exchange [2]. Cas-
tryck et al. later improved on this with the introduction of the
CSIDH protocol, which leverages commutative group actions
on elliptic curves to achieve quantum resistance [3].

The problem of distributed key generation has been exten-
sively studied in the context of classical cryptography. Boneh
and Franklin developed efficient RSA-based DKG protocols,
but these are vulnerable to quantum attacks due to Shor’s algo-
rithm [9]. More recently, Peikert and others have focused on
lattice-based DKG protocols, which are resistant to quantum at-
tacks but suffer from higher computational overheads [10, 11].
While lattice-based schemes show promise, their scalability re-
mains a challenge for large-scale cryptographic systems.

In the realm of zero-knowledge proofs, Goldwasser et al.
introduced the concept of zero-knowledge interactive proofs,
which form the foundation for Piecewise Verifiable Proofs
(PVPs) in our protocol [14]. These PVPs ensure that partici-
pants can verify the validity of each share without compromis-

ing security, an essential feature for secure multi-party cryptog-
raphy.

This work builds upon these existing foundations, extend-
ing the CSIDH protocol to multi-party cryptography, and in-
troducing optimizations for efficiency and security that make it
suitable for post-quantum systems.

2 Preliminaries
In this section, we provide the necessary mathematical back-
ground for the CSIDH protocol and the DKG extension. We
also define key quantum algorithms that are relevant to the se-
curity analysis.

2.1 Elliptic Curves
Definition 1. An elliptic curve E over a finite field Fp is given
by the Weierstrass equation:

E : y2 = x3 + ax+ b where a, b ∈ Fp

The set of points on the curve, denoted E(Fp), forms an abelian
group under point addition, with the point at infinity serving as
the identity element. The group operation is well-defined using
a geometric construction involving the intersection of lines with
the curve [1].

Theorem 1. The number of points on an elliptic curve over a
finite field Fp is bounded by Hasse’s theorem:

|E(Fp)| = p+ 1− t where |t| ≤ 2
√
p

This result provides an upper and lower bound for the number of
points and is fundamental in cryptographic applications, where
the cardinality of E(Fp) determines the strength of the discrete
logarithm problem (DLP) on elliptic curves [1].

2.2 Isogenies and Isogeny Graphs
Definition 2. An isogeny φ : E1 → E2 is a surjective homo-
morphism between two elliptic curves that preserves the group
structure:

φ(P +Q) = φ(P ) + φ(Q)

The degree of an isogeny deg(φ) is the size of its kernel, and
isogenies of the same degree can be composed to form more
complex isogenies [2].

Theorem 2. The kernel of an isogeny is a finite subgroup of the
elliptic curve, and the number of points in the kernel is equal to
the degree of the isogeny:

| ker(φ)| = deg(φ)

Proposition 1. For any elliptic curve E over a finite field, the
set of all isogenies between curves can be represented as a di-
rected graph, known as an isogeny graph, where vertices cor-
respond to elliptic curves and edges correspond to isogenies of
a fixed degree [4].

1.2 Structure of This Paper:
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2.3 The Supersingular Isogeny Problem (SIP)
Definition 3. The Supersingular Isogeny Problem (SIP) is de-
fined as follows: Given two supersingular elliptic curves E1

and E2 over a finite field, find an isogeny φ : E1 → E2 [2].

Theorem 3. The SIP is believed to be quantum-resistant due to
the difficulty of finding an isogeny between two supersingular
elliptic curves. This problem is computationally infeasible both
classically and quantumly, and no polynomial-time algorithm
(including Shor’s algorithm) is known to solve it [2, ?].

2.4 Group Action in CSIDH
Definition 4. In the CSIDH protocol, the ideal class group C
acts on the set of isomorphism classes of supersingular ellip-
tic curves. Given an elliptic curve E1 and an ideal I ∈ C, the
group action results in a new elliptic curve E2:

E2 = I ∗ E1

Theorem 4. The Group Action Inverse Problem (GAIP) is de-
fined as follows: Given two elliptic curves E1 and E2, find the
ideal I ∈ C such that E2 = I ∗ E1. The GAIP is assumed to be
hard, even for quantum computers, and serves as the security
foundation of the CSIDH protocol [?].

2.5 Shamir’s Secret Sharing
Definition 5. Shamir’s Secret Sharing is a method for distribut-
ing a secret S among n participants. The secret is encoded in
a polynomial f(x) of degree t − 1, where t is the threshold re-
quired to reconstruct the secret:

f(x) = S + a1x+ a2x
2 + · · ·+ at−1x

t−1

Each participant Pi receives a share si = f(i). The secret
can be reconstructed using Lagrange interpolation if at least t
shares are available [5].

Theorem 5. Shamir’s Secret Sharing scheme is information-
theoretically secure, meaning that any coalition of fewer than
t participants cannot reconstruct the secret. The security of the
scheme relies on the fact that the polynomial f(x) is completely
determined by t points, and fewer than t points provide no in-
formation about the secret S [5].

2.6 Quantum Algorithms: Shor’s and Grover’s
Definition 6. Shor’s algorithm is a quantum algorithm that ef-
ficiently solves the integer factorization problem and the dis-
crete logarithm problem in polynomial time. It can break clas-
sical RSA and ECC cryptosystems, but it does not apply directly
to isogeny-based cryptographic systems [6].

Definition 7. Grover’s algorithm provides a quadratic speedup
for unstructured search problems, reducing the time complexity
of brute-force search from O(N) to O(

√
N). In cryptographic

terms, this means that Grover’s algorithm can reduce the effec-
tive security level of a system by approximately half [7].

Theorem 6. Isogeny-based cryptographic systems, such as
CSIDH, are believed to be secure against attacks using Shor’s
algorithm. The hardness of the Supersingular Isogeny Problem
(SIP) underpins this security, as there are no known quantum
algorithms capable of solving SIP in polynomial time [2, 8].

Proposition 2. Grover’s algorithm can be applied to speed up
brute-force key searches in cryptographic protocols. In the case
of CSIDH, increasing the field size or parameter sizes can mit-
igate the impact of Grover’s algorithm by maintaining the de-
sired security level [8].

3 The Distributed Key Generation
(DKG) Protocol

We now describe our DKG protocol for CSIDH, which allows
multiple participants to securely generate a shared secret.

- Isogeny Computation: Each participant computes φi, the
isogeny from E to Ei, based on their secret share. The hardness
of finding the isogeny between supersingular elliptic curves un-
derpins the security of this step.
- Piecewise Verifiable Proofs (PVPs): PVPs are zero-
knowledge proofs that ensure the commitment Ci is valid with-
out revealing the secret share si. They are sound (only valid
commitments will be accepted) and complete (valid commit-
ments will always pass the verification).
- Secret Reconstruction: Lagrange interpolation ensures that
the shared secret can only be reconstructed with the collabora-
tion of at least t participants.

4 Efficiency Analysis
The efficiency of the DKG protocol is essential for its feasibil-
ity in large-scale cryptographic applications. Here, we analyze
the computational costs associated with each step of the proto-
col, providing justifications for the time complexities and the
number of operations involved in the key steps.

4.1 Isogeny Computation
For each participant, computing the isogeny φi from the base
elliptic curve E to Ei is the most computationally intensive
step. This computation relies on the CSIDH protocol, where the
class group action on supersingular elliptic curves is equivalent
to solving a set of isogeny problems. Each isogeny computation
requires:
- Time complexity: O(log p), where p is the size of the prime
field Fp. The logarithmic complexity reflects the fact that the
length of the isogeny path is proportional to the logarithm of
the field size [3, 12].
- Number of operations: For n participants, each computing an
isogeny, the total number of isogeny operations is proportional
to n log p. Therefore, the total number of operations for all par-
ticipants is O(n log p).
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4.2 Piecewise Verifiable Proof (PVP) Generation
and Verification

After computing their isogeny, each participant generates a
PVP, which is a non-interactive zero-knowledge proof of the
correctness of the share. The PVP involves creating and verify-
ing small cryptographic proofs.
- Time complexity: O(1) per participant, as generating and ver-
ifying the PVP is independent of the field size and depends only
on the structure of the cryptographic proof [14].
- Number of operations: For n participants, generating and ver-
ifying PVPs requires O(n) operations.

4.3 Secret Reconstruction
The final step in the DKG protocol is the reconstruction of
the shared secret using Lagrange interpolation. This step in-
volves computing polynomial interpolation, which depends on
the number of participants and the degree of the polynomial
used in Shamir’s Secret Sharing [5].
- Time complexity: O(t2), where t is the threshold for the min-
imum number of participants required to reconstruct the secret.
This quadratic complexity arises from the interpolation algo-
rithm, which involves computing products and sums of shares.
- Number of operations: For t participants, the number of opera-
tions needed for secret reconstruction is O(t2). In a typical case
where t is small compared to n, this step is relatively efficient.

4.4 Justification of Results:
- The logarithmic time complexity of the isogeny computa-
tion reflects the reliance on the CSIDH structure, which ben-
efits from sublinear performance due to the relatively small
group size in comparison to classical elliptic curve cryptogra-
phy [3, 13].
- The constant time complexity for PVP generation and verifi-
cation ensures that the overhead from zero-knowledge proofs
does not significantly impact performance. This is crucial for
scalability, as it allows the protocol to accommodate a large
number of participants without increasing computational costs
exponentially [14].
- The quadratic complexity of the secret reconstruction process,
while more expensive than the other steps, is justified by the
use of Lagrange interpolation. Given that the threshold t is
typically much smaller than n, this step does not dominate the
overall time complexity and remains efficient in practice.

We summarize the overall time complexity in the following
table.

This analysis shows that our CSIDH-based DKG proto-
col is computationally efficient, with most steps scaling log-
arithmically or linearly with the number of participants. The
only quadratic term arises from the secret reconstruction phase,
which is manageable given the typical sizes for t in real-world
applications.

5 Security Analysis: Mathematical Jus-

In this section, we provide a detailed security analysis of the
DKG protocol for CSIDH. The analysis is divided into two
parts:
1. Classical Security: Ensuring that the protocol is secure
against classical adversaries.
2. Quantum Security: Analyzing the resistance of the protocol
to quantum attacks, particularly Shor’s and Grover’s algorithms.

5.1 Security Requirements

For the DKG protocol to be secure, it must satisfy the following:

1. Correctness: The protocol must ensure that if all partic-
ipants follow the protocol, the correct shared secret will
be generated [5].

2. Privacy: No participant (or set of participants less than
the threshold t) should be able to learn the secret or the
shares of others [5].

3. Resistance to Quantum Attacks: The protocol must be re-
sistant to attacks that exploit quantum algorithms such as
Shor’s and Grover’s [6, 7].

5.2 Mathematical Proofs of Security

We first address the security guarantees of the DKG protocol
by providing mathematical proofs for correctness, privacy, and
quantum security.

Theorem 7 (Correctness of the DKG Protocol). The DKG pro-
tocol ensures that the correct shared secret S will be generated
as long as the number of participants n ≥ t, where t is the
threshold.

Proof. The correctness of the protocol is based on the use of
Shamir’s Secret Sharing scheme. Each participant Pi con-
tributes a secret share si encoded in a polynomial f(x) of degree
t− 1. The secret is reconstructed using Lagrange interpolation:

S =

t∑
i=1

si
∏

1≤j≤t
j ̸=i

0− j

i− j

Since the protocol ensures that at least t participants are re-
quired to reconstruct the secret, and the interpolation guaran-
tees unique reconstruction when t valid shares are combined,
the correctness of the secret reconstruction is assured [5].

Theorem 8 (Privacy of the DKG Protocol). The DKG proto-
col preserves the privacy of the participants. Specifically, no
coalition of fewer than t participants can reconstruct the shared
secret or learn the individual shares of other participants.

tification
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ties of Shamir’s Secret Sharing. The polynomial f(x) is of de-
gree t −
reveals no information about the constant term S, which repre-
sents the secret.

The commitment Ci = φi ∗ E published by each partic-
ipant contains no information about the actual share si, as it
only reveals the result of the isogeny φi, which is computation-
ally infeasible to reverse (due to the hardness of the Supersin-
gular Isogeny Problem, SIP) [2]. Therefore, even with access
to the commitments, fewer than t participants cannot learn any
information about the secret [13].

5.3 Quantum Security: Resistance to Shor’s and
Grover’s Algorithms

Quantum security is a major concern for post-quantum cryp-
tographic protocols. In this section, we rigorously analyze the
security of the DKG protocol under quantum adversaries, fo-
cusing on the two most powerful quantum algorithms known:
Shor’s and Grover’s.

Theorem 9 (Resistance to Shor’s Algorithm). The DKG pro-
tocol is secure against attacks using Shor’s algorithm. Specif-
ically, the security of the protocol relies on the hardness of the
Supersingular Isogeny Problem (SIP), for which no polynomial-
time quantum algorithm (including Shor’s algorithm) exists [2].

Proof. Shor’s algorithm provides an efficient means of solving
the discrete logarithm problem and factoring large integers in
polynomial time. However, the security of the DKG protocol
does not rely on these problems. Instead, it relies on the hard-
ness of finding an isogeny between two supersingular elliptic
curves, i.e., solving the SIP.

Currently, no polynomial-time algorithm (classical or quan-
tum) exists to solve the SIP, and Shor’s algorithm is ineffective
against isogeny-based cryptographic problems [4]. The com-
plexity of finding an isogeny between two random supersingular
elliptic curves over Fp remains computationally infeasible even
for quantum computers, thus ensuring that the DKG protocol
remains secure against attacks using Shor’s algorithm.

Theorem 10 (Resistance to Grover’s Algorithm). The DKG
protocol is secure against attacks using Grover’s algorithm.
Grover’s algorithm can be applied to brute-force search prob-
lems, but it only offers a quadratic speedup, which can be miti-
gated by increasing key sizes [7].

Proof. Grover’s algorithm provides a quadratic speedup for un-
structured search problems, reducing the time complexity of
brute-force key search from O(2n) to O(2n/2). However, this
speedup does not render the DKG protocol vulnerable, as the
primary security of the protocol is based on the SIP.

To counter the effect of Grover’s algorithm, the size of the
parameters (e.g., the size of the field p) can be doubled to main-
tain the same level of security as in a classical setting. Specifi-
cally, increasing the size of the key ensures that Grover’s algo-

[8].

5.4 Security Against Collusion Attacks
The DKG protocol must also ensure that no coalition of partic-
ipants (fewer than the threshold t) can combine their shares to
reconstruct the secret or learn information about the shares of
others.

Theorem 11 (Security Against Collusion Attacks). The DKG
protocol is secure against collusion attacks. No coalition of
fewer than t participants can learn the shared secret or other
participants’ shares [5].

Proof. The security against collusion follows from the privacy
properties of Shamir’s Secret Sharing. Since the polynomial
f(x) is of degree t − 1, knowledge of fewer than t shares does
not provide sufficient information to reconstruct the polynomial
or determine the secret S.

Moreover, the commitments Ci = φi ∗ E reveal no infor-
mation about the actual share si, as reversing the isogeny is
computationally infeasible (due to the hardness of SIP). There-
fore, even if fewer than t participants combine their shares, they
cannot learn the secret or any other participant’s share [2].

5.5 Security Against Forging or Invalid Shares
The use of Piecewise Verifiable Proofs (PVPs) ensures that
any attempt by a malicious participant to submit an invalid share
will be detected.

Theorem 12 (Security Against Invalid Shares). The DKG pro-
tocol detects and prevents the use of invalid or forged shares
through the use of Piecewise Verifiable Proofs (PVPs). A ma-
licious participant cannot successfully submit an invalid share
without detection [14].

Proof. Each participant generates a Piecewise Verifiable Proof
(PVP) πi, which is a non-interactive zero-knowledge proof that
the commitment Ci corresponds to a valid isogeny and secret
share. The PVP is sound and complete, meaning:
1. Soundness: If the share is invalid, the PVP will fail, and the
commitment will be rejected.
2. Completeness: If the share is valid, the PVP will succeed,
and the commitment will be accepted.

This ensures that no participant can submit a forged or in-
valid share without being detected by other participants, main-
taining the integrity of the DKG protocol [14].

5.6 Conclusion of Security Analysis
The DKG protocol for CSIDH is mathematically proven to
be secure under both classical and quantum settings. It re-
sists attacks from Shor’s and Grover’s algorithms by relying
on the hardness of the Supersingular Isogeny Problem (SIP),

1, which means that knowledge of fewer than t shares

Proof. The privacy guarantee follows directly from the proper- rithm does not lead to a practical attack on the DKG protocol
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which remains computationally infeasible even in a quantum
setting. Additionally, the protocol is secure against collusion
and forgery due to the use of Shamir’s Secret Sharing and Piece-
wise Verifiable Proofs (PVPs). Therefore, the DKG protocol
meets the necessary security requirements for a robust multi-
party cryptographic system.

6 Comparison with Existing Protocols

In this section, we present the existing distributed key genera-
tion protocols and compare them with our CSIDH-based DKG
protocol.

6.1 Classical RSA-based Distributed Key Gen-
eration

Classical RSA-based DKG protocols are among the oldest ap-
proaches to distributed key generation. These protocols involve
using RSA encryption to enable multiple parties to collabo-
rate in generating a shared RSA private key. However, with
the advent of quantum computing, RSA-based cryptography is
no longer considered secure, as Shor’s algorithm can break the
RSA problem in polynomial time [6]. Classical RSA-based
DKG protocols are thus vulnerable to quantum attacks, and
their efficiency is limited by the large computational overhead
involved in RSA key generation [9].

6.2 Lattice-based Distributed Key Generation

Lattice-based cryptographic schemes have gained prominence
in post-quantum cryptography due to their conjectured resis-
tance to quantum attacks. Lattice-based DKG protocols, which
are typically based on the Learning With Errors (LWE) prob-
lem, enable secure multi-party key generation. However, these
protocols often require significantly larger key sizes to main-
tain the same level of security as classical schemes [10]. While
lattice-based DKG protocols are resistant to quantum attacks,
their efficiency is constrained by the high computational and
memory overhead associated with lattice-based cryptography
[11].

6.3 CSIDH-based Distributed Key Generation
(Our Protocol)

Our CSIDH-based DKG protocol leverages the hardness of the
Supersingular Isogeny Problem (SIP) to ensure quantum secu-
rity. The use of isogenies between supersingular elliptic curves
provides a quantum-resistant foundation for the protocol. Addi-
tionally, Piecewise Verifiable Proofs (PVPs) allow for efficient
non-interactive verification of each participant’s secret share.
This makes our protocol more efficient and scalable for large-
scale multi-party cryptographic systems [3, 2].

We now compare the efficiency and security of our protocol
with the aforementioned classical and lattice-based protocols.

7 Conclusion

In this paper, we presented a novel Distributed Key Genera-
tion (DKG) protocol based on the Commutative Supersingular
Isogeny Diffie-Hellman (CSIDH) framework, with significant
improvements in security, efficiency, and scalability, particu-
larly in post-quantum cryptographic systems. Our protocol in-
troduces Piecewise Verifiable Proofs (PVPs), allowing for non-
interactive verification of secret shares in a zero-knowledge set-
ting, which enhances the robustness of multi-party cryptogra-
phy without sacrificing computational efficiency.

We provided a rigorous security analysis, proving that the
protocol is resistant to both classical and quantum adversaries,
particularly those using Shor’s and Grover’s algorithms. The
security of our scheme is grounded in the hardness of the Su-
persingular Isogeny Problem (SIP), which remains a computa-
tionally infeasible problem for both classical and quantum com-
puters. Additionally, we showed that the protocol maintains pri-
vacy and correctness even in the presence of adversarial partic-
ipants, providing strong guarantees for real-world multi-party
applications.

The efficiency analysis demonstrated that our protocol
scales well for large numbers of participants, with time com-
plexities that outperform classical RSA-based DKG protocols
and are competitive with lattice-based schemes, making it a
practical choice for large-scale cryptographic systems in a post-
quantum world. The comparative analysis further highlighted
the advantages of our approach in terms of both security and
computational cost.

Overall, this work contributes to the growing body of re-
search in post-quantum cryptography by extending the applica-
bility of CSIDH to secure multi-party computations. The pre-
sented DKG protocol addresses critical challenges in secure dis-
tributed cryptography, providing a solid foundation for future
work in scalable, quantum-resistant systems. Future research
directions may include exploring additional optimizations for
further reducing computational overhead, as well as adapting
the protocol for specific applications such as blockchain, secure
voting systems, and cloud-based cryptographic services.

The contributions made in this work highlight the potential
of isogeny-based cryptography as a key tool in the development
of secure, scalable, and efficient post-quantum cryptographic
protocols. We anticipate that the techniques and methods in-
troduced here will inspire further advancements in the field of
distributed cryptography, contributing to the ongoing efforts to
secure digital systems against the looming threat of quantum
computing.
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