
Engineering and Technology Journal e-ISSN: 2456-3358

Volume 09 Issue 08 August-2024, Page No.- 4753-4759

DOI: 10.47191/etj/v9i08.21, I.F. – 8.227

© 2024, ETJ

4753 Mardi Siswo Utomo 1, ETJ Volume 09 Issue 08 August 2024

Comparative Study of Source Code Complexity in PHP Web Applications:

Utilization of Commercial Code Generators and Manual Framework

Mardi Siswo Utomo1, Jati Sasongko2, Eko Nur Wahyudi3, Eddy Nurraharjo4
1,2,3,4 Dept. of Information Technology and Industry, Universitas Stikubank, Indonesia

ABSTRACT: This study examined the complexity of source code generated by commercial code generators (PHPMaker and

PHPRunner) versus code written manually using the Laravel framework and the open-source code generator CakePHP. Code

complexity is a critical metric in software development that influences maintenance, improvement, and responsiveness to changes.

This study uses an empirical analysis approach to assess code complexity using cyclomatic and relative system complexity metrics.

According to research findings, commercial code generators speed up the program writing process while producing code that is

more complex than manual code. The code's high complexity may pose challenges for future maintenance and development, as well

as increased cost and development time.

This study suggests a hybrid approach that combines the use of code generators for specific aspects with manual encoding of critical

components. This study provides valuable guidance for software developers in managing source code complexity and ensuring

effective and sustainable software development.

KEYWORDS: Code Quality, Code Complexity, Code Generator

I. INTRODUCTION

The quality of source code is determined by a variety of

factors, including its complexity. Complex code takes time to

maintain and repair, which slows down other processes and

reduces the ability to respond quickly to change [1].

Furthermore, it is becoming increasingly important to ensure

that the software produced meets high quality standards,

particularly in the case of critical applications that affect daily

life and vital infrastructure [2].

Code generators, such as PHPMaker [3] and PHPRunner

[4], help to increase efficiency by automating some of the

programming process [5]. However, there are concerns that

automatically generated source code may be of lower quality

and more complex than code written by hand. The source

code of an application becomes more difficult to understand,

modify, and maintain as it grows in size and complexity.

Complex source code can reduce developer productivity,

raise error rates, and lengthen maintenance times [6].

Code complexity is a critical code quality metric that has

direct implications for software understanding, testing, and

maintenance. This metric is useful for identifying functions

or modules that have complex control structures. This ability

is very useful for determining the level of difficulty in

entering a code [7].

The average of a system's relative complexity is another

metric for determining complexity. This concept is

commonly used by software developers to assess the

complexity or simplicity of a system, taking into account all

of its components or modules. The lower the complexity

level, the easier it is to maintain the code [7].

Several previous studies investigated codes with similar

measurement metrics but only considered complexity metrics

[8]. No study has compared code from a code generator

application to handwritten code. This study employs two

commercial generator codes, PHPMaker and PHPRunner.

Both generators will be compared to code generated by an

open-source code generator (CakePHP) [9] and a

programmer-created framework, Laravel. We chose the

fourth framework, Laravel [10], based on the user base of the

two PHP code generators.

This study aims to close the gap by conducting a thorough

analysis of the complexity of source code generated by these

two code generators versus code written manually. To

understand and evaluate the complexities of source code in

the context of applications generated by the code generator

using existing metrics, more research is required.

Furthermore, the purpose of this study is to gain a better

understanding of how the complexity of source code affects

overall software quality, as well as the implications for

software development practices. By evaluating and

comparing the complexities of code from various

development approaches, we hope to advise software

developers on when and how to use code generators to

maximize efficiency without sacrificing code quality [11].

Through this comparative analysis, we hope to make

significant contributions to existing literature and industry

https://doi.org/10.47191/etj/v9i08.21

“Comparative Study of Source Code Complexity in PHP Web Applications: Utilization of Commercial Code Generators and

Manual Framework”

4754 Mardi Siswo Utomo 1, ETJ Volume 09 Issue 08 August 2024

practices for the development of efficient and high-quality

software.

We anticipate that this research will provide better

guidance in managing the complexity of source code in code

generator-based applications. As a result, this research will

make a significant contribution to the efficient maintenance,

improvement, and development of software applications,

which are becoming increasingly important in the ever-

expanding world of IT.

II. METHOD

Using an empirical analysis methodology, this study

evaluates the source code complexity of code generator

applications. We chose this method because we needed to

have a thorough understanding of the properties of code

produced in real-world settings. This study's design includes

the following steps.

Firstly, we construct a test application, both manually and

by using three different code generators to create a basic

version of the application. The developed application uses the

PHP programming language and is web-based. We use the

popular PHP framework Laravel to manually create a PHP

application. All frameworks and generators must support

PHP version 8.2, and we must use MySQL 5 as the database

manager.

We applied the code generator's default settings to every

application. Still, we will set it up to support the foreign keys

and filters required to make the application user-friendly.

Every test application provides us with its source code data.

This data includes the complete source code of the

application, along with any necessary scripts, configurations,

and code files. A novice programmer, already familiar with

the Laravel framework, creates all the applications tested in

this process.

Measurement is the next step. To assess code quality, we

use two metrics: relative complexity [2] and cyclomatic

complexity [12]. Furthermore, we collect data on the amount

of time required to write the program. We then thoroughly

review the collected data. The findings give an overview of

the level of source code complexity in each test application.

A. Developing Test Application

A test application is a simple inventory management

application that uses authentication. We write applications

with three different code generators and manually build one.

The created application is web-based and uses the PHP

programming language. To manually create PHP

applications, we use Laravel, the most popular PHP

framework right now. All generators and frameworks must

support PHP 8.2 and MySQL 5 as their database system. All

applications will use the generator codes' default settings.

However, the configuration will still include the foreign keys

and filters required to improve the application's user-

friendliness.

A junior programmer with no professional application

experience creates the test application. However, the

programmer has a basic understanding of databases and the

Laravel framework. There are four applications that require

testing.

B. Class Diagram Test Application.

Class Diagram for inventory systems test applications can

be seen in Figure 1. Class diagram consists of several classes:

 Class Item: Stores information about items available in

inventory, Attributes include id, name, description,

category id, supplier id, quantity, purchase price, sale

price, time made, and time updated.

 Class Category: Stores information about the item

category. Attributes include id, names, descriptions, time

created, and updated times.

 Class Supplier: Storing information about suppliers of

items. Attributes including id, title, contact, e-mail,

address, time placed, and update time. Class

 Order: Store information about orders placed. Attracts

include id, supplier ID, order date, shipping date, total

amount, time generated, and updating time.

 Class OrderItem: Stores information about items ordered

in an order. Attributes include id, order id, id item,

quantity, price, time created, and time updated.

 Class User: Storing information about the system user.

Attributes include id, username, password hash, email,

role id, time made, and the time update.

 Class Role: Store information about user roles. Attributes

including id, names, descriptions, times created and

updates.

 Class Permission: Keep information about permissions

that can be granted to roles. Attributes include ID, name,

description, time of creation, and updated times.

Figure 1. Class Diagram Inventory System

 Class RolePermission: Store the relationship between

roles and permissions. Attracts include role id and

permission id.

“Comparative Study of Source Code Complexity in PHP Web Applications: Utilization of Commercial Code Generators and

Manual Framework”

4755 Mardi Siswo Utomo 1, ETJ Volume 09 Issue 08 August 2024

 Class Relationships: 1) Items have one-to-many

relationships with Categories and Suppliers, i.e. one

category or supplier can have many items. 2) OrderItem

has one- to-mute relations with Orders and Items, that is,

one order or item can have multiple order items. 3) Orders

have one - to-multiples relations with Supplier, ie. one

supplier may have many orders. 4) Users have a one-to-

many relationship with Roles, i.e. one role can have many

users. 5) Role Permission forms a multi-to - many

relationship between Roles and Permissions, that is, one

role may have many permissions, and one permission can

be granted to many roles.

C. Developing Application with PHPMaker.

PHPMaker is a PHP code generator that enables the rapid

development of PHP-based web applications that rely solely

on database structure. To begin, download and install

PHPMaker to your computer. After the installation is

finished, launch PHPPMaker and create a new project by

connecting to the database as seen on figure 2. PHPMaker

supports a variety of database types, including MySQL,

PostgreSQL, and SQL Server. Enter the database connection

information, including the host, username, password, and

database name.

Following the database connection, the next step is to

select the tables for the application. PHPMaker will then

generate the first web pages based on the selected table. You

can customize these pages to meet specific requirements,

such as page views, forms, lists, and detail views.

Figure 2. PHPMaker configuration screen

PHPMaker includes a visual editor for customizing page

appearance, such as layout, colors, and styles. You can also

improve the user interface by adding elements like navigation

menus, action buttons, and more. Furthermore, you can define

the actions that users will take when interacting with the page,

such as adding, changing, deleting, and searching for

information.

Figure 3. Code Generation with PHPMaker 2024

Security and authorization are critical components of

application development [13]. PHPMaker allows you to

configure security systems and authorizations to control

access to specific data and pages. You can define user roles

and assign access rights based on them.

Once the application's design and configuration are

complete, you can generate PHP code by clicking the

"Generate" button or entering the appropriate command.

PHPMaker generates complete PHP code, including CRUD

operations (create, read, update, and delete), validation, and

more [14]. The code generation process on PHPmaker can be

seen in Figure 3.

Before launching an application, run a thorough test to

ensure that all functions work properly. Once you've verified

that the application works properly, you can make it available

to the end user. Continuous maintenance and application

development should be based on user needs and feedback.

Figure 4 shows the test application created with PHPMaker

running.

Figure 4. Application Generated with PHPMaker 2024

“Comparative Study of Source Code Complexity in PHP Web Applications: Utilization of Commercial Code Generators and

Manual Framework”

4756 Mardi Siswo Utomo 1, ETJ Volume 09 Issue 08 August 2024

D. Developing application with PHPRunner.

PHPRunner is a PHP-based web application development

tool that allows you to quickly create web applications

without writing a lot of PHP code. The process of creating

applications with PHPRunners begins with downloading and

installing the software on your computer. After the

installation is complete, the first step is to launch PHPRunner

and create a new project. Users can select the type of project

that best meets their needs, such as "Web database

applications" or "Web reports."

Figure 5. Code Generation With PHPRunner

Next, we must determine the database connection.

PHPRunner supports a wide range of database types,

including MySQL, PostgreSQL, and SQL Server. Users must

provide database connection information such as the host,

username, password, and database name. After successfully

connecting to a database, users can begin designing the tables

required for their application. PHPRunners includes a tool for

creating these tables, which allows users to specify columns

and data types for each table as seen on figure 5.

The next step is to design the application's web pages.

Users can set up page views, forms, lists, and detail views.

PHPRunner includes a visual editor that allows users to

customize the page view by dragging and dropping. Users can

also specify what should happen when they interact with the

page, such as adding, modifying, or deleting data. Users can

customize the application workflow to meet their specific

requirements.

Once the page design is complete, the next critical step is

to implement a security and authorization system to limit

access to specific data and pages. Users can create user roles

and assign access rights based on them. After all

configurations are completed, the application is ready for

publication. PHPRunner has an export feature that lets you

generate PHP code and upload it to a web server.

Figure 6. PHPRunner Code Generation Application

Results

Thorough testing is required prior to the application's

official launch to ensure its proper functionality. These tests

include an examination of user interactions, data validation,

and other features. After testing and declaring the application

ready, the end user can start using it. Figure 6 shows the test

application created with PHPRunner running

Following launch, the application requires ongoing

maintenance based on user requirements and feedback.

PHPRunner allows developers to easily change and update

developed applications, making it an efficient and effective

tool for PHP-based web application development.

E. Developing application with CakePHP.

CakePHP application development involves a well-

structured set of steps. The process begins with downloading

and installing CakePHP on your computer or using

Composer, a PHP package manager that manages project

dependencies. After installing CakeFHP, launch a new

project with the terminal command 'composer create-project

cakephp/app name-projects'.

CakePHP's neat directory structure makes it easy to

manage model files, views, controllers, configurations, and

other project files. The next step is to configure a database

connection in the 'config/app.php' file, where you can specify

the host, username, password, and database name. CakePHP

supports a variety of databases, such as MySQL, PostgreSQL,

SQL Server, and others.

After establishing the database connection, you must

create a model for each table in the database. A model is a

table-based representation of data access logic. CakePHP

includes CLI commands like 'bin/cake bake model

NameModel' for automatically generating models from table

schemes. Next, you'll create a controller to manage the

application's actions. This controller includes methods for

controlling the appearance and logic of the application. To

create the controller, we run the CLI command 'bin/cake bake

controller NameController'.

The user sees data through a view. CakePHP displays

typically use templates with the extension '.ctp'. To

automatically generate display templates, use CLI commands

such as 'bin/cake bake template NameModel'. Next, configure

the routing in the 'config/routes.php' file. Routing determines

“Comparative Study of Source Code Complexity in PHP Web Applications: Utilization of Commercial Code Generators and

Manual Framework”

4757 Mardi Siswo Utomo 1, ETJ Volume 09 Issue 08 August 2024

the appropriate method for redirecting the URL to the

controller. You can create custom routes for specific actions.

Figure 7. CakePHP Code Generation Results

Application.

Application development begins with the incorporation of

business logic, validation, and other features into controllers

and models. HTML, CSS, and JavaScript can all be used to

create visually appealing and responsive designs.

Implementing security measures to protect applications from

SQL injection, XSS (cross-site scripting), and CSRF attacks

is critical. Before beginning an application, test it thoroughly

to ensure that everything works properly. Once you have

confirmed the application's functionality, you can proceed

with its official release. The application maintenance and

development process is ongoing, based on user needs and

feedback. Figure 7 shows the test application created with

CakePHP running.

F. Developing application with Laravel Framework.

Laravel is a powerful and flexible PHP framework for

web application development. To maximize its use, it is

important to understand the concept of Model-View-

Controller (MVC) [15] and master the features offered by this

framework. Laravel's official documentation is an excellent

resource to learn how to use this framework effectively.

The process of developing applications with Laravel

begins with installing Laravel on your computer. The most

common method is to use Composer, the PHP package

manager. With terminal commands, developers can create a

new Laravel project and configure the database configuration

in the.env file in the Laravel project directory. You must

correctly enter the required information, such as host,

username, password, and database name.

Laravel uses database migration to manage the database

scheme. Through migration, developers can create the

required tables and columns. The developer can execute

commands to create tables based on the created migration

definitions after creating the migration file in the database/

migrations directory. After that, the developer creates a model

for each table in the database. This model enables interaction

with the table data. Developers can add business logic,

validation, and other features to this model by using Laravel

craft commands.

The next step is to create a controller that will manage the

actions performed by the application. The controller contains

the methods to control the appearance and logic of the app.

We also use the artisan command to create the controller. The

developer then configures the route in the file routes/web.php

or routes/api.php. This route redirects the URL to the

controller's methods.

Using the Blade syntax, a built-in Laravel template

engine, creates views. Usually, developers place these views

in the resources/views directory. By combining HTML, CSS,

and Blade, developers can create attractive and responsive

designs. During application development, it is important to

implement security measures to protect against attacks such

as SQL injection, XSS (cross-site scripting), and CSRF.

(cross-site request forgery). Periodic application testing is

crucial to guarantee the proper functioning of all features

prior to the application's launch.

III. RESULT AND DISCUSSION

The application development process includes measuring

how long it takes the programmer to complete each

application. Table 1 depicts the programmer's completed

program writing. The programmer creates the application on

day one, not in order. Previously, the programmer was not

given information about the framework or the tools they

would use to write the program. We only tell programmers

about the programming language they use and let them use

utilities or add-ons to speed up their work.

Table 1. Code Writing Completion Time

 PHPMaker

(Hour)

PHPRunner

(Hour)

CakePHP

(Hour)

Laravel

(Hour)

ManHour 1.86 1.75 3.25 5.25

Ratio 1.02 1 1.86 2.97

Table 1 shows that using generator code speeds up the

program writing process, as evidenced by the PHPMaker and

PHPRunner columns. Despite using CRUD generators in

CakePHP, programmers still take longer to complete program

writing than those who use PHPMaker and PHPRunner. Both

programmers spend the majority of their time manually

creating programs using the Laravel framework.

Table 1 compares the man-hour requirements for

FrameWork and Code Generator, respectively. Table 1 also

shows that the man-hours requirements for PHPMaker and

PHPRunner are nearly identical. PHPCake requires nearly

twice as many workers (1.86) as PhPMaker or PhPRunner. In

comparison to PhPMakers and PhPRunners, Laravel requires

three times (2.97) as many man hours.

To measure application performance, use the average

execution time method for each page. We updated the header

https://www.zotero.org/google-docs/?3DUEM1

“Comparative Study of Source Code Complexity in PHP Web Applications: Utilization of Commercial Code Generators and

Manual Framework”

4758 Mardi Siswo Utomo 1, ETJ Volume 09 Issue 08 August 2024

and footer functions to include the execution time

measurement function. We've added a command in the header

section to start the execution time counting, as per source

code 1.

Global $start;

$start = microtime(true); (1)

Then, on the footer, enter the information to determine the

start and end times of the process, resulting in the execution

time. Then, calculate the duration of the exercise. The

information on source code 2 can be found in the footer

section.

$time_elapsed_secs = microtime(true) - $start;

 echo $time_elapsed_secs; (2)

Table 2: Timeline of the process

PHPMaker

(ms)

PHPRunner

(ms)

CakePHP

(ms)

Laravel

(ms)

40 37 28 15

Tabel 2 displays the time required to complete each

application. The table shows that cakePHP and Laravel have

a shorter execution time, whereas PHPMaker and PHPRunner

have a longer execution time, but both have a two-fold longer

execution time than Laravel.

A. Complexity Measurement

Cyclomatic complexity is a software metric that measures

a program's complexity [1]. How to Measure Cyclomatic

Complexity can use the Flow Control Graph to specify all of

the program's flow control paths. In this graph, each node

represents a block of code (for example, a statement or a set

of statements), while each edge (line) represents control flow.

The key point in calculating complexity is where the control

flow branch, such as on the statements 'if', 'while',

'for','switch', and so on. Formula 1 contains the fundamental

formula for calculating cyclomatic complexity.

M = E - N + 2P (1)

where:

M represents cyclomatic complexity.

E represents the number of edges in the graph.

N represents the number of nodes in the graph.

P represents the number of connected components.

To solve complex problems, a powerful tool is used. In

this study, complexity was measured using the PHPMetrics

application [16]. To begin using PHPMetrics, first install it

in the composer system using these source code 3.

Composer global require 'phpmetrics/phpmetrics' (3)

Then start measuring complexity using source code 4

phpmetrics --report-html=myreport.html /path/of (4)

Table 3. Complexity Measurement Table

No Parameter PHPMaker PHPRunner CakePHP Laravel

1 Cyclomatic

Complexity

Average

Class

75.46 1811.63 3.18 1.14

2 System

Complexity

Relative

Average

3265.24 46.26 95.2 23.72

3 Number of

Classes

162 399 22 35

4 Number of

LOCs

70626 134544 1289 1058

Table 3 shows that PHPMaker and PHPRunner contain

significantly more Lines of Code (LOCs) than CakePHP and

Laravel. Code generator output applications are more

complex than manual ones.

B. Discussion

This study examines the complexity of source code

generated by commercial code generators (PHPMaker and

PHPRunner) versus code written manually with the Laravel

framework and the open-source code generator CakePHP.

Code complexity is an important metric in software

development because it affects software understanding,

testing, and maintenance. According to research findings,

while commercial code generators can speed up development,

they produce more complex code than manual methods.

In terms of development, code generators like PHPMaker

and PHPRunner significantly reduce the time required to

complete an application. Data shows that developing

applications with PHPMakers and PhPRunner takes less than

two hours, whereas manually developing with Laravel takes

more than five hours. However, the increased complexity of

the generated code outweighs the convenience and speed

provided by this code generator.

According to complexity analysis, PHPMaker and

PHPRunner produce code with significantly higher

cyclomatic and relative system complexity than CakePHP

and Laravel. The average class cyclomatic complexity of

PHPMakers and PhPRunners is 75.46 and 1811.63,

respectively, whereas CakepHP and Laravels have only 3.18

and 1.14. Furthermore, PHPMakers and PhPrunners generate

significantly more code lines (LOCs) than Cakepph and

Laravel, implying that these code generators create longer

and more complex code.

These findings suggest that, while code generators can

improve development efficiency, they can also present

challenges for future maintenance and development. More

complex code takes more effort to understand, modify, and

https://www.zotero.org/google-docs/?QT70Xy
https://www.zotero.org/google-docs/?uaHk6o

“Comparative Study of Source Code Complexity in PHP Web Applications: Utilization of Commercial Code Generators and

Manual Framework”

4759 Mardi Siswo Utomo 1, ETJ Volume 09 Issue 08 August 2024

fix, reducing developer productivity and increasing the risk

of error.

To address this issue, the study proposes a hybrid

approach that uses code generators for specific parts of an

application while manually writing code for critical

components. This method enables developers to maximize

code generator efficiency without sacrificing code quality or

sustainability.

CONCLUSIONS

This research provides a contribution to the existing

literature on industry practices in software development. It

not only identifies the weaknesses and advantages of various

development approaches, but it also provides practical

guidance for software developers on how to manage code

complexity and ensure effective and high-quality software

development. We anticipate that this research's results will

assist developers in making informed decisions about the use

of code generators, enabling them to optimize efficiency

without compromising code quality.

REFERENCES

1. T. R. Awode, D. D. Olatinwo, O. Shoewu, S. O.

Olatinwo, and O. O. Omitola, “Halstead Complexity

Analysis of Bubble and Insertion Sorting

Algorithms.” . Number, vol. 18, no. 1, 2017.

2. K. A. Onyango, J. Kamiri, and G. M. Muketha, “A

comparative study of the lexicographical complexity

of Java, Python and C languages based on program

characteristics,” J. Innov. Technol. Sustain., vol. 1,

no. 1, pp. 42–67, Oct. 2023.

3. “PHPMaker 2024 - The Best PHP Code Generator.”

Accessed: Nov. 06, 2023. [Online]. Available:

https://phpmaker.dev/

4. “PHPRunner. The best PHP code generator in the

world.” Accessed: Nov. 06, 2023. [Online].

Available: https://xlinesoft.com/phprunner

5. C. W. Fraser, D. R. Hanson, and T. A. Proebsting,

“Engineering a simple, efficient code-generator

generator,” ACM Lett. Program. Lang. Syst., 2002,

doi: 10.1145/151640.151642.

6. J. Shin and J. Nam, “A Survey of Automatic Code

Generation fromNatural Language,” J. Inf. Process.

Syst., vol. 17, no. 3, pp. 537–555, Jun. 2021.

7. R. D. Banker, G. B. Davis, and S. A. Slaughter,

“Software Development Practices, Software

Complexity, and Software Maintenance

Performance: A Field Study,” Manag. Sci., vol. 44,

no. 4, pp. 433–450, Apr. 1998, doi:

10.1287/mnsc.44.4.433.

8. R. Tavares Coimbra, A. Resende, and R. Terra, “A

Correlation Analysis between Halstead Complexity

Measures and other Software Measures,” in 2018

XLIV Latin American Computer Conference (CLEI),

São Paulo, Brazil: IEEE, Oct. 2018, pp. 31–39. doi:

10.1109/CLEI.2018.00014.

9. “CakePHP - Build fast, grow solid | PHP

Framework | Home,” CakePHP - The rapid

development php framework. Accessed: Aug. 04,

2024. [Online]. Available: https://cakephp.org/

10. “Laravel - The PHP Framework For Web Artisans.”

Accessed: Nov. 12, 2023. [Online]. Available:

https://laravel.com/

11. M. U. khan, S. iftikhar, M. Z. Iqbal, and S. Sherin,

“Empirical studies omit reporting necessary details:

A systematic literature review of reporting quality in

model based testing,” Comput. Stand. Interfaces,

vol. 55, pp. 156–170, Jan. 2018, doi:

10.1016/j.csi.2017.08.002.

12. S. Agarwal, S. Godboley, and P. R. Krishna,

“Cyclomatic Complexity Analysis for Smart

Contract Using Control Flow Graph,” in Computing,

Communication and Learning, S. K. Panda, R. R.

Rout, R. C. Sadam, B. V. S. Rayanoothala, K.-C. Li,

and R. Buyya, Eds., Cham: Springer Nature

Switzerland, 2022, pp. 65–78. doi: 10.1007/978-3-

031-21750-0_6.

13. A. Mashkoor, A. Egyed, R. Wille, and S. Stock,

“Model-driven engineering of safety and security

software systems: A systematic mapping study and

future research directions,” J. Softw. Evol. Process

Q2, vol. 35, no. 7, p. e2457, 2023, doi:

10.1002/smr.2457.

14. R. C. da C. Gonçalves and I. Azevedo, “RESTful

Web Services Development With a Model-Driven

Engineering Approach,” in Code Generation,

Analysis Tools, and Testing for Quality, IGI Global,

2019, pp. 191–228. doi: 10.4018/978-1-5225-7455-

2.ch009.

15. S. I. Ahmad, T. Rana, and A. Maqbool, “A Model-

Driven Framework for the Development of MVC-

Based (Web) Application,” Arab. J. Sci. Eng., vol.

47, no. 2, pp. 1733–1747, Feb. 2022, doi:

10.1007/s13369-021-06087-4.

16. “PhpMetrics, static analysis for PHP - by Jean-

François Lépine.” Accessed: Nov. 06, 2023.

[Online]. Available: https://phpmetrics.org/

