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ABSTRACT: This work explores the use of numerical matrix iteration to determine an aircraft wing's divergence speed using the 

aerodynamic span effects approach. The present work begins with the construction of equilibrium equations in differential and 

integral forms. In this paper, integral formulas are used because it serves as a convenient basis for numerical solutions of complex 

practical problems. Second, the straight-tapered wing is divided into a number of Multhopp stations. Subsequently, the stations' 

torsional influence coefficient matrix has been calculated. Third, lifting line theory was used as a suitable choice of aerodynamic 

theory, and the governing equations were represented in matrix form. Finally, aerodynamic span effects are taken into consideration 

with induction effects according to Prandtl’s lifting line theory to calculate the symmetrical divergence speed from the lowest 

eigenvalue of the homogenous governing integral equation. To get the solution to converge, a matrix has been iterated using the 

MATLAB environment. The obtained results will aid modern aircraft designers in their understanding of wing instability in steady 

motion. 

KEYWORDS: Aero-elasticity, Lifting line Theory, Matrix Iteration, Multhopp’s stations, Numerical solution, Span effects, 

Symmetrical divergence speed. 

 

I. INTRODUCTION  

Aero-elasticity is the study of how inertia, elastic, and 

aerodynamic forces interact in a flexible structure, as well as 

the phenomena that may arise [2]. The influence of inertial 

forces is introduced in dynamics. Elasticity describes the 

shape of an elastic body under a certain load. Classical 

aerodynamic procedures evaluate the forces acting on a body 

with a specific shape [3]. Aeroelastic phenomenon often fall 

into two categories as static and dynamic. The classic collar 

aeroelastic triangle [4], seen in Fig.1, briefly explains this 

phenomenon, as found in ref [1]. 

Fig. 1. The aeroelastic triangle of Collar [1]. 

 

 

II. DESCRIPTION OF THE WING STRUCTURE  

The wing that is being studied is thought to be perfectly 

elastic. indicates that the wing structure will maintain its 

original shape after the external loads are removed. 

Experiments on airplane structures demonstrated that, within 

certain limitations, force and deflection are linearly 

connected. Elastic buckling in an aircraft wing structure's skin 

can result in a discontinuity in the force deflection diagram 

even in cases where the material that makes up the structure 

is under low stress [1]. Consequently, the elastic properties of 

the wing structure are reported in the range below the elastic 

buckling point. 

 

III.  MATHEMATICAL CONCEPTS 

A. Understandable Influence Coefficients 

The influence coefficients idea is used throughout this 

study, which accounts for wing structural deflections 

generated by various loads. This approach represents each 

point's total angular and linear deformation as the sum of the 

deformations at that point generated by individual forces and 

moments. This can be represented using the superposition 

concept, which is the basis for linear system analysis [6]. In 

this paper, the general situation is considered as an example 

as described in ref [1]. 

B. Utilizing influence coefficients to express strain energy 

In order to apply the energy approach to an aeroelastic 

system, the strain energy formulas in relation to influence 
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coefficients must be constructed to finally obtain the 

following relationship among the applied torsional moment 

and rate of twist: 

                                   
𝑑𝜃(𝑦)

𝑑𝑦
= 𝜃′ =

𝑇

𝐺𝐽
                     (1)  

The proof of this equation is explained in more detail in ref 

[1]. 

C. Coefficients of torsional influence 

Consider the cantilever wing in Fig.2, which is subjected 

to a unit torque force. At a distance 𝜂 from the origin, a unit 

torque about the elastic axis is exerted, and the angular 

deflection resulting at y is denoted as 𝐶𝜃𝜃 (𝑦, 𝜂). 

 

 
Fig. 2. Cantilever wing subjected to unit torque [7]. 

 

As stated in ref [1], 

 

𝑞(𝜆, 𝑠) = 𝜗(𝜆, 𝑠) … . (0 < 𝜆 < 𝜂) 

𝜕𝑞

𝜕𝑇
= 𝜗(𝜆, 𝑠). . . . (0 < 𝜆 < 𝑦) 

Thus, for 𝜂 > 𝑦 

                               ∁𝜃𝜃(𝑦, 𝜂) = ∫
𝑑𝜆

𝐺𝐽

𝑦

0
                                 (2)   

And for 𝜂 <𝑦 

 

                          ∁𝜃𝜃(𝑦, 𝜂) = ∫
𝑑𝜆

𝐺𝐽

𝜆

0
                                  (3)      

If the distribution of shear flow 𝜗 (𝑠, 𝜆) caused by a unit 

torque is given, the constant of torsional J, stated at (2) and 

(3), can be estimated at any section of the beam. This 

necessitates knowledge of the wing skin thickness, flange, 

web and stringer thickness, and so on at each section of the 

wing, as well as the shear modulus values at each section. 

According to reference [7], torsional rigidity curve GJ has 

been calculated and is presented in Fig. 3. (a).   

 
Fig. 3. (a) curve of shear stiffness, torsional and bending 

[7]. 

 
Fig. 3. (b) Curve of torsional stiffness (modified to SI 

unit) [6] 

 

D. Equilibrium Equations 

The following assumes are made for simplicity's sake: 

1) Un-swept wings are distinguished via an Elastic-axis 

that is vertical to the symmetrical plane of aircraft. 

2) The wing's chordwise sections maintain rigid; camber 

bending is to be negligible. 

By connecting the rate of twist to the applied torque as 

previously mentioned, the differential equation of torsional 

aero-elastic equilibrium of un-swept wing about its elastic 

axis is represented using equation (1) as follow: 

𝑑𝜃(𝑦)

𝑑𝑦
= 𝜃′ =

𝑇

𝐺𝐽
 

we might rewrite this as: 

                                  
𝑑

𝑑𝑦
(𝐺𝐽

𝑑𝜃

𝑑𝑦
) =

𝑑𝑇

𝑑𝑦
= −𝑡(𝑦)                 (4)         

(𝑦): distribution of elastic twist. 

Take a slender straight wing that is being affected by 

aerodynamic and inertial forces, as in Fig. 4. 
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Fig. 4. Straight wing [6]. 

 

The utilized torque per unit span t(y) is provided in Fig.4 

by:  

           𝑡(𝑦) = 𝑞𝑐𝑙𝑐𝑒 + 𝑞𝑐2𝐶𝑚𝑎𝑐
− 𝑁𝑚𝑔𝑑               (5)   

   Where 𝑐𝑙 are the local lift coefficients. 

   𝐶𝑚𝑎𝑐
 : local coefficients of moment about center of 

aerodynamic. 

𝑚𝑔: weight of wing per unit span. 

𝑁 is the load factor perpendicular to wing surface. At level 

flight, N equals 1.  

When we combine (4) and (5), we get the following 

differential equation of equilibrium: 

         
𝑑

𝑑𝑦
(𝐺𝐽

𝑑𝜃

𝑑𝑦
) = 𝑁𝑚𝑔𝑑 − 𝑞𝑐𝑙𝑐𝑒 − 𝑞𝑐2𝐶𝑚𝑎𝑐

              (6)  

or 

               
𝑑

𝐶𝑚𝑎𝑐𝑑𝑦
(𝐺𝐽

𝑑𝜃

𝑑𝑦
) + 𝑞𝑐𝑙𝑐𝑒 = 𝑁𝑚𝑔𝑑 − 𝑞𝑐2        (7) 

𝜃(0) = 0  ; 𝜃
′(𝑙) = 0.     Are the boundary conditions. 

By using Castiglione's theorem to the energy equation, the 

wing's torsional deflection is calculated at any spanwise 

position y caused by torque t applied at span wise position 𝜂. 

                            𝜃(𝑦) = ∫ 𝐶𝜃𝜃 (𝑦, 𝜂)𝑡(𝑦)𝑑𝜂
𝑙

0
               (8) 

When (6) is added to (8), we get: 

𝜃(𝑦) = ∫ 𝐶𝜃𝜃 (𝑦, 𝜂){[𝑐𝑙𝑐𝑒 + 𝑐2 𝐶𝑚𝑎𝑐
]𝑞 − 𝑁𝑚𝑔𝑑}𝑑𝜂

𝑙

0
     (9) 

The angle of attack may be thought of as a superposition of 

an elastic twist and a rigid angle. 

                             𝛼(𝑦) = 𝛼𝑟(𝑦) + 𝜃(𝑦)                     (10) 

Additionally, local coefficient of lift may be expressed as 

follows: 

                                    𝑐𝑙(𝑦) = 𝑐𝑙
𝑟(𝑦) + 𝑐𝑙

𝑒(𝑦)                 (11)    

Where 𝑐𝑙(𝑦): local angle of attack determined from zero lift 

excepting elastic twist. 

𝑐𝑙
𝑟(𝑦): distribution of local coefficient of lift caused by 

rigid twist, 𝛼𝑟 (𝑦). 

𝑐𝑙
𝑒(𝑦): distribution of local coefficient of lift due to elastic 

twist. 

The following differential equation is obtained by 

substituting (11) in (7): 

    
𝑑

𝑑𝑦
(𝐺𝐽

𝑑𝜃

𝑑𝑦
) + 𝑞𝑐𝑒𝑐𝑙

𝑒 = −𝑞𝑐𝑒𝑐𝑙
𝑟 − 𝑞𝑐2𝐶𝑚𝑎𝑐

+ 𝑁𝑚𝑔𝑑   (12) 

Similarly, we derive the following integral equation by 

replacing (11) in (9): 

                  𝜃(𝑦) = 𝑞 ∫ 𝐶𝜃𝜃 (𝑦, 𝜂)𝑒𝑐𝑐𝑙
𝑒  𝑑𝜂 + 𝑓(𝑦)

𝑙

0
       (13) 

Where: 

𝑓(𝑦) = ∫ 𝐶𝜃𝜃 (𝑦, 𝜂)(𝑒𝑐𝑐𝑙
𝑟𝑞 + 𝑞𝑐2 𝐶𝑚𝑎𝑐 

− 𝑁𝑚𝑔𝑑)𝑑𝜂
𝑙

0

 

In case of actual wing the rigid airloads are zero, thus, 

𝛼𝑟(𝑦) and 𝑐𝑙
𝑟(𝑦) are zero. 

Equation (13) represents the required governing integral 

equation. 

The integral equation form serves as a convenient basis for 

numerical solutions of complex practical problems. In both 

equations differential and integral forms 𝜃(𝑦) and 𝑐𝑙
𝑒(𝑦) are 

regarded as unknown functions, and all other terms are 

assumed specified. The problem becomes mathematically 

determinate as soon as a second relation between the two 

unknowns is stated; this is supplied by some appropriate 

choice of aerodynamic theory. the aerodynamic theory is 

usually assumed to involve a linear relation between 

incidence and lift distribution which can be represented 

symbolically by 

         ∝ (𝑦) = 𝛩[𝑐𝑐𝑙]                                       (14)  

Where 𝛩is a linear operator which operates on the lift 

distribution 𝑐𝑐𝑙(𝑦) to produce the required incidence 

distribution ∝ (𝑦). 

E.  Torsional divergence 

The torsional divergence speed of a three- dimensional 

wing is determined from the lowest eigenvalue of dynamic 

pressure 𝑞 obtained from the homogeneous differential or 

integral equations of equilibrium . It thus represents that 

speed at which the wing, arranged so that in the untwisted 

condition it experiences no aerodynamic moments whatever, 

is theoretically capable of assuming an arbitrary amount of 

twist and remaining in neutral equilibrium there under the 

airloads due to the twist alone. Since the solution to a 

nonhomogeneous equation becomes infinite for the 

eigenvalues of the corresponding homogeneous equation, we 

may conclude that an actual wing (which never can be 

adjusted so that the rigid airloads are exactly zero) would 

twist off and be destroyed at its divergence speed. The 

homogeneous forms of equations. (12) and (13) are: 

                  
𝑑

𝑑𝑦
(𝐺𝐽

𝑑𝜃

𝑑𝑦
) + 𝑞𝑒𝑐𝑐𝑙

𝑒 = 0                             (15) 

               𝜃(𝑦) = 𝑞 ∫ 𝐶𝜃𝜃 (𝑦, 𝜂)𝑒𝑐𝑐𝑙
𝑒  𝑑𝜂

𝑙

0
                     (16) 

Equation (15) or Eq. (16) can be alternatively used together 

with Eq. (14) to compute the divergence speed. They are both 

satisfied by the same infinite set of eigenvalues and 

eigenfunctions. The lowest eigenvalue is the dynamic 

pressure , 𝑞𝐷, corresponding to torsional divergence. The 

corresponding eigenfunction 𝜃𝐷(y) , is the spanwise twist 

distribution at the divergence speed [7]. 
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F.  Definition of Aerodynamic Lifting Line theory 

Various approximate procedures for solving the linearized 

problem of the lifting wing. one of these approaches which is 

particular interest to the aeroelastician is lifting line theory 

which is introduced in this section. The following Equation is 

the lifting-line formula , specialized for a rectangular wing 

whose sectional lift - curve slopes are all 2𝜋 [7].  

     Г(𝑦) = 2𝜋𝑈𝑏 [∝ (𝑦) − 
1

4𝜋𝑈
∮

𝑑Г

𝑑𝜂

𝑑𝜂

(𝑦−𝜂)

𝑙

−𝑙
]                (17) 

As is well known to aeronautical engineers, the general 

formula was originally derived by replacing the actual vortex 

sheet with a single , concentrated bound vortex of strength 

Г(𝑦), from which emanates a wake of trailers having 

circulation dГ/dy per unit spanwise distance. The running lift 

𝜌UГ at each section was equated to the lift a00.5 𝜌U2c ∝eff  

of a two-dimensional airfoil with chord c and lift-curve slope 

a0, working at an effective angle of attack determined by the 

induced flow pattern there. ∝eff was calculated by subtracting 

from the geometrical angle ∝ ( measured from zero-lift 

attitude ) the contribution of the so- called downwash [7].  

This downwash, assumed constant along each airfoil 

chord, is just the downward velocity at the bound vortex line 

due to the entire vortex sheet. A simple application of the Biot 

- Savart law therefore yields 

    ∝eff ≅ ∝ −
𝐷𝑜𝑤𝑛𝑤𝑎𝑠ℎ

𝑈
= ∝ −

1

4𝜋𝑈
∮

𝑑Г

𝑑𝜂

𝑑𝜂

(𝑦−𝜂)

𝑙

−𝑙
            (18) 

The equation between the two expressions for running lift, 

after substitution of Eq. (18) and division by 𝜌U finally reads 

Г(𝑦) = 𝑎0𝑈
𝑐

2
[∝ (𝑦) − 

1

4𝜋𝑈
∮

𝑑Г

𝑑𝜂

𝑑𝜂

(𝑦−𝜂)

𝑙

−𝑙
]                     (19) 

Since 𝑐/2 = 𝑏, this is obviously consistent with Eq .(17), 

although here both c and a0 may be functions of the spanwise 

coordinate y. 

for solving eq(19), The best known is Glauert's Fourier 

series substitution , which leads in such a natural way to the 

familiar concepts of elliptic loading and minimum induced 

drag. A convenient angle variable resembling the one is 

defined by: 

    𝜂 =  𝑙 ×  𝑐𝑜𝑠𝜃     ,     𝑦𝑖  =  𝑙 ×  𝑐𝑜𝑠𝜙                       (20) 

This puts the wing tips at 𝜃 = 0 and 𝜃 = 𝜋. Since Г is 

known to vanish at both tips, it is taken in the form of a 

Fourier sine series : 

           Г(𝑦) = Г(𝜙) = 𝑈𝑙 ∑ �̅�𝑟𝑟=1  𝑠𝑖𝑛𝑟𝜙                   (21) 

The general integral formula comes into use when we 

substitute eq(21) into the right side of eq(18). 

∮
𝑑Г

𝑑𝜂

𝑑𝜂

(𝑦 − 𝜂)

𝑙

−𝑙

= −
1

𝑙
∮

𝑑Г

𝑑𝜃

𝑑𝜃

(𝑐𝑜𝑠𝜙 − 𝑐𝑜𝑠𝜃)

𝜋

0

 

= 𝑈 ∮ ∑
𝑟�̅�𝑟𝑐𝑜𝑠𝑟𝜃

(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜙)
𝑑𝜃

𝑟=1

𝜋

0

 

                           = 𝜋𝑈 ∑ 𝑟�̅�𝑟
𝑠𝑖𝑛𝑟𝜙

𝑠𝑖𝑛𝜙𝑟=1                           (22) 

Inserting equations. (21) and (22) into eq . (19) , dividing 

by 𝑈𝑙 and rearranging , we obtain the algebraic equality [7]: 

        
𝑎0𝑐

2𝑙
∝= ∑ �̅�𝑟 [𝑠𝑖𝑛𝑟𝜙 +

𝑎0𝑐

8𝑙

𝑟𝑠𝑖𝑛𝑟𝜙

𝑠𝑖𝑛𝜙
]𝑟=1                    (23) 

G.  Difference between the symmetrical and anti-

symmetrical divergence modes according to Lifting Line 

theory 

In eq(23), The sine of an odd multiple of 𝜙 makes a 

contribution to the spanwise lift distribution which is 

symmetrical about mid-span , whereas even multiples are 

antisymmetrical. Hence ∝ may be divided into portions 

∝𝑠 and ∝𝑎  , the former equaling the sum of odd terms on the 

right of Eq . (23), the latter equaling the sum of even terms. It 

is customary to solve the two equations thus obtained 

separately for the constants �̅�𝑟
𝑠  and �̅�𝑟

𝑎, by requiring them to 

be satisfied identically at a number of stations along the wing 

semispan equal to the number of constants needed for 

adequate convergence in Eq. (21) . In most aeroelastic 

problems, convenience dictates that these should be the same 

stations for which structural stiffness properties are known, 

so that aerodynamic and elastic equations can be combined 

straightforwardly [7]. 

In matrix notation, the symmetrical part of eq (23) for such 

a series of stations is: 
1

2𝑙
[𝑎0𝑐]{∝

𝑠} = [𝑠𝑖𝑛𝑟𝜙]{�̅�𝑟
𝑠} +

1

8𝑙
[

𝑎0𝑐

𝑠𝑖𝑛𝜙
] [𝑟𝑠𝑖𝑛𝑟𝜙]{�̅�𝑟

𝑠}   

(24) 

At each of these stations (or at any other station of interest) 

the local sectional lift is 

                               ρUГ = 0.5ρ𝑈2𝑐𝑐𝑙                          (25) 

therefore eq(21) leads to 

                       𝑐(𝑦)𝑐𝑙(𝑦) = 2𝑙 ∑ �̅�𝑟𝑟=1  𝑠𝑖𝑛𝑟𝜙             (26) 

Or in matrix form for the symmetrical case, 

                          {𝑐𝑐𝑙
𝑠} = 2𝑙[𝑠𝑖𝑛𝑟𝜙]{�̅�𝑟

𝑠}                     (27) 

An aerodynamic matrix relating lift coefficient and angle 

of attack is derived by eliminating �̅�𝑟
𝑠  between (27) and (24) 

1

2𝑙
[𝑎0𝑐]{∝

𝑠} =
1

2𝑙
([𝑠𝑖𝑛𝑟𝜙] +

1

8𝑙
[

𝑎0𝑐

𝑠𝑖𝑛𝜙
] [𝑟𝑠𝑖𝑛𝑟𝜙]) [𝑠𝑖𝑛𝑟𝜙]−1{𝑐𝑐𝑙

𝑠}                                 (28) 

After cancelling and multiplying by [
1

𝑎0𝑐
], we obtain  

{∝𝑠} = ([
1

𝑎0𝑐
] +

1

8𝑙
[

1

𝑠𝑖𝑛𝜙
] [𝑟𝑠𝑖𝑛𝑟𝜙][𝑠𝑖𝑛𝑟𝜙]−1) {𝑐𝑐𝑙

𝑠} =

                                                 [𝐴𝑠]{𝑐𝑐𝑙
𝑠}                               (29) 

The aerodynamic matrix in symmetrical case [𝐴𝑠] is quite 

analogous to the more exact relations between local slope and 

wing loading, except that the present simpler type of wing 

undergoes no chordwise deformation and leads to a one- 

rather than a two-dimensional model. The aerodynamic 

matrix in anti-symmetrical case [𝐴𝑎] has a form identical to 

[𝐴𝑠], except that even rather than odd values of r are involved 

and no terms need to be included for the mid-span station, 

where ∝𝑎 = 𝑐𝑙
𝑎 = 0 [7]. When the semispan is divided into n 

intervals, the sine matrices in Eq.  (29) are illustrated later in 

part V Section E. 

H.  Matrix-solution accounting for aerodynamic span 

effects. 
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When aerodynamic span effects are taken into 

consideration, the divergence speed can be found from the 

lowest eigenvalue of the homogenous integral equation 

formed from eqs (16) and (14): 

           𝛩[𝑐𝑐𝑙
𝑒(𝑦)] = 𝑞𝑑 ∫ 𝐶𝜃𝜃𝑙

0
(𝑦, 𝜂)𝑒𝑐𝑐𝑙

𝑒𝑑𝜂               (30) 

When induction effects are taken into account according to 

Prandtl’s lifting line theory, the functional relation   

𝛩[𝑐𝑐𝑙
𝑒(𝑦)]   can be derived from the following equation 

              Г(𝑦) = 𝑎0𝑈
𝑐

2
[∝ (𝑦) − 

1

4𝜋𝑈
∮

𝑑Г

𝑑𝜂

𝑑𝜂

𝑦−𝜂

𝑙

−𝑙
]             (31)  

Introducing 𝑐𝑐𝑙 = 2Г/U and transposing yields 

∝ (𝑦) = 𝛩[𝑐𝑐𝑙
𝑒(𝑦)] =

𝑐𝑐𝑙
𝑒(𝑦)

𝑎0𝑐
+

1

8𝜋
∮

𝑑

𝑑𝜂
(𝑐𝑐𝑙

𝑒) 
𝑑𝜂

𝑦−𝜂

𝑙

−𝑙
      (32) 

Combining eqs (30) and (32), 

𝑐𝑐𝑙
𝑒(𝑦)

𝑎0𝑐
+

1

8𝜋
∮

𝑑

𝑑𝜂
(𝑐𝑐𝑙

𝑒) 
𝑑𝜂

𝑦−𝜂

𝑙

−𝑙
= 𝑞𝑑 ∫ 𝐶𝜃𝜃𝑙

0
(𝑦, 𝜂)𝑒𝑐𝑐𝑙

𝑒𝑑𝜂   

(33) 

where the local lift coefficient slope a0 has been assumed 

constant. Equation (33) is satisfied by an infinite set of 

eigenvalues 𝑞𝑗 ; and eigenfunctions (𝑐𝑐𝑙
𝑒) j. in this case, the 

influence of finite span on aerodynamic forces is included. 

The lowest eigenvalue, 𝑞𝐷, is the dynamic pressure corre- 

sponding to torsional divergence. The eigenfunctions of Eq. 

(33) may be either even or odd in y, depending on whether 

the associated distribution of wing twist is symmetrical or 

antisymmetrical; these functions correspond, in general, to 

different divergence speeds [7]. The process of solving Eq. 

(33) requires considering the symmetrical and anti-symetrical 

solutions separately. The former is designated by (𝑐𝑐𝑙
𝑒𝑠) and 

the latter by (𝑐𝑐𝑙
𝑒𝑎). Since the most general (𝑐𝑐𝑙

𝑒) can be 

represented as the sum of (𝑐𝑐𝑙
𝑒𝑠) and (𝑐𝑐𝑙

𝑒𝑎) , this sum can be 

substituted into Eq . (33) and the result separated into two 

independent parts. When approximation formulas are used to 

evaluate the integrals, one obtains the following matrix 

equations: 

                          [𝐴𝑠]{𝑐𝑐𝑙
𝑒𝑠} = 𝑞𝑑[𝐸]{𝑐𝑐𝑙

𝑒𝑠}                  (34) 

                               [𝐴𝑎]{𝑐𝑐𝑙
𝑒𝑎} = 𝑞𝑑[𝐸]{𝑐𝑐𝑙

𝑒𝑎}                 (35) 

                           [𝐸] = [𝐶𝜃𝜃]𝑑𝑖𝑎𝑔[𝑒]𝑑𝑖𝑎𝑔[�̅�]           (36) 

The aerodynamic matrices [𝐴𝑠] and [𝐴𝑎],which represent, 

respectively, the symmetrical and antisymmetrical relations 

between 𝑐𝑐𝑙(𝑦)and α(y) , are constructed from Eq (33) . An 

explicit expression for [𝐴 𝑠] is given by Eq . (29) .  

When [𝐴 𝑠] is substituted into Eq . (34) , multiplication by 

[𝐴 𝑠] −1 produces a form suitable for matrix iteration to 

determine the symmetric divergence modes. A similar 

iteration of Eq. (35) results in the anti- symmetric modes. In 

each case , the mode corresponding to the lowest value of 

dynamic pressure 𝑞 , which is the one obtained without 

sweeping , is the one of greatest practical interest [7]. 

 

 

 

 

IV. THE GEOMETRY OF THE WING UNDER 

INVESTIGATION 

Because the wing in consideration is tapered, the chord 

changes over the wing span [1].

Fig. 5. Wing Multhopp’s stations of the case study [1] 

 

All dimensions are in meter. 

The wing root chord length, Cr = 5.588 m 

The wing tip chord length, Ct = 2.794 m 

The wing semi span,  𝑙 = 12.7 m 

Aerodynamic center = 25 % chord. 

Elastic axis = 35 % chord. 

From relation: 

 ∅𝑖 =
180°

𝑛+1
  , Assume incompressible flow using lifting line 

theory (use Multhopp stations with 𝑛 = 7), So for 

symmetrical case: 

∅1 = 22.5°, ∅2 = 45°, ∅3 = 67.5°, ∅4 = 90° 

At any span length, 𝑦𝑖  =  𝑙 ×  𝑐𝑜𝑠𝜙 

Then: 

Point 4 at zero from wing root. 

Point 3 at 4.8601 m from wing root. 

Point 2 at 8.9803 m from wing root. 

Point 1 at 11.7333 m from wing root. 

 

V. NUMERICAL SOLUTION OF SYMMETRICAL 

DIVERGENCE MODES OF THE WING 

In this paper, the case study is symmetrical divergence 

modes. Equation (33), which governs the calculation of 

unswept-tapered wing's divergence speed, has been 

formulated and is provided in matrices form. 

A.  Torsional Influence Coefficient Matrix: Numerical 

Computation. 

The matrix of torsional coefficients has been calculated 

from (2) and (3) as follow: 
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𝐶𝜃𝜃 = ∫ (
1

𝐺𝑗(𝑦)
) × 𝑑𝑦

𝑦𝑖

0

 

Assume torsional rigidity varies as: 

𝐺𝑗(𝑦) = 71.745 × 106(1 − 0.0394𝑦𝑖)
4 𝑁.  𝑚2/𝑟𝑎𝑑  

𝐶𝜃𝜃 = ∫ (
1

71.745 × 106(1 − 0.0394𝑦𝑖)
4
) 𝑑𝑦

𝑦𝑖

0

 

Therefore,  

Flexibility influence coefficients matrix calculated as 

follows: 

[𝐶𝜃𝜃] = [

0.6396    0.3188    0.1052         0
0.3188    0.3188    0.1052         0
 0.1052    0.1052    0.1052         0
    0           0              0                     0

] ×

10−6𝑟𝑎𝑑/𝑁.𝑚                                                                  (37) 

B. Calculation of the matrix for the wing chord 

Fig. 6. Geometry of the wing half span platform [1]. 

 

Be wing chord at any span 𝑦𝑖  to be calculated using the 

subsequent relationships based on triangle similarity: 

 

𝐶𝑖

𝐶𝑟

=
𝑦 − 𝑦𝑖

𝑦
 

                        𝐶𝑖 = 𝐶𝑟 (
𝑦−𝑦𝑖

𝑦
) = 𝐶𝑟 (1 −

𝑦𝑖

𝑦
)               (38) 

If the previous values in fig.6 are substituted, the 

following will result: 

                  𝐶(y) = 5.588(1 − 0.0394𝑦𝑖) 𝑚                   (39)  

The following diagonal matrix is obtained by calculating 

the chord 𝐶𝑖 at stations 1, 2, 3, and 4, then making the results 

into a matrix: 

𝐶(𝑦1) = 5.588(1 − 0.0394 × 11.7333)   =  3.0067 𝑚 

𝐶(𝑦2) = 5.588(1 − 0.0394 × 8.9803)   =  3.6123 𝑚 

𝐶(𝑦3) = 5.588(1 − 0.0394 × 4.8601)   =  4.5188 𝑚 

𝐶(𝑦4) = 5.588(1 − 0.0394 × 0)   =  5.5880 𝑚 

[𝑐] = [

3.0067       0           0             0

0            3.6123      0             0

0                 0        4.5188      0
0                 0           0       5.5880

]  𝑚 

C. Eccentricity calculation 

The aerodynamic center (A.C.) of the wing is considered 

to be one-quarter of the chord taken from the leading edge 

(0.25×chord, C), and (E.A.) located at 0.35C computed from 

the leading edge. 

 

 
Fig .7. Section of an airfoil illustrating the 

aerodynamic and shear centers [1]. 

 

The eccentricity, 𝑒 =  0.35C −  0.25C = 0.1C, which is 

the distance among the elastic axis and aerodynamic center. 

Because the chord c varies or changes for different parts of 

the wing, e varies as well. 

 Therefore,  

                                    𝑒𝑖 = 0.1 × 𝐶𝑖                            (40) 

e(𝑐1) = 0.1 × 3.0067 =  0.3007 

e(𝑐2) = 0.1 × 3.6123 = 0.3612 

e(𝑐3) = 0.1 × 4.5188 = 0.4519 

e(𝑐4) = 0.1 × 5.5880 =  0.5588 

That results as diagonal matrix as follows:    

                

[𝑒] = [

0.3007     0          0                  0

0       0.3612        0                  0

0             0           0.4519         0

0             0           0         0.5588

] 

D. Multhopp's quadratic approach 

Multhopp's approximate quadrature is useful when 

dealing with functions derived from lifting line theory. 

utilizing the techniques and formula for a wing semi span 𝑙 = 

𝑏/2 to a symmetrical lift distribution problem yields the 

diagonal matrix of weighting values [7]. As follow, 

The weighted factors matrix for symmetrical case is given 

by: 

   [w̅(∅)]

=
π × 𝑙

n + 1
× 𝑑𝑖𝑎𝑔(sin(∅1) , sin(∅2) , sin(∅3) , (1 2)⁄ sin(∅4)) 

[�̅�] =
𝜋𝑙

8

[
 
 
 
 

  

𝑠𝑖𝑛∅1     0        0            0         
 0       𝑠𝑖𝑛∅2      0            0          
0           0      𝑠𝑖𝑛∅3        0         

0             0         0       
1

2
𝑠𝑖𝑛∅4 

   ]
 
 
 
 

                (41) 

[�̅�] = [

1.9085   0               0                      0

0              3.5265    0                      0

0              0              4.6076            0

0              0               0           2.4936

] 

E. Calculate Symmetrical divergence speed of the wing 

using aerodynamic lifting line theory. 

Symmetrical divergence speed according to lifting line 

theory is computed from (34): 

[𝐴𝑠]{𝑐𝑐𝑙
𝑒𝑠} = 𝑞𝑑[𝐸]{𝑐𝑐𝑙

𝑒𝑠} 

The following results is obtained by multiplying the  
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respective matrix values based on (36), which is: 

[E] = [Cθθ]𝑑𝑖𝑎𝑔[𝑒]𝑑𝑖𝑎𝑔[W̅]. 

 

[𝐸] = [

0.3670     0.4061     0.2189       0

0.1829     0.4061     0.2189       0

0.0603     0.1340     0.2189       0

0                0                0            0

] × 10−6 

the [𝐴𝑠] matrix drives from eq (29) and is given by: 

                [AS] = diag [
1

a0c
] +

1

8𝑙
[∅S]                           (42) 

[∅𝑠]=diag[
1

𝑠𝑖𝑛∅𝑖
] × [n×sin(n× ∅𝑖)][𝑠𝑖𝑛(𝑛 × ∅𝑖)]

−1     (43) 

[ϕs]

= [

 2.6131 0 0 0
0 1.4142 0 0
0 0  1.0824 0
0 0 0 1

]

× [

 0.3827  2.7716 4.6194 2.6788
 0.7071 2.1213 −3.5355 −4.9497
 0.9239 −1.1481 −1.9134 6.4672

1 −3 5 −7

]

× [

0.3827 0.9239 0.9239 0.3827
0.7071 0.7071  −0.7071 −0.7071
0.9239 −0.3827 −0.3827 0.9239

1 −1 1 −1

]

−1

 

 

[𝜙𝑠] = [

10.4525   -3.8284   0.0000   -0.2929

 -2.0719    5.6569   -2.3890   -0.0000

 -0.0000   -1.8284    4.3296   -1.7071

 -0.2242    0.0000   -3.1543    4.0000

] 

 

[𝐴𝑠] = [

0.0605  0       0         0

   0     0.0503   0         0

   0         0   0.0402    0

   0         0       0    0.0325

] + (
1

8 × 12.7
)

× [

10.4525   -3.8284    0.0000   -0.2929

 -2.0719    5.6569    -2.3890   -0.0000

  -0.0000   -1.8284    4.3296   -1.7071

 -0.2242    0.0000    -3.1543    4.0000

] 

 

[𝐴𝑠] = [

0.1634       -0.0377       0.0000      -0.0029

-0.0204      0.1060       -0.0235      -0.0000

-0.0000    -0.0180         0.0828       -0.0168

-0.0022      0.0000        -0.0310        0.0719

] 

The matrix to be iterated derives from eq (34) as follow: 

[𝑐𝑐𝑙
𝑒𝑠] = 𝑞[𝐴𝑠]−1 × [𝐸][𝑐𝑐𝑙

𝑒𝑠] 

Where: 

[𝑃] = [𝐴𝑠]−1 × [𝐸] 

[𝑃] = [

  0.2858    0.3716    0.2130         0

 0.2594    0.5220    0.3294          0

  0.1435    0.3040    0.3695         0

 0.0707    0.1427    0.1661          0

] × 10−5 

                             
1

𝑞
[𝑐𝑐𝑙

𝑒𝑠] = [𝑃][𝑐𝑐𝑙
𝑒𝑠]                         (44) 

When we apply matrix iteration (𝑞 → 𝑞𝐷). 

100

𝑞𝐷

[𝑐𝑐𝑙
𝑒𝑠] = 100 × [𝑃][𝑐𝑐𝑙

𝑒𝑠] 

𝜆 =
100

𝑞𝐷

 

                         𝜆[𝑐𝑐𝑙
𝑒𝑠] = 100 × [𝑃][𝑐𝑐𝑙

𝑒𝑠]                  (45) 

Applying matrix iteration to eq (45) and assume firstly: 

[𝑐𝑐𝑙
𝑒𝑠] = {

1
.
.
1

} 

Finally gives the following after complete iteration: 

 

                       𝜆 =  9.5692 × 10−4 [

 0.7781

 1.0000

  0.7076

  0.3294

]              (46) 

Symmetrical mode shape are given by the column matrix 

in (46), and the divergence speed is obtained from (47) as 

follows: 

                                            𝑣𝑑 = √
2×𝑞𝑑

ρ
                       (47) 

Where,  𝜆 = 9.5692 × 10−4 

Then, 𝑞𝑑 =
100

9.5692×10−4 =  1.0450 × 105 

  

For the case of flight at sea level  ρ = 1.225 kg/m3  

𝑣𝑑 = √
2 × 1.0450 × 105

1.225
 

𝑣𝑑 =  413.0558 𝑚/𝑠𝑒𝑐. 

 

CONCLUSIONS  

       Aerodynamic span effects are taken into consideration 

throughout this research to determine the symmetrical 

divergence speed of unswept-tapered wing according to 

lifting line theory from the lowest eigenvalue of the 

governing integral equation (33). The lowest eigenvalue, 𝑞𝐷, 

is the dynamic pressure corresponding to torsional 

divergence. In this study, The eigenfunctions of Eq. (33) were 

odd in y. So, the attained distribution associated with the wing 

twist is symmetric. 

In short, the Ordinates to the symmetrical distribution of 

the wing spanwise twist at the divergence speed are given by 

the column matrix of eq (46), and the divergence speed is 

obtained from (47). Symmetrical divergence speed of the 

wing has been found in this work for the case of flight at sea 

level.  

The outcome obtained from the similar case study 

presented in reference [7] supported the results attained in 

this paper. In comparing the attained result with reference [7], 

we see that when lifting - line theory results (symmetric and 

antisymmetric) are compared, the antisymmetric divergence 

speed is higher than the symmetric. This is generally true for 

straight wings. the antisymmetric divergence speed in this 

case study is 430.3905 m/sec after replace an odd multiple of 

𝜙 in eq (23) by even values. 

The study's findings are required for the construction of high-

performance aircrafts and might also be used for static 

aeroelastic analysis of aircraft wings. 
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APPENDIX 

A. Calculation symmetrical divergence speed using 

aerodynamic lifting line theory. 

clc 

clear all 

% symmetric 

phi = [(pi/8) (2*pi/8) (3*pi/8) (4*pi/8)] 

A = eye(4) 

A(1,1)=1/sin(phi(1)); 

A(2,2)=1/sin(phi(2)); 

A(3,3)=1/sin(phi(3)); 

A(4,4)=1/sin(phi(4)); 

disp(A) 

B = [sin(phi(1)) 3*sin(3*phi(1)) 5*sin(5*phi(1)) 

7*sin(7*phi(1));sin(phi(2)) 3*sin(3*phi(2)) 5*sin(5*phi(2)) 

7*sin(7*phi(2));sin(phi(3)) 3*sin(3*phi(3)) 5*sin(5*phi(3)) 

7*sin(7*phi(3));sin(phi(4)) 3*sin(3*phi(4)) 5*sin(5*phi(4)) 

7*sin(7*phi(4))] 

C2 = [B(:,1)  B(:,2)/3  B(:,3)/5 B(:,4)/7] 

Geo = A*B*inv(C2) 

y = 12.7*cos(phi) 

c=5.588*([1 1 1 1]-(y/25.40)) 

e=0.1*c 

W=(pi*12.7/8)*eye(4)*[sin(phi(1)) sin(phi(2)) sin(phi(3)) 

0.5*sin(phi(4))]' 

diag(W) 

CC = [6.3956 3.1880 1.0515 0;3.1880 3.1880 1.0515 

0;1.0515 1.0515 1.0515 0;0 0 0 0]*10^-7 

EE=CC*diag(e)*diag(W) 

D = [(1/(5.5*c(1))) (1/(5.5*c(2)))  (1/(5.5*c(3)))  

(1/(5.5*c(4)))] 

Aero = diag(D)+(1/8/12.7)*Geo 

P=inv(Aero)*EE 

Ccl1=[1 1 1 1]' 

for i=1:15 

lamdaCcl= 100*P*Ccl1 

lamda = max(lamdaCcl) 

Ccl1=lamdaCcl/lamda 

end 

lamda 

Ccl1 

qD=100/lamda 

VD=sqrt(2*qD/1.225)   
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