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ABSTRACT: In human decision-making tasks, individuals learn through tri-als and prediction errors. When individuals learn the 

task, some are more influenced by good outcomes, while others weigh bad outcomes more heavily. (Rosenbaum, Grassie, & Hartley, 

2022) Such confirmation bias can lead to different learning effects. In this study, we propose a new algorithm in Deep Reinforcement 

Learning, CM-DQN, which applies the idea of different update strategies for positive or negative prediction errors, to simulate the 

human decision-making pro-cess when the task’s states are continuous while the actions are discrete. We test CM-DQN in Lunar 

Lander environment with confirmatory, disconfirmatory bias and non-bias to ob-serve the learning effects. Moreover, we apply the 

confirma-tion model in multi-armed bandit problem (environment in dis-crete states and discrete actions), which utilizes the same 

idea with our proposed algorithm, as a contrast experiment to algo-rithmically simulate the impact of different confirmation bias in 

decision-making process. In both experiments, confirmatory bias indicates a better learning effect. 
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INTRODUCTION 

Confirmation bias is a cognitive phenomenon where individ-

uals tend to favor information that confirms their existing be-

liefs or hypotheses (Palminteri, Lefebvre, Kilford, & Blake-

more, 2017). This bias can significantly impact decision-

making processes and lead to unexpected outcomes. For 

instance, in the financial market, an investor might selec-

tively seek out and interpret market information that supports 

their preconceived notions about a particular stock, thereby 

overlooking critical negative indicators. The significance of 

understanding this cognitive bias extends beyond individual 

decision-making. It plays a crucial role in areas such as pol-

itics, where confirmation bias can polarize debates and hin-

der consensus, or in science, where it can lead to preferential 

treatment of data and skew research findings. 

Reinforcement learning shows its efficacy in modeling 

decision-making and becomes superior to human intelligence 

in game playing, and autonomous driving (Hester et al., 

2018). Studying confirmation bias in the context of rein-

forcement learning is significant in understanding the human 

decision-making process. As confirmation bias is a pervasive 

aspect of human cognition that influences human decision-

making process, we can numerically analyze how decisions 

can be influenced by human pre-existing beliefs. Existed 

work models confirmation bias in multi-armed bandit prob-

lems by assigning different updating rates on value functions 

based on prediction error (Lefebvre, Summerfield, & Bogacz, 

2022). However, our world is always continuous. Neural 

Network has emerged as a powerful universal approximator 

to approximate high-dimensional and continuous functions. 

Therefore, deep learning provides us a new perspective to 

study continuous confirmation bias. 

 In this project, we first studied the confirmation bias in the 

multi-arm bandit problem. Furthermore, to explore confirma-

tion bias in the continuous decision process, we integrate the 

confirmation model with Deep Q Network. In summary, we 

have the following contributions in our project: 

1. We studied the confirmation model in the context of 

the multi-armed bandit problem 

2. We proposed a new deep reinforcement learning 

algorithm with a confirmation model that solves continuous 

decision-making process problems. 

3. We compared the different types of bias in the 

confirmation model by numerical experiments. 

 

RELATED WORK 

Confirmation Bias The term ‘confirmation bias’ has been 

used to refer to various distinct ways in which beliefs and 

expectations can influence the selection, retention, and eval-

uation of evidence (Klayman 1995; Nickerson 1998). Hahn 

and Harris (2014) offer a list of them including four types of 

cognitions: (1) hypothesis-determined information seek-ing 

and interpretation, (2) failures to pursue a falsificationist 

strategy in contexts of conditional reasoning, (3) a resistance 

to change a belief or opinion once formed, and (4) overcon-

fidence or an illusion of validity of one’s own view. (Peters, 

2022) In reinforcement learning-based decision-making sim-

ulation, the environment is unknown in most cases. There-

fore, in our study, we mainly focus on the last 3 types of bias. 

The last 3 types of bias can be summarized into 2 types: con-

firmatory bias–people are more willing to choose the one that 

they believe is good, and disconfirmatory bias–people are less 

likely to choose the one that they have a bad impression. 
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Risk-Sensitive Temporal Difference (RSTD) Model with 

separate learning rates Risk-sensitive Temporal Differ-ence 

(RSTD) model combines the concepts of time-difference 

learning and risk perception for decision mak-ing and 

learning under uncertain environment. By modelling the 

uncertainty of the environment as a probability distribu-tion 

and taking into account the risk preference of decision 

makers, the model enables individuals to adapt more flex-ibly 

to different risk scenarios. The research from Rosen-baum, 

Grassie, and Hartley (Rosenbaum et al., 2022) ap-plies the 

RSTD model with separate learning rates for better-than-

expected (α+) and worse-than-expected (α−) outcomes, 

whose purpose is to index the valence bias in learning when 

doing a risk-sensitive decision-making RL task. allowing us 

to index valence biases in learning. 

Bayesian learning in modeling psychological bias Zim-per 

and Ludwig previously developed formal models of Bayesian 

learning with psychological bias as alternatives to rational 

Bayesian learning based on Choquet expected util-ity theory. 

They introduced parameters, one is to measure the lack of 

confidence (ambiguity) of the decision maker in his additive 

prior belief, and the second parameter to measure the degree 

of optimism, respectively pessimism, that the deci-sion maker 

attaches to a resolution of ambiguity in the course of the 

learning process. They proposed an alternate model to 

quantize the psychological bias when making decisions. 

(Zimper & Ludwig, 2009) 

Deep Q Network In recent years, there has been signifi-cant 

interest in the development of reinforcement learning al-

gorithms capable of learning directly from high-dimensional 

sensory input, such as images or raw sensor data. One no-

table algorithm that has emerged in this domain is the Deep 

Q-Network (DQN) algorithm (Hester et al., 2018). DQN 

combines deep neural networks with Q-learning, a classical 

reinforcement learning technique, to learn value functions di-

rectly from raw pixel inputs. The core idea behind DQN is to 

approximate the optimal action-value function Q(s, a) which 

represents the expected cumulative reward of taking action a 

in state s, using a deep neural network parameterized by Q(s, 

a; θ). By iteratively updating the network parameters to 

minimize the temporal difference error between the current 

estimate and the target value, DQN is able to learn effective 

policies for a wide range of tasks. One key advantage of DQN 

is its ability to handle high-dimensional state spaces, making 

it well-suited for tasks where traditional tabular methods are 

infeasible. Furthermore, DQN introduces experience replay 

and target networks to stabilize learning and improve sample 

efficiency, respectively. Despite its successes, DQN and its 

variants are not without limitations. For example, they often 

require large amounts of data and computation to learn ef-

fectively, and they may struggle in environments with sparse 

rewards or complex dynamics. Nonetheless, DQN has served 

as a foundational model in the field of deep reinforcement 

learning and has inspired numerous extensions and improve-

ments. In the context of this study, we draw upon the princi-

ples of DQN to develop a novel algorithm capable of learning 

in continuous state spaces and addressing specific challenges 

related to confirmation bias in reinforcement learning tasks. 

 

METHOD 

Preliminary 

Markov Decision Processes (MDPs) A Markov Deci-sion 

Process (MDP) provides a mathematical framework for 

modeling decision-making in situations where outcomes are 

partly random and partly under the control of a decision-

maker. MDPs are widely used in optimization, control the-

ory, artificial intelligence, machine learning, economics, and 

more. 

 

An MDP is defined by a tuple  S, A, P, R, γ , where: 

• S is a finite set of states. 

• A is a finite set of actions. 

• P is a state transition probability matrix, Pssa′ = 

P(St+1 = s′|St = s, At = a). 

• R is a reward function, Ras = E[Rt+1|St = s, At = a]. 

• γ is a discount factor, γ ∈ [0, 1]. 

 

Bellman Equation The Bellman equation, named after 

Richard Bellman (Barron & Ishii, 1989), is a necessary con-

dition for optimality associated with the mathematical opti-

mization method known as dynamic programming. It writes 

the value of a decision problem at a certain point in time in 

terms of the payoff from some initial choices and the value of 

the remaining decision problem that results from those initial 

choices. This breaks a dynamic optimization problem into a 

sequence of simpler subproblems, as Bellman’s Principle of 

Optimality prescribes. 

 

For a policy π, the Bellman equation is: 

 

V π(s) = ∑ π(a|s) Ra
s + γ ∑ Pss

a
′V π(s′) 

a∈A s
′
∈S 

The optimal state-value function satisfies the Bellman op-

timality equation: 

V ∗(s) = max R
a
s + γ ∑ Pss

a
′V ∗(s′

) 

a∈A
 s′∈S 

Q-Learning Q-learning is a model-free reinforcement 

learning algorithm (Watkins & Dayan, 1992). The goal of Q-

learning is to learn a policy, which tells an agent what ac-tion 

to take under what circumstances. It does not require a model 

(hence the connotation ”model-free”) of the environ-ment, 

and it can handle problems with stochastic transitions and 

rewards, without requiring adaptations. 

For any finite MDP, Q-learning finds an optimal policy in the 

sense of maximizing the expected value of the total re-ward 

over any and all successive steps, starting from the cur-rent 

state. Q-learning can identify an optimal action-selection 

policy for any given (finite) MDP, given infinite exploration 

time and a partly random policy. 
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The Q-learning algorithm uses a function Q that is similar to 

the value function in the Bellman equation. The Q function 

takes two arguments: the current state s and an action a. The 

Q function returns the expected future reward of that action 

at that state. This function can be estimated using temporal 

difference learning. 

 

The Q-learning update rule is as follows: 

 

Q(s, a) ← Q(s, a) + α r + γmax Q(s′, a′) −Q(s, a) 

a′ 

 

where: 

• α is the learning rate. 

• r is the reward for taking action a in state s. 

• γ is the discount factor. 

 

Confirmation model in multi-armed bandit problem In 

Lefebvre’s work (Lefebvre et al., 2022), they denote predic-

tion error under choosing bandit i as δi where 

 

δi = ri −Vi (1) 

They update the value function for the chosen option i in the 

form of  

V i = V i + αC ·δt
i
 , if δt

i 
> 0 (2) 

t+1 t i i 

< 0 
 

  αD ·δt , if δt  

, and for all unchosen options i ∈ {1, . . . , N} in the form of 

                  
 

, defining there is a confirmatory bias if αC > αD and a dis-

confirmatory bias when αC < αD. based on the probability of 

ε greedy, a softmax function with a temperature factor or 

hardmax function on the value function. 

 

CM-DQN  

Previous research on integrating confirmation models into re- 

inforcement learning has predominantly focused on discrete 

state and action spaces (Palminteri, 2023). However, given 

the inherent continuity of real-world environments, such dis- 

cretization may not fully capture the complexities of decision- 

making processes. Deep Q Learning stands as a prominent al- 

gorithm within the realm of value-based reinforcement learn- 

ing (Hester et al., 2018), offering a robust framework for 

learning optimal policies. To address the challenge of study- 

ing confirmation bias in real-world settings more effectively, 

we propose a novel deep reinforcement learning algorithm, 

leveraging neural networks as function approximators to ac- 

commodate continuous state inputs. This algorithm, named 

Confirmation Model-based Deep Q Network (CM-DQN), 

extends the applicability of confirmation models to contin- 

uous domains. 

Nevertheless, we encounter a nuanced dilemma in the op- 

timization of CM-DQN. While gradient descent serves as a 

ubiquitous tool for minimizing empirical risk, its applica-tion 

in deep reinforcement learning introduces complexities not 

present in traditional scenarios. Unlike in the context of the 

multi-armed bandit problem, where adjusting the learning 

rate directly impacts the updating rule, in gradient descent, 

simply increasing the learning rate may not necessarily expe-

dite convergence to saddle points. Consequently, in the multi-

armed bandit problem, the relative distance between learning 

rates serves as a proxy for bias, whereas in the realm of deep 

learning, a supplementary gradient ascent step following gra-

dient descent is employed to emulate the notion of bias in the 

learning process. We denote the bias type as Bbias type and 

define as follows: 

B
confirmatory bias 

B
bias type =  Bdisconfirmatory bias 

None 

 

EXPERIMENT 

1) Confirmation Model in Multi-Armed Bandit Problem 

Inspired by previous work(Lefebvre et al., 2022), we 

consider confirmation model to model the confirmation 

bias in the 

2) Inspired by previous work(Lefebvre et al., 2022), we 

consider the confirmation model to model the 

confirmation bias in the  

2-armed bandit problem. We try different pairs of 

(αC,αD) to explore how the type of confirmation bias 

and the value of the learning rate affect the average 

reward one can get. 

3) Experiment Detail  In this work, there are two arms 

avail- able for selection, each with a distinct stable 

probability of yielding a reward upon interaction. 

Specifically, the first arm (arm 0) has a reward 

probability of p1, and the other has a reward 

probability of p2, with p1 set to 0.4 and p2 set to 0.6. 

The rewards are stochastic, employing a binomial 

distribution where each arm’s reward is binary, either 

a 1 for a reward or a 0 for no reward. The action 

selection mechanism leverages a softmax function, 

influenced by the current value estimates of each arm 

and a temperature parameter that regulates the 

randomness of the selection process. We set the 

temperature parameter to be 0.1. Due to time 

constraints, both αC and αD only have the pa- rameter 

range {0.05, 0.1, 0.15, ..., 0.90, 0.95}, and then a grid 

search is performed for the parameters, totaling 

19*19=361 parameter pairs.  For each parameter pairs, 

several trials (trialnumber = 1024) are tested and the 

average reward is the metric for the performance of the 

model. After running the experiment, the average 

reward is shown in Figure 1. 
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CM-DQN in Lunar Lander environment  

The lunar lander environment describes a lander trying to 

land on a landing pad on the moon. It has the following 

properties: 

• Reward: The reward, denoted as rt , is a scalar value that 

reflects the outcome of an agent’s action at time step t. In 

 

 

 

 

Figure 1: Average Reward for different parameters in 2-

armed bandit problem. αC > αD represents the updating 

rate when there is confirmatory bias and αD > αC stands 

for the updating rate for disconfirmatory bias. 

The Lunar Lander environment, the reward is typically de-

fined as a combination of factors such as fuel consumption, 

landing position, and velocity. It is provided by the envi-

ronment after each action and is used by the agent to learn 

optimal policies. 

 

•States: The state of the environment at time step t is rep-

resented by a vector st ∈ S, where S is the state space. In the 

Lunar Lander environment, the state vector includes 

information about the position, velocity, orientation, and 

angular velocity of the lander, as well as information about 

the landing pad. 

•Actions: The action taken by the agent at time step t is 

denoted as at ∈ A, where A is the action space. In the Lunar 

Lander environment, the agent can typically choose from 

discrete actions such as firing the main engine, firing the side 

engines, or doing nothing. 

Experiment Detail In this work, due to the constraint of time, 

we only search the learning rate among {3e − 1, 3e − 2, 3e 

−3, 3e −4, 3e −5, 3e −6} and select 3e −4 as our learn-ing rate. 

We present our hyperparameter setting in Table 

1.To balance exploration and exploitation, we utilize the ε-

greedy policy and decrease ε from 0.99 to 0.01 as the training 

episode proceeds. Inspired by the work (Lv, Wang, Cheng, & 

Duan, 2019), we add a target Q network to prevent instability 
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Figure 2: Lunar Lander Environment: the lunar lander 

tries to land on the surface of moon. 

during training and update the target network in the form of: 

θtarget = τθ + (1 −τ)θtarget 

After running each episode, we run our experiment on one 

seed and get the test reward. Figure 3 shows the result of CM-

DQN with confirmatory bias, disconfirmatory bias, and 

without bias. 

Table 1: Hyperparameters for CM-DQN 

hyperparameter name value 
τ 5e-2 

α 3e-4 
K 1e-1 

γ 0.99 

replay buffer size 50000 

batch size 32 

Optimizer AdamW 

MLP Dimension 128 

 

DISCUSSION & RESULT 

Research Question 1: How does confirmation bias influence 

decision-making in discrete stationary multi-armed bandit 

problem? 

For the experiment in the 2-armed bandit problem, we 

observe that the heatmap (Figure 1) color gradually darkens 

from bottom right to top left, indicating that when αC is larger 

than αD, the agent tends to learn a better result. As defined in 

the confirmation model, the observation showcases that 

agents with confirmatory bias learn better. Besides, the 

heatmap (Figure 1) color gradually darkens from bottom left 

to top right, indicating that as the αC and αD increase, the 

agent tends to learn better as well, which can be a reference 

when tuning parameters to fit the model. 

  

 

 

 

Figure 3: Experiment result of CM-DQN in two types of 

con-firmation bias: X-axis is the episode of training, Y-

axis is the testing reward after training in each episode. 

Confirmatory bias exceeds no bias and disconfirmatory 

bias. 

 

Figure 4: Ablation study of how the bias constraint K 

impacts on learning outcome of confirmatory bias. The X-

axis is the value of K. The Y-axis is the averaged testing 

reward overall episodes after the training process. 

 

– Research Question 2: How does confirmation bias 

influence in continuous state space decision-making 

process? 

Based on our second experiment of CM-DQN 1 in Figure 3, 

the agent learns with confirmatory bias exceeds learning with 

no bias and disconfirmatory bias in the lunar lander en-

vironment. Learning without bias and learning with disconfir-

matory bias have similar terminal outcomes around 0. From 

the view of the result, the agent tends to learn more when the 

response is consistent with their belief that they will have a 

better learning outcome in the lunar lander environment. 

Therefore, we can conclude that confirmatory bias can help 

the agent gain a larger outcome, while disconfirmatory bias 

won’t significantly influence the learning 
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ABLATION STUDY 

Moreover, given our experiment in Lunar Lander Environ-

ment shows CM-DQN with confirmatory bias gains the high-

est reward, we are curious about how K will influence the 

learning reward in CM-DQN. Different from the updating 

rule of the confirmation model in the multi-armed bandit 

problem where to play with different learning rates based on 

the type of belief, in the context of deep learning, we are do-

ing gradient ascent to simulate the ”bias” term. We set the K 

as a constraint to restrict the step size of gradient ascent. 

However, to explore how the step size can impact the learning 

reward, we implemented the ablation study of K. We present 

our result in Figure 4. The result shows K = 1e − 1 has the 

highest testing reward so we consider using K = 1e −1 as our 

bias constraint. By observation, we find out that with larger 

K, the agent trained by CM-DQN with confirmatory bias can 

gain a higher outcome. 

 

CONCLUSION 

In this work, we studied the confirmation model in the dis-

crete and continuous state space modeled by the reinforce-

ment learning algorithm. We implemented numerical exper-

iments and concluded that in discrete and continuous state 

space, agents with confirmatory bias get the highest award. 

With the CM-DQN model, more tasks with continuous states 

and discrete actions can be explored and the corresponding 

human decision-making behaviors can be tested and modeled, 

which can help the understanding of confirmation bias from 

a cognitive science perspective.  

However, we didn’t average the result over more random 

seeds due to the time limit, so some randomness may still 

exist in the experiment results. Future work about fitting CM-

DQN in more decision-making tasks and observing hu-man 

behaviors in continuous states and discrete actions can be 

conducted. In terms of algorithmic level, integrating the 

confirmation model into Deep Deterministic Policy Gradient 

to study confirmation bias in continuous state and continuous 

action decision processes could also be further explored. 
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