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ABSTRACT: Temperature-dependent X-ray absorption fine structure (XAFS) Debye-Waller (DW) factor of molybdenum (Mo) 

metal has been studied under the influence of thermal disorders. This factor is calculated in simple and explicit forms using the 

classical anharmonic correlated Einstein (CACE) model, which is developed from the correlated Einstein model based on the 

anharmonic effective potential and the classical statistical theory. The numerical results of Mo in the temperature range from 0 to 

800 K are in good agreement with those obtained by the other theoretical models and experiments at several temperatures. The 

analytical results show that the CACE model is suitable for analyzing the experimental XAFS DW factor of Mo from above the 

correlated Einstein temperature to before the melting temperature. 
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1. INTRODUCTION 

      Recently, the X-ray absorption fine structure (XAFS) has 

been developed into a powerful technique because it can be 

widely used to determine many thermodynamic properties 

and structural parameters of materials [1]. However, thermal 

disorders will distort the arrangement order of atoms and their 

interaction in the crystal, so thermal disorders are very 

sensitive to the XAFS signal [2]. As a result, if the effect of 

thermal disorders is not considered in the anharmonic XAFS 

data analysis, it will provide misinformation about the 

thermodynamic properties of materials [3]. The anharmonic 

XAFS Debye-Waller (DW) factor  W ,T k  can describe the 

thermal disorder in the neighbor distance and determines the 

anharmonic XAFS amplitude reduction, so it is an important 

parameter in the investigation of the anharmonic XAFS 

signal [4]. 

Nowadays, molybdenum (Mo) metal is considered an 

alloying agent in structural and stainless steels because of its 

strength, corrosion resistance, and ability to retain shape and 

perform at high temperatures. [5]. This metal is produced as 

an alloying agent in various stainless steels and structures and 

is used in wear-resistant welding rods to increase rust 

resistance mechanical durability, help ease machining, and 

resist corrosion [6]. Meanwhile, the experimental XAFS 

signal of Mo at 293 K, 323 K, 373 K, 423 K, 473 K, 523 K, 

and 573 K was measured at the Synchrotron Radiation 

Siberian Center (SRSC), Russia, by Pirog et al. [7]. 

Currently, a classical anharmonic correlated Einstein 

(CACE) model has been applied to effectively treat the 

anharmonic XAFS parameters of metals [8]. This model has 

the advantage that the expressions of the anharmonic XAFS 

parameters are obtained in explicit and simple forms, so it is 

very convenient to analyze anharmonic XAFS data in the 

range of temperatures not too low [9]. Still, it has not yet been 

used to analyze the anharmonic XAFS DW factor of Mo. 

Therefore, investigating the temperature-dependent XAFS 

Debye-Waller factor of Mo based on the CACE model will 

be necessary for the experimental XAFS data analysis. 

 

2. FORMALISM AND CALCULATION 

The K-edge XAFS signal includes a non-Gaussian 

disorder for a given scattering path is expressed in terms of a 

canonical average of all distance-dependent factors by 

[10,11]   
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where k  is the wave number of photoelectron, N  is the 

number of neighboring atoms,  f k  and  k

characterizes scattering parameters of the photoelectron,

 2 T  is the mean-square relative displacement (MSRD) or 

second XAFS cumulant, and  R T is the distance between 

atoms. 
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Fig. 1. The anharmonic XAFS signal of Mo were 

extracted from the experiments [7]. 

 

In analyzing the anharmonic XAFS signal as shown in 

Fig. 1, the anharmonic XAFS Debye-Waller (DW) factor 

 W ,T k  is determined as follows [12,13]: 

                                                   

    2 2W , exp 2T k k T  ,                                              (2) 
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where the second XAFS cumulant  2 T  can is explicitly 

related to low-order moments of true RD function, the 

angular bracket  is the thermal average, x  is the 

deviation distance between the backscattering and absorbing 

atoms, and r  is the instantaneous bond length between 

atoms. 

To determine the thermodynamic parameters of a 

system, it is necessary to specify its anharmonic effective 

(AE) potential and force constants [14]. The AE potential in 

the relative vibrations of backscattering (1) and absorbing (2) 

atoms can be calculated from the pair interaction (PI) 

potential [15]:                  
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where  1 2 1 2/M M M M    is the reduced mass of the 

backscatter with masse M1 and absorber with masse M2, sum 

i is the over backscatter ( 1i  ) and absorber ( 2i  ), the 

sum j     is over the nearest neighbors, R̂  is a unit vector, 

( )V x  is a PI potential of these atoms,  12
ˆ ˆ

i ijV xR R  

express the contribution of nearest-neighbor atoms to ( )V x . 

 
Fig. 2. The crystalline structure of Mo. 

 

      A body-centered cubic (BCC) structure of Mo is shown 

in Fig. 2. This structure has similar atoms at one center and 

eight corners of a cube, so each atom has a mass of m, and 

each unit cell contains two atoms [16]. After using structural 

characteristics, the AE potential of Fe is calculated from Eq. 

(4) and is written as 

     ( ) ( ) (0) 2 / 2 6 / 6 6 / 6effV x V x V V x V x V x      

.                           (5) 

      Usually, the Morse potential can validly determine the PI 

potential of the crystals [17]. If this potential is expanded up 

to the three orders around its minimum position, it can be 

written as 

 2 2 2 3 3 4 4

0( ) e 2 7 /12,x xV x D e D D x D x D x x r r             

,             (6) 

where D is the dissociation energy,   is the width of the 

potential, and 0r  is the equilibrium bond length between 

atoms. 

      The result of AE potential can be obtained from Eq. (5) 

using Morse potential in Eq. (6). If ignoring the overall 

constant, it is presented in the form: 

2 3 4

3 4( ) / 2eff effV x k x k x k x   ,                            (7) 

where keff is the effective force constant, and k3 and k4 are 

anharmonic force constants, which are not the temperature-

dependent and are written as 

2 3 4

3 4

11 3 1715
, ,

3 4 2592
effk D k D k D     ,                                                           

(8) 

      The CACE model is derived from the correlated Einstein 

model using the AE potential and classical statistical theory 

[8]. In this model, each atomic thermal vibration can be 

treated as a phonon and characterized via the correlated 

Einstein temperature E  and frequency D  [18]. These 

parameters of Fe can be defined from the effective force 

constant as follows: 
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where is the reduced Planck constant and kB is the 

Boltzmann constant. 

      In the classical-statistical limit, the moments 
kx  can 

be determined by evaluating the thermal average in the third-

order approximation [19]: 
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      The temperature-dependent general expressions of the 

MSRD in the CACE model were calculated using Eqs. (3) 

and (10) by Stern et al. [19]. Substituting the expressions of 

local force constants 
effk , 3k , and 4k of Fe in Eq. (8) into 

this expression of the MSRD, we obtain the following result:                       
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Substituting this cumulants into the Eq. (2) to calculate 

the temperature-dependent XAFS DW factor of Mo, we 

obtain the following result: 
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      Thus, the CACE model has been extended to calculate the 

temperature-dependent XAFS DF factor of Mo efficiently. 

The expressions obtained using this model can satisfy all their 

fundamental properties in temperature dependence. 

 

3. RESULT AND DISCUSSION 

      In this section, the numerical results of Mo are calculated 

using the CACE model based on the obtained expressions in 

Secs. 2 and their physical parameters, which are the atomic 

mass 95.94m   u [20] and Morse potential parameters 

D  0.8032 eV and   1.5079 Å-1 [17]. We calculate using 

Eqs. (8)-(9) and obtain the local force constants 6.70effk

eVÅ-2, 3 2.07k eVÅ-3, and 4 2.75k eVÅ-4 , the 

correlated Einstein frequency 
133.66 10E  Hz, and the 

correlated Einstein temperature 279.52E  K. 

Meanwhile, the respective values obtained from the 

experimental data are 7.5 0.9effk   eVÅ-2, 

3 3.0 0.8k   eVÅ-3, 4 2.2 3.1k   eVÅ-4, 

133.47 0.16 10E   Hz, and 264.8 12.0E   K 

[7]. Our results do not differ much from the experimental 

values, especially regarding the correlated Einstein frequency 

and temperature. 

 
Fig. 3. The position-dependent Morse potential of Mo is 

obtained from the CACE model and experimental data 

[7]. 

 

The Morse potential  V x  of Mo in the position 

dependence is represented in Fig. 3. Herein, our obtained 

result is calculated from Eq. (6), and the obtained result using 

the experimental data is calculated from Eq. (6) with the 

experimental Morse potential parameters 0.75 0.13D    

eV and 1.44 0.20    Å-1 [7]. It shows that our results 

obtained using the CACE are satisfied with those obtained 

from experimental data error bars [7], especially at positions 

near the minimum position of these potentials. Also, the 

influence of anharmonic effects on the Morse potential is 

significant. 

 
Fig. 4. The position-dependent AE potential of Mo is 

obtained from the CACE model and experimental data 

[7]. 

The position dependence of the AE potential  effV x  of 

Mo in the position range from - 0.2 to 0.2 Å is represented in 
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Fig. 4. Our obtained result using the CACE model is 

calculated by Eqs. (7)-(8), while the experimental result is 

obtained from Eq. (7) with the above experimental values of 

local force constants [7]. Our result agrees better with those 

obtained from the experiment with error bars [7], especially 

at positions far from the minimum position. Moreover, the 

influence of anharmonic effects on the AE potential is 

stronger at positions further away from the minimum position 

of this potential. Note that our results of the Morse and AE 

potentials are similar to those obtained from the quantum 

anharmonic correlated Einstein (QACE) [21] and anharmonic 

correlated Debye (ACD) [22] models. It is because they are 

all calculated using Eq. (7) with similar values of the local 

force constants and Morse potential parameters. 

The temperature dependence of the second XAFS 

cumulant 
2 ( )T  of Mo in a range from 0 K to 900 K is 

represented in Fig. 5. Our obtained result using the CACE 

model is calculated by Eq. (11). It can be seen that our results 

are in agreement with those obtained using the QACE (only 

at the high temperatures) [21] and the ACD [22] models and 

experiment [7]. For example, the obtained results using the 

CACE, QACE model, ACD model, and experiment at T 

373 K and 573 K are 
2 34.8 10  Å2 and 

2 37.4 10  Å2, 
2 35.1 10  Å2 and 

2 37.6 10  Å2[21], 
2 35.2 10  Å2 and 

2 37.5 10  Å2 [22], and 
2 34.6 10  Å2 and 

2 37.0 10  Å2 [7], respectively.  

 

 
Fig. 5. Temperature-dependent second XAFS 

cumulants of Mo is obtained using the CACE, QACE 

[21], and ACD [22]  models and experiment [7]. 

 

Moreover, it can be seen that the QACE [21] and ACD 

[22] models both show quantum effect contributions. 

Meanwhile, our obtained result reaches zero as the 

temperature reaches zero, so the CACE model is unsuitable 

in the low-temperature region because this model only uses 

classical statistical theory [19] in calculations. However, the 

CACE model still works effectively at temperatures that are 

not too low (T > E ), so our obtained result can be used well 

at room temperature. 

 
Fig. 6. The influence of temperature change on the XAFS 

DW factor of Mo is obtained using the CACE, QACE 

[21], and ACD [22] models and experimental data [7]. 

 

The anharmonic XAFS DW factor  W ,T k  of Mo at 

373 K and 573 K and in a range from 0 to 20 Å is represented 

in Fig. 6. Herein, our obtained results using the CACE model 

are calculated by Eq. (12), other obtained results are 

calculated by Eq. (2), with the temperature-dependent second 

XAFS cumulant determined using the QACE [21], and ACD 

[22] models and experiment [7]. It can be seen that our results 

agree with those obtained using the QACE [21] and ACD [22] 

models and experimental data [7], especially at high 

temperatures and in the small wavenumber region. Moreover, 

the values of the XAFS DW factor decrease with increasing 

temperature T and decrease with fast-increasing wavenumber 

k. For example, the obtained results using the CACE model, 

QACE model, ACD model, and experimental data at T  373 

K and k = 10 Å  are W 0.9 , W 1.0  [21], W 1.0  

[22],  and W 0.9 Å2 [7],  respectively. Meanwhile, The 

respective obtained results are T  573 K and k = 20 Å are 

W 5.9 , W 6.1  [21], W 6.0  [22],  and

W 5.6 Å2 [7],  respectively. This is because the XAFS 

DW factor is an inverse function of the wavenumber k and 

second XAFS cumulant, in which this cumulant increases 

with increasing temperature T. 

 

4. CONCLUSION 

In this work, we have successfully applied the CACE 

model to calculate the temperature-dependent XAFS DW 
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factor of Mo. The obtained expression can satisfy all of their 

fundamental properties in the temperature-dependent. The 

anharmonic XAFS DW factor decreases with increasing 

temperature T. It means that the XAFS amplitude decreases 

more strongly at higher temperatures. These results can also 

describe the influence of anharmonic effects at high 

temperatures and the influence of quantum effects at low 

temperatures. The good agreement between our numerical 

results of Mo and those obtained using the QACE and ACD 

models and experimental data at various temperatures shows 

the effectiveness of the present model. This model can be 

applied to analyze the experimental XAFS data of other BCC 

metals from above absolute zero temperature to just before 

the melting point. 
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