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ABSTRACT: To address the issue of low detection accuracy of prohibited items in X-ray security images caused by varying 

orientations, different scales, and the intertwining of targets with backgrounds, we propose a novel X-ray image detection algorithm 

based on feature enhancement and loss optimization. The model is built upon the ConvNext network and incorporates a Directional 

Channel Attention (DCA) mechanism, which efficiently captures the interaction information of local channels in different directions, 

thereby enhancing the accuracy of the detection model for prohibited items. Additionally, a multi-scale fusion bypass (MFB) branch 

is designed after the backbone network to integrate information from feature maps at different layers, thereby mitigating the 

interference of scale variations on the model. Furthermore, the loss function is redesigned to enable the model to automatically 

adjust its focus on hard samples, improving the overall detection performance. Experimental results on the SIXray dataset 

demonstrate that the proposed model achieves a mean Average Precision (mAP) of 91.43%, representing a 9.17% improvement 

over the original algorithm, thereby validating the effectiveness of the proposed method. 
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1.         INTRODUCTION  

Security screening is widely used in key public areas 

such as subways, trains, and airports, serving as a primary 

method to ensure public safety[1]. Currently, security checks 

primarily rely on manual inspection[2]. However, as public 

transportation systems continue to improve and the number 

of passengers increases annually, especially during peak 

travel periods, the complexity of items in luggage may lead 

to errors and omissions by security personnel[3]. Therefore, 

achieving accurate and rapid automatic identification of 

prohibited items has become critically important in security 

screening[4]. 

With the rapid development of deep learning in object 

detection, convolutional neural networks (CNNs) have been 

actively applied to X-ray prohibited item recognition[5]. For 

example, Miao et al.[6] proposed the ResNet-CHR model 

based on the ResNet[7] network, designing three branches to 

extract features at different scales, thereby enhancing 

detection performance under severe occlusion conditions. 

Wei et al.[8] introduced a De-Occlusion Attention Module 

(DOAM), inspired by the varying imaging colors of X-rays 

across different materials; this module focuses on the edge 

and material information of prohibited items, generating 

high-quality feature maps for detection. Shaoqing Yao et al.[9] 

designed asymmetric convolution and dilated convolution 

modules in both deep and shallow feature layers to reduce 

misclassification and improve segmentation accuracy. Xia 

Feng et al.[10] proposed an X-ray security image 

classification method to address sample imbalance, using the 

ResNet101 residual network as a baseline and introducing a 

cost-sensitive factor into the loss function, effectively 

mitigating the issue of sample imbalance for prohibited items. 

Yang Cao et al.[11] tackled the challenges of scale variation 

and occlusion in prohibited item detection by incorporating 

deformable convolutions and attention mechanisms, thereby 

improving the model’s detection accuracy. Jinhao Yuan et 

al.[12] employed large-kernel attention to extract low-level 

features of images and introduced the CBAM attention 

module into the backbone network to enhance information in 

regions of interest, further boosting the model’s detection 

accuracy. While these algorithms have improved the 

detection performance of prohibited items to some extent, 

challenges remain in real-world security scenarios due to the 

complex backgrounds, significant scale variations, and 

uneven distribution of feature information in X-ray security 

images, which continue to limit the accuracy of these methods. 

To address the aforementioned challenges, this paper 

optimizes the ConvNext[13] network as the baseline. The 

main contributions are as follows: 

a) Design of the Directional Channel Attention (DCA) 

Mechanism: This attention mechanism is designed to 

enhance the network's focus on channels in different 

directions within prohibited item images, effectively 

suppressing irrelevant information and extracting the 

underlying features of prohibited items. 

b) Introduction of a Multi-Scale Fusion Bypass Branch 

(MFB): By incorporating this bypass branch, the 

model can fully leverage the semantic information 
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from different feature layers, thereby improving its 

adaptability to variations in object scale. 

c) Development of the GF Loss Function: Based on the 

Focal Loss[14] function, the GF Loss function 

increases the weight of hard samples in the loss 

calculation while dynamically adjusting the model’s 

attention to these difficult samples. 

 

2.      MODEL OPTIMIZATION 

To address the issue of low detection accuracy for 

prohibited items, this paper uses the ConvNext model as the 

baseline. First, a Directional Channel Attention (DCA) 

mechanism is added at the end of each ConvNext Block in the 

final stage of the backbone, enhancing the model's ability to 

perceive critical features of prohibited items. Additionally, a 

Multi-Scale Fusion Bypass (MFB) branch is introduced to 

improve the model's sensitivity to prohibited items of varying 

scales. Finally, the Cross-Entropy (CE) loss function is 

replaced with the GF Loss function to enhance the model's 

convergence speed and detection accuracy. The structure of 

the optimized ConvNext network is illustrated in Figure 1

. 

 

Fig.1  Optimized ConvNext structure diagram

2.1  Directional Channel Attention Mechanism 

In the field of computer vision, attention mechanisms 

learn weight distributions that allow networks to dynamically 

adjust the importance of different feature channels, aiding in 

the extraction of relevant information. Hu et al.[15] 

introduced the Squeeze-and-Excitation Networks (SE-Net), 

which applies two-dimensional global average pooling to 

aggregate features and then performs adaptive dimensionality 

reduction to capture channel dependencies. However, SE-Net 

does not fully consider the information between channels in 

different directions. Subsequently, Hou et al.[16] proposed 

the Coordinate Attention Network (CA-Net), which 

incorporates directional information into the channel 

attention framework. CA-Net uses two-dimensional 

convolutions to concatenate and then separate channels in 

horizontal and vertical directions. While this approach 

reorganizes channels, it does not adequately capture 

dependencies between local channels across different 

directions. 

To comprehensively capture the interaction and 

dependencies between channels in various directions for 

prohibited items, this paper designs the Directional Channel 

Attention (DCA) mechanism. The structure of the DCA 

mechanism is illustrated in Figure 2
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Fig.2 DCA attention mechanism 

 

Traditional channel attention mechanisms use two-

dimensional global average pooling to obtain channel 

features, which may lead to the neglect of some important 

information. In contrast, the Directional Channel Attention 

(DCA) mechanism performs global average pooling along 

both the width and height directions of the input feature map 
C H WD R   , extracting aggregated features in each direction 

for the prohibited item images. The feature expression is 

given as follows: 
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In Equation (1), ( )h

cD h represents the output of the c

channel with a height of h , while W denotes the width of the 

input U . 

In Equation (2), ( )w

cD w  represents the output of the c

channel with a width of w , and H  denotes the height of the 

inputU . 

Next, to reduce the number of parameters in the model, 

a 1×1 convolution function 1f is used to decrease the number 

of channels to /C r  of the original amount. Subsequently, 

dimensionality reduction is applied along both the width and 

height, resulting in matrices /( ) C r HD h R  and  

/( ) C r WD w R   that capture channel information in different 

directions, as shown in Equations (3) and (4). 

1 1( ) ( ( ))h

sD h F f D  (3) 

2 1( ) ( ( ))w

sD w F f D  (4) 

 

In the equations, 
1sF  and 

2sF  represent the results of 

dimensionality reduction along the width and height, 

respectively. 

To efficiently capture the feature dependencies between 

channel dimensions in different directions and facilitate local 

cross-channel information interaction, this paper employs 

one-dimensional convolution to obtain channel weights for 

prohibited item image features along the height and width. 

Subsequently, an expansion operation is performed to restore 

the dimensions. The specific computations are detailed in 

Equations (5) and (6). 

1

1( ) ( ( ( )))K

eB h F CD D h  (5) 

 
2

2( ) ( ( ( )))K
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In the equations, 1eF  and 2eF  represent the expansion 

operations applied along the width and height, respectively. 

CD  denotes the one-dimensional convolution, while 1K  

and 2K  are the corresponding adaptive convolution kernels.  

Simultaneously, 1eF  and 2eF  undergo batch 

normalization and ReLU activation to accelerate network 

convergence and enhance the model's generalization 

capability. Following this, a 1×1 convolution function 

2f  is applied to restore the number of channels. After 

applying the sigmoid activation function, the channel 

attention weights for the feature map H are obtained as 
1( ) C HP h R   , and for the width dimension W are obtained 

as 1( ) C WP w R   . The expressions for these weights are 

given in Equations (7) and (8). 

( ) ( ( ( ( ))))P h bn B h   (7) 

( ) ( ( ( ( ))))P w bn B w   (8) 
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In the equations, bn  represents batch normalization,   

denotes the ReLU activation function, and   refers to the 

sigmoid activation function. 

Finally, the feature maps 1( ) C HP h R   , 1( ) C WP w R   , 

and 
C H WD R    are multiplied element-wise with the input 

feature map to capture semantic information in different 

directions and assign distinct weights to each feature channel. 

The final result is given by Equation (9). 

 ( ) ( )outD D P h P w    (9) 

The DCA attention mechanism increases the channel 

weights associated with prohibited item features, further 

enhancing the model's ability to extract features from images 

with complex backgrounds. 

2.2 Multi-scale Fusion Bypass Branch 

In security inspection images, the placement of 

prohibited items often results in significant variations in 

object scale. The same type of prohibited item may appear in 

different sizes and styles within the images. The ConvNext 

backbone network has certain limitations when handling 

scenarios with such scale variability, primarily due to the 

repeated stacking of blocks and downsampling operations. 

While stacking multiple blocks can enhance the model's 

feature extraction capability, it also restricts the receptive 

field of neurons, making it difficult for the network to 

effectively capture contextual information. Additionally, 

downsampling reduces the size of the feature maps, which in 

turn diminishes the network's ability to process fine details 

when learning and recognizing features. 

To improve the model's ability to recognize objects with 

varying scales, this paper introduces a Multi-scale Fusion 

Bypass Branch (MFB) to fully leverage the information 

across different feature layers. As illustrated in Figure 3

 
Fig.3  Multi-scale fusion bypass branch 

 

 First, the output of the ConvNext backbone network is 

upsampled using bilinear interpolation, followed by a 1×1 

convolution to match the output of the feature layers.  

Subsequently, adjacent feature layers are fused using an 

addition (add) operation rather than concatenation (concat), 

which increases the feature information without altering the  

Dimensionality, thereby saving computational resources. 

However, since some information is shared between the high- 

and low-level feature maps, additive fusion can lead to 

redundant information. To address this issue, a DPBS module, 

comprising depthwise convolution, pointwise convolution, 

batch normalization, and the SILU activation function, is 

introduced. In pointwise convolution, each kernel interacts 

only with a single channel without influencing others, which 

helps to reduce feature overlap, while depthwise convolution 

lowers the resolution, preserving essential feature 

information. The inclusion of the DPBS module not only 

eliminates the overlapping effect resulting from feature 

fusion but also enhances the model's nonlinear representation 

capabilities. 

The global features from the higher layers are 

propagated to the lower layers through upsampling and 

combined with local features, resulting in a fused feature map 

that contains multi-scale information. By merging local and 

global features, the MFB effectively captures a more 

comprehensive range of scale variations in prohibited items, 

thereby mitigating the impact of scale differences on the 

model's detection accuracy. 
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2.3 Loss Function Improvement 

The Focal Loss (FL) function, compared to the 

traditional Cross Entropy (CE) loss function, introduces a 

modulation factor   to increase the weight of hard-to-

classify samples in the loss function, thereby improving the 

model's detection performance on these difficult samples, as 

shown in Equations (10) and (11). 

(1 ) log( )t t tFL p p    (10) 
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In these equations, 
t  represents the balancing factor, 

  is the modulation factor, p  denotes the predicted value, 

and y  is the true label. 

Figure 4 illustrates the changes in average precision (AP) 

for five types of prohibited items over 300 iterations when 

using the FL function with the baseline ConvNext network

. 

 
Fig.4 Contraband detection accuracy change curve 

 

As observed in Figure 4, the overall AP value for the 

wrench is relatively low. However, as the number of 

iterations increases, the AP value for the wrench gradually 

stabilizes, indicating that the model's ability to extract 

features from this difficult sample has improved. At this point, 

maintaining a constant   could cause the model to overly 

focus on the originally difficult samples, reducing its 

attention to other samples and thereby affecting overall 

detection accuracy. To address this issue, we propose the GF 

Loss function, which builds upon the Focal Loss function, as 

shown in Equations (12) and (13). 

 (1 ) log( )t t tGF p p    (12) 

 

epoch

epochse 


   (13) 

In these equations, epoch  represents the current training 

epoch, and epochs denotes the total number of training 

epochs. 

By designing a novel modulation factor  , the impact of 

previously difficult samples on the loss can be dynamically 

reduced, thereby enhancing the model's ability to 

comprehensively recognize prohibited items. 

 

 

 

 

 

3. EXPERIMENTIAL RESULTS AND ANALYSIS 

3.1 Experimental environment and dataset 

The experiments were conducted on an Ubuntu 20.04 

system, using Python 3.8. The hardware utilized includes an 

Intel Core i7-8700K @ 3.7 GHz six-core CPU, 16 GB of 

RAM, and an NVIDIA GeForce RTX 2080 GPU with 8 GB 

of VRAM. The batch size was set to 8, and the AdamW 

optimizer was used with an initial learning rate of 5×10−4. The 

number of epochs was set to 300. 

The experiments utilized the SIXray and OPIXray 

datasets for validation. The SIXray dataset comprises 8,929 

images of prohibited items, including guns, knives, wrenches, 

pliers, and scissors, with sample images shown in Figure 5. 

To enhance data diversity, data augmentation techniques such 

as random cropping, rotation, flipping, translation, and 

brightness adjustment were applied to these five categories of 

prohibited items. Finally, the augmented images were 

randomly divided into training and testing sets in an 8:2 ratio. 

The OPIXray dataset, generated using software, 

contains 8,885 X-ray images of prohibited items, including 

five types of knives: folding knives, straight knives, scissors, 

utility knives, and multi-tools. In the experiments, the dataset 

was divided into training and testing sets, with the training set 

comprising 80% of the images (7,109 images) and the testing 

set comprising 20% (1,776 images). 

All experiments were conducted using the SIXray 

dataset, with the SIXray and OPIXray datasets being used 

together only for algorithm comparison experiments.
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Fig.5  Data sample example 

 

3.2 Evaluation Metrics 

This study uses the following evaluation metrics to 

comprehensively assess model performance: Detection 

Precision (AP), Mean Average Precision (mAP), the number 

of Parameters, and Floating Point Operations (FLOPs). The 

definitions of AP and mAP are given in Equations (14) and 

(15). 

 
TP

AP
TP FP




 (14) 

 1

N

ii
AP

mAP
N




 (15) 

In the equations, TP  represents the number of true 

positive samples, where the actual class is positive and the 

prediction is also positive; FP  denotes the number of false 

positive samples, where the actual class is negative but the 

prediction is positive; iAP  is the average precision for the i

class of prohibited items; and N  denotes the total number of 

prohibited item classes. 

3.3 Comparison of Attention Mechanisms 

To investigate the impact of different attention 

mechanisms on the network's ability to identify prohibited 

items, this experiment incorporated various attention 

mechanisms at the end of the ConvNext Block residual 

connections and compared them against the baseline 

ConvNext model. The detailed results are presented in Table 

1.

 

Tab.1 Comparative test of attention mechanism 

Attention Params/M FLOPs/M mAP/% 

- 28.57 4455.53 82.26 

SE 28.67 4456.20 84.70 

CBAM 28.76 4456.90 84.00 

CA 28.71 4457.11 85.11 

DCA(ours) 28.68 4456.77 86.78 

 

From the results presented in Table 1, it can be observed 

that incorporating the DCA attention mechanism led to a 4.52% 

improvement in mAP with only a minimal increase in the 

number of parameters and computational cost. Compared to 

SE, CBAM, and CA, DCA achieved the most significant 

enhancement in mAP, demonstrating its effectiveness. 

3.4 Comparison of Loss Functions 

To validate the effectiveness of the GF loss function, the 

experiment compared CE, FL, and GF loss functions using 

the ConvNext algorithm as the baseline. 

 

Tab.2 Loss function comparison experiment 

Loss function 
AP(%) 

mAP(%) 
Gun Knife Wrench Pliers Scissors 

CE  95.84 88.62 63.89 83.57 79.42 82.26 

FL  95.67 88.12 70.37 85.72 80.71 84.11 

GF  96.43 91.18 69.21 85.96 82.89 85.13 

According to the results in Table 2, the model using the 

GF loss function achieved a 2.87% and 1.02% higher mAP 

compared to the CE and FL loss functions, respectively. This 

demonstrates the effectiveness of the dynamic modulation 

factor in enhancing the accuracy of the loss function. Figure 

6 shows the loss curves for the three loss functions under the 

same experimental conditions. 
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Fig.6  Loss decline curve 

 

From Figure 6, it can be observed that the model using 

the GF loss function demonstrates superior performance in 

both convergence speed and loss value compared to the CE 

and FL loss functions, further validating the advantages of the 

GF loss function. 

 

 

 

 

3.5  Algorithm Comparison Experiment 

To evaluate the performance of the proposed algorithm 

in prohibited item detection, this study compares it with 

several state-of-the-art algorithms. 

To ensure fairness in the experiments, all algorithms 

were trained under the same experimental conditions, using 

the same datasets and data augmentation techniques as those 

employed for the proposed algorithm. Detailed comparison 

results are presented in Tables 3 and 4

. 

Tab.3 SIXray dataset comparison experiment 

 
AP/% 

mAP/% 
Gun Knife Wrench Pliers Scissors 

CHR+ResNet101 97.56 88.73 75.26 90.40 81.77 86.74 

Swin Transformer 93.38 89.23 65.31 86.06 79.40 82.67 

DenseNet121 92.99 86.98 70.01 88.46 83.75 84.43 

Shufflenet V2 93.52 87.63 81.63 89.29 83.39 83.78 

MobileNet V3 96.04 87.96 64.92 86.64 80.19 83.15 

EfficientNet V2 97.07 87.41 70.81 84.74 81.01 84.20 

ConvNext 95.84 88.62 63.89 83.57 79.42 82.26 

ConvNext-M(ours) 98.07 94.61 82.11 93.44 88.94 91.43 

 

Tab.4 OPIXray dataset comparison experiment 

 

AP/% 

mAP/% Folding 

knife 

Straight 

knife 

Scissors Utility 

 knife 

Multi -tool 

knife 

CHR+ResNet101 58.13 86.57 77.33 60.24 85.02 73.46 

Swin Transformer 67.14 79.67 71.42 62.35 70.30 70.18 

DenseNet121 66.25 80.63 84.02 55.44 60.35 69.34 

Shufflenet V2 64.32 75.00 86.21 48.22 88.33 72.41 

MobileNet V3 71.08 86.20 76.55 56.74 72.57 72.63 

EfficientNet V2 60.43 77.04 72.51 50.36 72.21 66.51 

ConvNext 72.65 78.37 76.68 62.18 71.24 72.26 

ConvNext-M(ours) 72.42 78.36 80.23 68.29 76.17 75.21 

As shown in Table 3, the proposed ConvNext-M 

algorithm significantly improves mAP by 9.17% compared to 

the original ConvNext network. Notably, the AP for wrenches 

and pliers increased substantially by 18.22% and 9.87%, 

respectively, indicating enhanced capability in extracting key 

features of prohibited items. Compared to other algorithms, 

ConvNext-M exhibits superior mAP and performs 

exceptionally well in terms of average precision (AP) across 

all five categories of prohibited items, confirming the 

advantages of the proposed algorithm in prohibited item 

detection. 

Analysis of Table 4 reveals that the ConvNext-M 

algorithm demonstrates the best detection performance on the 

OPIXray dataset compared to other algorithms. This result 
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confirms the robust generalization capability of the proposed 

algorithm. 

3.6 Ablation experiments 

To validate the effectiveness of the three proposed 

optimizations for improving prohibited item detection, we 

conducted an ablation study using the ConvNext algorithm as 

the baseline. The optimizations were introduced 

incrementally, and the specific experimental results are 

detailed in Table 5.

 

Tab.5 Ablation experiment 

DCA MFB GF 

Loss 

Params/M mAP/% 

- - - 28.57 82.26 

 - - 28.68 86.78 

  - 30.25 86.20 

   30.36 91.43 

 

As shown in Table 5, the introduction of the DCA 

attention mechanism alone resulted in a 4.52% increase in 

mAP, with nearly no change in the number of parameters. 

When the MFB structure was added individually, the mAP 

improved by 3.94%, with a slight increase in parameters. 

After incorporating all three proposed optimizations, the 

model achieved a 9.17% increase in mAP with only a 1.79M 

increase in parameter count. This demonstrates that the 

proposed optimizations significantly enhance detection 

accuracy with a relatively modest increase in parameter 

complexity, validating their effectiveness in improving 

prohibited item detection performance. 

3.7 Prohibited Item Localization 

To validate the network's performance in prohibited item 

localization, this study employs the Grad-CAM visualization 

technique. By using a weakly supervised approach, heatmaps 

are overlaid on the original images to illustrate the network’s 

localization capabilities. Compared to traditional bounding 

box annotations, this method provides a more intuitive and 

convenient way to demonstrate the network’s localization 

performance. As shown in Figure 7, the ConvNext-M 

network, with its effective feature extraction and fusion 

strategies, exhibits superior localization results compared to 

the ConvNext network. 

 
Fig.7  Contraband location effect 

 

4. CONCLUSIONS 

This study builds upon the ConvNext model to propose 

an X-ray image prohibited item detection algorithm based on 

feature enhancement and loss optimization. By designing a 

Directional Channel Attention (DCA) mechanism, 

introducing a Multi-scale Fusion Bypass Branch (MFB), and 

optimizing the loss function, the model's detection 

capabilities for various prohibited items have been 

significantly improved. Extensive experiments demonstrate 

that the optimized model shows a marked enhancement in 

detection performance compared to the original model, 

effectively meeting the demands of real-world security 

screening scenarios. Future work will focus on achieving 

model lightweighting while maintaining performance, to 

further enhance the efficiency of the algorithm. 
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