
Engineering and Technology Journal e-ISSN: 2456-3358

Volume 09 Issue 07 July-2024, Page No.- 4412-4426

DOI: 10.47191/etj/v9i07.10, I.F. – 8.227

© 2024, ETJ

4412 Mubarak Altamimi 1, ETJ Volume 09 Issue 07 July 2024

0-1 Knapsack Problem Solving using Genetic Optimization Algorithm

Mubarak Altamimi1, Nehad Ramaha2
1,2Karabuk University, Department of Computer Engineering, Karabük, Türkiye

ABSTRACT: A 0-1 knapsack problem with m constraints is known as the 0-1 multidimensional knapsack problem, and it is

challenging to solve using standard techniques like branch and bound algorithms or dynamic programming. The goal of the

Knapsack problem is to maximize the utility of the items in a knapsack while staying within its carrying capacity. This paper presents

a genetic algorithm with Python code that can solve publicly available instances of the multidimensional knapsack problem in a

very quick computational time. By identifying the significant genes, the attribute reduction method that uses the rough set theory

reduces the search space and guarantees that useful information is not lost. To regulate convergence, the algorithm makes use of

many additional hyperparameters that can be adjusted in the code.

KEYWORDS: Optimization Algorithms, 0-1 Knapsack Problem, Genetic Algorithm, Dynamic programming, Python.

INTRODUCTION

The goal of the combinatorial optimization problem known

as the Knapsack problem is to maximize the utility of the

items in a backpack while staying within its carrying capacity

[1]. Swarm intelligence algorithms may be able to solve the

classic NP-hard 0-1 knapsack problem (KP) [2]. The aim is

to pack a backpack as efficiently as possible such that the

overall weight is less than or equal to the capacity and each

item's weight and profit value are compared to the capacity

[3]. Stochastic approaches are increasingly being used to

address the classic combinatorial optimization problem

known as the Knapsack problem, first presented by Dantzig

in 1950 [4]. previously, a series of mathematical approaches

have been given to solve the 0-1Knapsack problem using

metaheuristic optimization algorithms. they used famous

optimization algorithms such as the Ant Colony Algorithm,

Genetic, Greedi, Brute Force, and other optimization

algorithms. In addition, some studies based their

methodology on a modified hybrid metaheuristic

optimization algorithm to solve the 0-1 knapsack problem,

basing their work on pure mathematical methods and models

[2-6]. This study aims to provide a comprehensive review of

the literature and previous research on solving the 0-1

knapsack problem using optimization algorithms, in addition

to contributing to how genetic algorithms can be used to solve

the problem using advanced dynamic programming methods.

1.1. 0-1 Knapsack Problem

Intelligent optimization techniques such as the meta-heuristic

optimization algorithm have split the traditional 0-1 knapsack

problem into two and have shown success in a variety of

domains, including national security, engineering

technology, industrial management, and economic planning.

One may reduce a significant number of engineering

optimization issues to KP problems. We thus concentrate on

0-1 KP. You are requested to locate a collection of objects

inside the knapsack, given a set of I ={i1,i2,i3,…….,in } and

the knapsack's maximum capacity [5]. Every item has a

distinct weight (Wi) and value (Pi) [5]. By using a

mathematical model, the maximum capacity of the knapsack

is guaranteed not to surpass the whole value of the products,

hence guaranteeing that the overall weight of the items does

not surpass the capacity [5]. The model in mathematics is:

 Maximize f(x) = ∑ (pixi)n
i=1 , (1)

 sbjct to {
∑ wixi ≤ Cn

i=1

xi = 0 or 1, i = 1, . . N
 (2)

The carrying weight of the knapsack is denoted by C in the

formula, along with the number of items (n), the value (pi)

and the weight (wi) of the No.i item (xi), and a choice variable

(between 0 and 1).

1.2. Scenario of problem and problem statement

When robbing a store, a robber can fit the maximum weight

of W into his backpack. There are n items, each weighing wi,

and choosing this one will yield a profit of pi. What goods

ought the burglar to take?

Assume that item i has the highest number in an ideal solution

S for W dollars. Then, the optimal solution for W - wi dollars

is S' = S − {i}, and the value of the solution S is Vi plus the

subproblem's value. This fact can be expressed using the

formula below: Define the answer for items 1, 2,..., i and the

maximum weight w as X[i, w].

https://doi.org/10.47191/etj/v9i07.10

“0-1 Knapsack Problem Solving using Genetic Optimization Algorithm”

4413 Mubarak Altamimi 1, ETJ Volume 09 Issue 07 July 2024

Fig. 1. Knapsack proplem idea[5].

1.3. The Study and Implement Algorithms

The 0-1 KP has been solved using a variety of methods,

including both exact and approximative algorithms. It is

difficult to solve this NP-hard problem with polynomial time

complexity, though [6]. In contrast to exact algorithms,

approximate algorithms are widely employed to solve NP-

hard problems and provide reasonable solutions in a

reasonable amount of time.

1.3.1. Distributed\Parallel Techniques computing for

Solving 0-1Knapsack Problem

Knapsack problems are excellent candidates for

parallelization because they inherently split the problem into

smaller, independent sub-problems. Here's how to use

distributed and parallel computing methods to solve knapsack

difficulties more quickly:

1.3.1.1. Techniques for Distributed Computing:

 Master-Worker approach: With this method, multiple

"worker" nodes are assigned to distinct sub-problems

within the knapsack issue by a central "master" node.

Worker nodes independently solve the subproblems

and report their results back to the master, which

assembles the entire answer.

 MapReduce: This distributed computing system can

be used for variants in the knapsack problem wherein

item counts and weights are independent. While the

"map" function distributes tasks among worker

nodes, the "reduce" function aggregates partial

solutions to select the best one.

1.3.1.2. Parallel Computing Techniques

 Dynamic Programming Parallelization: It is possible

to parallelize the conventional dynamic programming

approach for knapsack problems by dividing the

computations over multiple cores or processors. This

can be achieved by splitting the dynamic

programming field and performing simultaneous

calculations for each sub-table.

 Branch-and-Bound Parallelization: This approach

simultaneously explores multiple branches of the

solution space. The best answer may be found more

quickly if each processor can work on a separate

branch.

 Task-Based Parallelism: The knapsack problem can

be broken down into smaller jobs, such as deciding

which specific objects to include. These jobs are

then divided over multiple cores and executed

concurrently to process data faster.

1.3.1.3. Distributed and Parallel Computing Advantages

 Scalability: As the size of the issue increases, more

processing units can be added to preserve the

system's efficiency.

 Speedup: By distributing calculations across

multiple processing units, these solutions can

significantly reduce the time required to solve

complex knapsack problems.

1.3.2. Approximation and heuristics Algorithms for

solving 0-1Knapsack problem.

As members of the NP-hard problem class, knapsack issues

are notoriously difficult to solve exactly for large cases. This

suggests that it can take longer to find the ideal answer as the

problem's complexity rises. However, several approaches

that employ approximation algorithms and heuristics can

yield precise results much faster.

 Greedy Algorithm: these are straightforward and

effective techniques that fill the knapsack one item at

a time until it is full. Sorting products according to

their highest profit-to-weight ratio is a popular tactic.

Despite not always being the best, greedy algorithms

frequently locate workable solutions quickly.

 Relaxation using Linear Programming (LP): This

method rewrites the knapsack problem as a linear

program where items may be partially included.

There's not much utility for fractional knapsacks, but

the solution provides a lower bound on the optimal

value, even though it might not be immediately

helpful. This lower bound can help evaluate various

heuristic solutions.

 Dynamic programming: a process wherein answers to

smaller subproblems are assembled to address a larger

problem. For some backpack versions, it might

“0-1 Knapsack Problem Solving using Genetic Optimization Algorithm”

4414 Mubarak Altamimi 1, ETJ Volume 09 Issue 07 July 2024

function well, but the memory requirements might go

up as the issue size rises.

 Metaheuristics: these are more advanced approaches

that use iterative search strategies to find the solution

space. Among these are simulated annealing, genetic

algorithms, and ant colony optimization. These

methods provide good solutions for large problems,

while careful parameter tweaking may be required.

 Large Neighbourhood Search (LNS): This

metaheuristic method explores a wider range of

possibilities by upending established solutions.

Removing and adding items iteratively can yield

significant benefits.

 Guaranteed-Performance Approximation Algorithms:

these algorithms compute guaranteed answers within a

given factor (e.g., within 1-ε of the best result) in

polynomial time. For large-scale problems, however,

their approximation factor might not be ideal, and

benefit from guaranteed performance and fast runtime.

 Brute Force Algorithm: are precisely what they sound

like: simple approaches to problem-solving that rely

on a computer's raw capability and exploring every

option rather than sophisticated strategies to increase

efficiency.

1.3.3. Genetic Algorithm for 0-1knapsack problem

For big cases, NP-hard issues like knapsack problems might

be difficult to solve, although heuristics and approximation

techniques can yield faster, more precise solutions. Utilizing

computer simulations, genetic algorithms identify potential

solutions from a population of individuals called

chromosomes to optimize problems. Natural selection and

mutation produce new populations by assessing adaptation,

choosing individuals, and starting with a random population.

Evolution happens from generation to generation[7]. The

fundamental genetic algorithms begin with an initial

population and proceed to create additional populations by

natural selection, crossover, and mutation processes. These

populations are then updated continuously until the best

possible solutions are identified. The stages involved in the

calculation for the knapsack problem are as follows:

1. Coding: I have created a chromosomal encoding approach

for the knapsack issue based on its paradigm. An n-bit

binary string x contains the encoded data for n objects.

When x[i] = 1, object i has been put in the knapsack;

otherwise, it implies that object i is not in the knapsack.

As an illustration, the number 1010 denotes a solution,

which indicates that only items 1 and 3 are packed in a

backpack and not the remaining items[8].

2. Creating the initial population: in this scenario, the

population size is set to n, meaning that population A is

made up of n individuals, and A[i] can be created at

random.

3. Calculating population fitness: The following formula is

used to determine each member's fitness within a

population:

{T =
∑ w[i]x[i]

 (3)

FTNSS = {
∑ V[i]X[i, if T ≤ W

∑ V[i]x[i] − α ∗ (T − W), if T ≥ W

(4)

Equation (3) represents the fitness penalty function, with

α > 1.0. For this instance, we'll choose α = 2 [8].

4. Choice: To calculate the population of the following

generation, I use a likelihood proportional to fitness. The

steps of the process are as follows:

 a - Determine the total fitness of every member in the

population, denoted as Σ f (A[i]), where i ranges

from 1 to n.

b - Second, for each i = 1, 2,..., n, the relative fitness for

each person is computed as p(A[i] = f (A[i])/Σ f

(A[i]).

c - For any probabilistic value, the entire sum of the

probabilistic values equals 1.

d - Following the generation of a random number from 0

to 1, the amount of unknown numbers that take place

in the aforementioned probabilistic zones determines

how many times an individual is chosen.

5. Intersections: A cross-cutting technique with a single point

is used. First, groups are matched at random. Next, a

random location is chosen for the crossing point. After

that, a few genes that connect the linked chromosomes are

exchanged.

6. Mutation: To carry out the mutation operation, I employ

the basic mutation technique. First, each person's location

regarding gene variation was ascertained. Then, based on

a specific likelihood, the mutation point's initial genetic

value is inverted [8].

PSEUDO CODE FOR GENETIC ALGORITHM

 t := 0; // start with an initial time

 initpopulation P (t); // initiate a population of

individuals typically at random.

 evaluate P (t); // assess the fitness of each initial individual

in the population.

 while not done do // checks for the termination criteria.

 t := t + 1; // extend the timer.

 P' := selectparents P (t); // select a subpopulation to produce

offspring from.

 recombine P' (t); // reassemble a chosen parent's "genes".

 mutate P' (t); // random perturbation of the mated

population.

 evaluate P' (t); // evaluate its increased fitness.

 P := survive P,P' (t); // select the survivors based on their

level of fitness.

“0-1 Knapsack Problem Solving using Genetic Optimization Algorithm”

4415 Mubarak Altamimi 1, ETJ Volume 09 Issue 07 July 2024

 od

 end GA. [9].

Related Work

As more absolute quantity equals more time required, the

knapsack problem contributes to the NP problem, which

raises the issue of temporal complexity. Using genetic

algorithms could provide advantages over the standard

themes described above and result in more optimal and

efficient solutions. In[1], authors perform 0-1 knapsack tasks

based on genetic algorithms and use the results to determine

the fitness and incentive for the next generation of people who

have the innate desire to find the best possible arrangement.

In[2] An author-modified version of the HRO algorithm is

suggested for the challenging large-scale 0-1 KP. In the

renewal stage, a dynamic step is included to balance the

stages of exploration and exploitation. In[3] A novel

cognitive behavior optimization algorithm (COA) was

applied by the author to solve large-scale 0-1 knapsack

problems. Four large-scale knapsack problems were solved

using COA. In[4], the authors present a novel reduction

technique for the 0-1 knapsack problem (0- 1 KP) and a better

mutations operator (IMO) based on the premise NP 6= P.

In[5], For KP01, the author suggests a novel population-based

SA (PSA) and evaluates it against the current approaches.

In[6], the author put forth a distribution estimation-based

hybrid harmony search technique. To enhance algorithm

searching performance, a fixed improvisation procedure is

introduced. In[7], the researcher creates a model update

algorithm using particle swarm optimization (PSO) and the

eigenvector difference approach. The outcomes demonstrate

the increased accuracy of the suggested ED-PSO model

updating approach, which is anticipated to be more useful for

bridge finite element model updating study. In[8], the GA

model's solution revealed that no combination could provide

the precise weight or capacity that the 35-kilogram bag could

hold, but 34 kg and 36 kg are the range that the solution model

could suggest. In[9], researchers show that in

multidimensional knapsack problems, the FAGA model

performed rather well. In[10], the author used GSA & GA

Algorithms and made sure multidimensional knapsack

problems were solved using the hybrid GSA-GA approach.

In[11], the authors contrast the Greedy technique and the

Dynamic Programming approach as two methods for solving

the KP. Greedy is superior to DP in terms of runtime and

space requirements, but DP performs better in terms of the

optimized solution. In[12], modeling to compare instances

that were created at random and for which the metaheuristics

were implemented in the cloud, Google Colaboratory, and

Python programming. In[13] suggests using the recently

created Gaining Sharing knowledge-based optimization

algorithm (GSK) in a unique binary form to handle binary

optimization challenges. In[14] To compare the GBLSO

algorithm with the Binary Bat Algorithm (BBA) and Discrete

Binary Particle Swarm Optimisation (DPSO) algorithm, ten

common MKP cases were simulated. In[15] A series of

numbers known as "chromosomes" make up the population,

and the sequence of numbers that makes up a chromosome is

known as a "gene.". In[16], the authors suggest using a Binary

Genetic Algorithm (BGA) and a third-party archive.

Additionally, a kind of binary local search is used in the

suggested BGA algorithm. In[17] the following five meta-

heuristic algorithms have recently been proposed: gradient-

based optimizer (GBO), golden eagle optimizer (GEO), red

fox search optimizer (RFSO), horse herd optimization

algorithm (HOA), and bonobo optimizer (BO). In[18], a

heuristic algorithm An optimization technique based on

group theory is suggested to solve KPS using RA-GTOA.

In[19], combinatorial optimization issues, such as the

traveling salesman problem, set-covering problem, least

spanning tree problem, knapsack problem, and bin-packing

problem, as well as genetic algorithms. In[20] the Bayesian

Multiploid Genetic Algorithm is responsible for solving the

well-known Multidimensional Knapsack Problem (MKP).

An enormous edge in resolving the given problem comes

from making use of the relationships between the variables.

Table 1. Literature Review For Most Important Papers

No. Paper title publishin

g

Method that

used

Results

[1] Bansal, A., et

al.,2021

Esaychair Genetic

algorithm GA

In GA, all chromosomes are rearranged to fit under

the highest possible weight.

[2] Shu, Z., Ye, et

al.,2024

arXiv HRO algorithm,

Python 3.6

By harmonizing the periods of exploration and

exploitation, the dynamic step approach raises the

quality of solutions.

[3] Yang, Y., et

al.,2024

arXiv UBMP & GA Large-scale NP-hard issues are the main use case

for Gas, the IMO typically performs better than the

MO.

[4] Wei, Y., et

al.,2020

IEEE COA Algorithm The COA demonstrates the effectiveness and

viability of COA in the extensive 0-1 KP.

[5] Moradi, N., et

al.,

Springer SSAs and PSA

algorithms

Of all the SA-based solutions, PSA is the most

effective optimization strategy for KP01.

“0-1 Knapsack Problem Solving using Genetic Optimization Algorithm”

4416 Mubarak Altamimi 1, ETJ Volume 09 Issue 07 July 2024

[6] Liu, K., et

al.,2022

Hindawi HHSEDA

Algorithm

HHSEDA is stable and has good optimization

potential when it comes to addressing the 0-1

knapsack problem.

[7] Wang, C., et

al.,2023

Extrica FEMU

Algorithm

ED-PSO model updating approach is more

accurate, bridge finite element simulation updating

research is anticipated to benefit from its use.

[8] Okwu, M., et

al,2020

biblioteka

nauki.pl

Genetic

algorithm GA

Finding roughly optimal solutions to an NP

problem is made achievable by the GA technique,

decreasing the KP's complexity to linear.

[9] Nand, R., et

al,2019

IEEE FA & GA

Algorithms

In multidimensional knapsack problems, the

FAGA model performed rather well.

[10

]

Kumar Gupta,

2018

IEEE GSA & GA

Algorithms

Multidimensional knapsack problems are solved

using the hybrid GSA-GA approach.

[11

]

AlEtawi, et

al,2020

IEEE GA & DP

algorithms

Greedy is superior to DP in terms of runtime and

space requirements, but DP performs better in

terms of the optimized solution.

[12

]

do Vale, et

al.,2023

Springer ANOVA

MODEL

The genetic algorithm produced more satisfactory

outcomes than the other metaheuristics.

[13

]

Agrawal, et

al.,2021

Springer NBGSK model

Algorithm

NBGSK and PR-NBGSK provide superior efficacy

and efficiency for convergence, robustness, and

precision.

[14

]

Yang, Y., et

al.,2021

joca.cn DPSO\BBA &

GBLSO

Algorithm

The GBLSO algorithm is powerful for addressing

MKP problems. It has strong robustness, high

optimization accuracy, and good convergence

efficiency.

[15

]

Saraswat, et

al.,2021

Springer GA Algorithm A population's fitness value for each chromosome

affects the likelihood that that specific chromosome

will survive in the following generation.

[16

]

Kabadurmus, et

al.,2021

Springer BGA Algorithm BGA is a more efficient solution for the BOMDKP.

[17

]

Abdel-Basset, et

al.,2022

Elsevier GBO, RFSO,

HQA, BO

Algorithms

BIRFSO's competitiveness for the remaining cases

and its superiority for those with dimensions larger

than 500.

[18

]

He, Y., et

al.,2024

Elsevier RA-GTOA

Algorithm

An effective algorithm for resolving KPS is RA-

GTOA.

[19

]

Gen, M., et

al.,2023

Springer GA Algorithm GA is an efficient algorithm for solving KPS.

[20

]

Gazioğlu, et

al.,2022

Dergipark BMGA

Algorithm

An enormous edge in resolving the given problem

comes from taking use of the relationships between

the variables.

The Proposed Method

By growing a population of potential solutions to a problem,

each having altered attributes and typically expressed in

binary, a Genetic algorithm (GA) is an algorithm that mimics

natural selection. Each generation of evolution is an iterative

process that begins with a random population. A new

generation is created by selecting fit individuals and

modifying their genomes. When the desired level of fitness is

attained or a maximum number of generations is achieved,

the algorithm stops

“0-1 Knapsack Problem Solving using Genetic Optimization Algorithm”

4417 Mubarak Altamimi 1, ETJ Volume 09 Issue 07 July 2024

.

Fig. 1. A methodology of genetic algorithm for knapsack problem [11].

The majority of genetically altered procedures (GAs) rely on

multiple factors, including chromosomal populations, fitness-

based selection, progeny crossover, and random mutation of

offspring [12].

Chromosomes: The space of potential solutions is

represented by the chromosomes in GAs. Different kinds of

chromosomal encodings exist. We employ binary encoding

for the Knapsack problem, in which each chromosome is

represented by a string of bits, either 0 or 1.

(5)

Fig. 2. Chromosome initialization gene [11].

Initialize chromosom like this operation code:

#generating chromosome with probability of 1's

import random

def generate_chromosome(N, w, L, p): #N choromosome_size, weight, #limit, probability

 score = 0

 g = np.zeros(N) #verify if vector is 64 or 65

 for i in range(len(g)):

 prob = random.uniform(0, 1)

 if prob < p:

 g[i] = 1

 else:

 g[i]

= 0

 for c in range(N):

 score = score + np.sum(w[c]*g[c])

“0-1 Knapsack Problem Solving using Genetic Optimization Algorithm”

4418 Mubarak Altamimi 1, ETJ Volume 09 Issue 07 July 2024

 if score <= L:

 pass

 return g

Encoding og chromosoms: One way to represent a chromosome is with an array whose size is the same as the number of entries

(in our case, three). This array's elements each indicate whether an item is in the knapsack ('1') or not ('0') [I]. Take this chromosome,

for instance:

Shows that the knapsack contains the first and third items (A and C).

Fitness: Chromosomes' code and problem-solving efficiency, such as the chromosome's total profit in the 0-1 knapsack problem,

are calculated by GAs using fitness functions to assign scores to each chromosome.

(6)

To impliment function of fitness letus implement this task code:

#fitness function for each chromosome

def fitness(w, c, L, g): #weight, cost, weight_limit, chromosome score = 0

score1 = 0

for i in range(len(w)):

score = score + np.sum(w[i]*g[i])

if score > L: f = 0

else: for i in range(len(w)):

score1 = score1 + np.sum(c[i]*g[i])

f = score1

return score1

A chromosome's fitness, which comprises only A and B, is calculated by combining their profits, yielding a fitness of 7.

Selection: Fitness plays a key role in the selection process, as more fit chromosomes are more likely to replicate. Like natural

organism survival, the number of chosen chromosomes is proportionate to the population size, ensuring a stable size for every

generation. This equation shows the se

 (7)

This code shows how we can implement the selection step:

#roulette selection based on fitness score

Choose the population and fitness, use probability and random selection in roulette, and choose the chromosome according to the

parent-size specification.

 fitness = fitness_score

 total_fit = sum(fitness)

 relative_fitness = [f/total_fit for f in fitness]

 cum_probs = np.cumesum(relative_fitness)

 roul = np.zeros((parents, len(pop[0]))) # matrix's form depending on parent size.

 for i in range(parents):

 r = random.uniform(0, 1)

 for ind in range(len(pop[:, 0])): # number of population entries

0 1 0

1 1 0

 A B C

 A B C

“0-1 Knapsack Problem Solving using Genetic Optimization Algorithm”

4419 Mubarak Altamimi 1, ETJ Volume 09 Issue 07 July 2024

 if cum_probs[ind] > r:

 #print(r) '''for debugging'''

 #print(ind)

 roul[i] = pop[ind]

 break

return roul

Crossover: Through a biological process called crossover, chromosomal fragments from both parents are combined to generate

offspring[13]. A locus is chosen at random, and two chromosomes' subsequences are switched.

(8)

Parent1 100 0111

Parent2 111 1000

Ofspring1 100 1000

Ofspring2 111 0111

This code implement a crossover step and operation:

def crossover(a, b, p): #a=chromosome 1, b=chromosome 2,

#p = probability for crossover

 ind = np.random.randint(0, 64)

 r = random.uniform(0, 1)

 if r < p:

 c1 = list(b[:ind]) + list(a[ind:]) #since array were having shape issues, converting to lists

 c1 = np.array(c1)

 c2 = list(a[:ind]) + list(b[ind:])

 c2 = np.array(c1)

 else:

 c1 = a

 c2 = breturn c1, c2 #returning the crossover childs

Mutation: As demonstrated by chromosomes having a mutation point at location 2, genetic algorithm mutation preserves genetic

variety by flipping bits from 1 to 0 or 0 to 1.

 (9)

A 0 at two position will be flip to 1after one time matuate.

This code shows how we can implement the mutation operation in the genetic algorithm for 0-1 knapsack problem solving:

#mutattion of bits from 1 to 0 and 0 to 1 based on probability

def mutation(g, p):

 N = len(g)

 m = np.zeros(len(g)) #mutated chromosome

 for i in range(N):

 d = g[i]

 r = random.uniform(0, 1)

 if g[i] == 1.0 and r < p:

 m[i] = 0

 elif g[i] == 0.0 and r < p:

Orginal chromosom 1000111

Mutatute chromsom 1100111

“0-1 Knapsack Problem Solving using Genetic Optimization Algorithm”

4420 Mubarak Altamimi 1, ETJ Volume 09 Issue 07 July 2024

 m[i] = 1

 else:

 m[i] = d

 return m

Fig. 3. Cycle of genetic algorithm[13].

The rationale behind genetic algorithms is similar to the idea

that life is an evolution of generations, with the only

distinction being that excellent generations are retained. In

contrast "bad generations" that may not have adequate fitness

functions are discarded [21]. First, the program generates 100

random arrays of size 5. Binary values 0 and 1 make up this

array. Following initialization, the selection function chooses

the top 50 arrays based on their fitness. The approach that

verifies each array for weight and profit correspondence is the

most fit [21]. For every index of the parent array, which is 1,

those two arrays hold the weight and the profit. For

optimization, the arrays are now randomly generated via the

mutation mechanism. In this instance, my approach uses a

range of 0,1 to produce random values for each array's index.

The index is then switched from 0 to 1 or 1 to 0, depending

on whether the value is smaller than 0.5 [22]. The next

technique used in the running time is the crossover, which

creates children by combining two parents (arrays)[22]. This

method aims to produce 100 new parents for the algorithm's

subsequent iterations and identify the ideal profit margin.

When the ideal value is discovered, the program ends if not,

it keeps creating new offspring until it does, which in this

example is [0, 1, 1, 1, 0].

Explanation of Genetic Algorithm Procedures

1. [Start] Generate a random population of n chromosomes

(suitable solutions for the problem)

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in

the population

3. [New population] Create a new population by repeating the

following steps until the new population is complete:

I. [Selection] Select two parent chromosomes from a

population according to their fitness (the better fitness, the

bigger the chance to be selected)

II. [Crossover] With a crossover probability cross over the

parents to form a new offspring (children). If no crossover

was performed, the offspring is an exact copy of the

parents.

III. [Mutation] With a mutation probability mutate new

offspring at each locus (position in chromosome).

IV. [Accepting] Place new offspring in a new population

4. [Replace] Use the newly generated population for a further

run of the algorithm

5. [Test] If the end condition is satisfied, stop, and return the

best solution in the current population

Fig. 4. The Cycle reproduction of genetic algorithm [24].

1. Encoding

Encoding of chromosomes is one of the problems, when you

are starting to solve problem with GA. Encoding very

depends on the problem.

1.1 Binary Encoding

• Binary encoding is the most common, mainly because

first works about GA used this type of encoding.

• In binary encoding every chromosome is a string of bits,

0 or 1

1.2 Permutation Encoding

• Permutation encoding can be used in ordering problems,

such as travelling salesman problem or task ordering

problem.

• In permutation encoding, every chromosome is a string of

numbers, which represents number in a sequence.

“0-1 Knapsack Problem Solving using Genetic Optimization Algorithm”

4421 Mubarak Altamimi 1, ETJ Volume 09 Issue 07 July 2024

1.3 Value Encoding

• Direct value encoding can be used in problems, where

some complicated value, such as real numbers, are used.

Use of binary encoding for this type of problems would be

very difficult.

• In value encoding, every chromosome is a string of some

values. Values can be anything connected to problem, form

numbers, real numbers or chars to some complicated

objects.

2. Selection

The problem is how to select these chromosomes.

According to Darwin's evolution theory the best ones

should survive and create new offspring. There are many

methods how to select the best chromosomes, for example,

roulette wheel selection, Boltzman selection, tournament

selection, rank selection, steady state selection

2.1 Roulette Wheel Selection

 Parents are selected according to their fitness. The better

the chromosomes are, the more chances to be selected they

have. Imagine a roulette wheel where are placed all

chromosomes in the population, every has its place

according to its fitness function

2.2 Rank Selection

• The previous selection will have problems when the

fitnesses differs very much. For example, if the best

chromosome fitness is 90% of all the roulette wheel then

the other chromosomes will have very few chances to be

selected.

• Rank selection first ranks the population, and then every

chromosome receives fitness from this ranking. The worst

will have fitness 1, the second worst 2, and the best will

have fitness N (number of chromosomes in population).

2.3 Tournament selection

Tournament selection involves running several

"tournaments" among a few individuals chosen at random

from the population. The winner of each tournament (the

one with the best fitness) is selected for crossover.

Selection pressure is easily adjusted by changing the

tournament size. Weak individuals have a smaller chance

of being chosen if the tournament size is larger.

Population

Chromosomes could be:

– Bit strings (0101 ... 1100)

– Real numbers (43.2 -33.1 ... 0.0 89.2)

– Permutations of element (E11 E3 E7 ... E1 E15)

– Lists of rules (R1 R2 R3 ... R22 R23)

– Program elements (genetic programming)

Fig. 4. Crossover Offspring Operation [24].

• Crossover rate

Crossover rate generally should be high, about 80%-95%.

(However some results show that for some problems

crossover rate about 60% is the best.)

• Mutation rate

On the other side, mutation rate should be very low. Best rates

reported are about 0.5%-1%.

• Population size

It may be surprising, that very big population size usually

does not improve performance of GA (in meaning of speed of

finding solution). Good population size is about 20-30,

however sometimes sizes 50-100 are reported as best.

• Some research also shows, that best population size depends

on encoding, on size of encoded string. It means, if you have

a chromosome with 32 bits, the population should be say 32,

but surely two times more than the best population size for a

chromosome with 16 bits.

• Encoding

Encoding depends on the problem and also on the size of the

instance of the problem.

• Crcrossover and mutation type

Operators depend on encoding and the problem. about

operators for some suggestions.

01 Knapsack Problem Dataset

A dataset has sample data for the 01 Knapsack issue. The 01

Knapsack problem involves a rucksack with a capacity of C

and N items with weights and profits. The goal is to increase

the overall profit from each item. A subset S of items that

maximize overall profit and have a weight sum below or

equal to C is the solution[23].

ınput

“0-1 Knapsack Problem Solving using Genetic Optimization Algorithm”

4422 Mubarak Altamimi 1, ETJ Volume 09 Issue 07 July 2024

Knapsack Problem

Instance Optimal

ks_8a 3,924,400

ks_8b 3,813,669

ks_8c 3,347,452

ks_8d 4,187,707

ks_8e 4,955,555

ks_12a 5,688,887

ks_12b 6,498,597

ks_12c 5,170,626

ks_12d 6,992,404

ks_12e 5,337,472

ks_16a 7,850,983

ks_16b 9,352,998

ks_16c 9,151,147

ks_16d 9,348,889

ks_16e 7,769,117

ks_20a 10,727,049

ks_20b 9,818,261

ks_20c 10,714,023

ks_20d 8,929,156

ks_20e 9,357,969

ks_24a 13,549,094

ks_24b 12,233,713

ks_24c 12,448,780

ks_24d 11,815,315

ks_24e 13,940,099

Best cost table:

Permutation Total Cost

(0, 1, 2, 3) 82

(0, 1, 3, 2) 83

(0, 2, 1, 3) 157

(0, 2, 3, 1) 64

(0, 3, 1, 2) 29

(0, 3, 2, 1) 128

(1, 0, 2, 3) 79

(1, 0, 3, 2) 80

(1, 2, 0, 3) 32

(1, 2, 3, 0) 64

(1, 3, 0, 2) 128

(1, 3, 2, 0) 128

(2, 0, 1, 3) 150

Iteration table:

Iteration Random Number Set 1 Random Number Set 2

1 0.45231413352303207 0.45231413352303207

2 0.45231413352303207 0.45231413352303207

3 0.45231413352303207 0.45231413352303207

4 0.45231413352303207 0.45231413352303207

“0-1 Knapsack Problem Solving using Genetic Optimization Algorithm”

4423 Mubarak Altamimi 1, ETJ Volume 09 Issue 07 July 2024

5 0.45231413352303207 0.45231413352303207

6 0.45231413352303207 0.45231413352303207

7 0.45231413352303207 0.45231413352303207

8 0.45231413352303207 0.45231413352303207

9 0.45231413352303207 0.45231413352303207

10 0.45231413352303207 0.45231413352303207

11 0.45231413352303207 0.45231413352303207

12 0.45231413352303207 0.45231413352303207

13 0.45231413352303207 0.45231413352303207

14 0.45231413352303207 0.45231413352303207

15 0.45231413352303207 0.45231413352303207

16 0.45231413352303207 0.45231413352303207

17 0.45231413352303207 0.45231413352303207

18 0.45231413352303207 0.45231413352303207

19 0.45231413352303207 0.45231413352303207

20 0.45231413352303207 0.45231413352303207

21 0.45231413352303207 0.45231413352303207

22 0.45231413352303207 0.45231413352303207

23 0.45231413352303207 0.45231413352303207

24 0.45231413352303207 0.45231413352303207

Experimental Results

This Python genetic algorithm example is quite basic. An

array of random strings is evolved in the direction of the target

string by this code:

#Represent a chromosome as a binary vector of length

500000 (5000 families, 100 days).

chromosome = [0 for i in range(500000)]

for i in range(5000):

 chromosome[i*100+best[i]-1] = 1

population = []

population.append(chromosome)

family_size_dict = data[['n_people']].to_dict()['n_people']

cols = [f'choice_{i}' for i in range(10)]

choice_dict = data[cols].T.to_dict()

N_DAYS = 100

MAX_OCCUPANCY = 300

MIN_OCCUPANCY = 125

from 100 to 1

days = list(range(N_DAYS,0,-1))

family_size_ls = list(family_size_dict.values())

choice_dict_num = [{vv:i for i, vv in enumerate(di.values())}

for di in choice_dict.values()]

Computer penalities in a list

penalties_dict = {

 n: [

 0,

 50,

 50 + 9 * n,

 100 + 9 * n,

 200 + 9 * n,

 200 + 18 * n,

 300 + 18 * n,

 300 + 36 * n,

 400 + 36 * n,

 500 + 36 * n + 199 * n,

 500 + 36 * n + 398 * n

]

 for n in range(max(family_size_dict.values())+1)

}

def cost_function(prediction):

 penalty = 0

 # We'll use this to count the number of people scheduled

each day

 daily_occupancy = {k:0 for k in days}

 # Looping over each family; d is the day, n is size of that

family,

 # and choice is their top choices

 for n, d, choice in zip(family_size_ls, prediction,

choice_dict_num):

 # add the family member count to the daily occupancy

 daily_occupancy[d] += n

 # Calculate the penalty for not getting top preference

“0-1 Knapsack Problem Solving using Genetic Optimization Algorithm”

4424 Mubarak Altamimi 1, ETJ Volume 09 Issue 07 July 2024

 if d not in choice:

 penalty += penalties_dict[n][-1]

 else:

 penalty += penalties_dict[n][choice[d]]

 # for each date, check total occupancy

 # (using soft constraints instead of hard constraints)

 for v in daily_occupancy.values():

 if (v > MAX_OCCUPANCY) or (v <

MIN_OCCUPANCY):

 penalty += 100000000

 # Calculate the accounting cost

 # The first day (day 100) is treated special

 accounting_cost = (daily_occupancy[days[0]]-125.0) /

400.0 * daily_occupancy[days[0]]**(0.5)

 # using the max function because the soft constraints might

allow occupancy to dip below 125

 accounting_cost = max(0, accounting_cost)

 # Loop over the rest of the days, keeping track of previous

count

 yesterday_count = daily_occupancy[days[0]]

 for day in days[1:]:

 today_count = daily_occupancy[day]

 diff = abs(today_count - yesterday_count)

 accounting_cost += max(0, (daily_occupancy[day]-

125.0) / 400.0 * daily_occupancy[day]**(0.5 + diff / 50.0))

 yesterday_count = today_count

 penalty += accounting_cost

 return penalty

best = -1

best_val = 105163.8446075958

for i in range(20):

 print(i)

 population = selection(population, 25, 5)

 population = reproduction(matrix, population, 50, 0.25, 10)

 ind, val = epoch_optimal(population)

 print('Min on epoch: ', str(val))

 if best_val > val:

 best_val = val

 best = ind

Explanation for the code:

Import libraries: numpy is the most commonly used

numerical library function.

Define function: Cost function which is used to make several

decision variables.

Define variable: These represent the number of data to be

processed per batch or the number of decision variables.

Maxit: This involves the number of iterations of the

population sample or the number of iterations.

Sigma: This evaluates a certain expression many times, with

slightly different variables, and returns the sum of all those

expressions or step size of mutation.

Plt.plot: It is the library used to generate or plot the x and y

axis graphs.

Var num_children: It is a variable that makes sure it always

has an even number.

Beta: the measure of risk/volatility of a stock or iteration.

The fittest individuals are chosen to reproduce through

mutation from an arbitrary number of strings created by this

code. The fitness function determines how many characters

in the sentence fit the target string. Once a match is

discovered, the evolution goes on. Complexity meticulous

strategy and parameter adjustment are hallmarks of real-

world genetic algorithms.

Results return per 100 iteration

Iteration 0: Best Cost = 11.953159210518818

Iteration 100: Best Cost = 0.2557520472002101

Iteration 200: Best Cost = 0.2557520472002101

Iteration 300: Best Cost = 0.11281281227221135

Iteration 400: Best Cost = 0.11281281227221135

Fig. 4. Histogram of genetic algorithm results with knapsack problem solving [Jupyter Python].

“0-1 Knapsack Problem Solving using Genetic Optimization Algorithm”

4425 Mubarak Altamimi 1, ETJ Volume 09 Issue 07 July 2024

The genetic algorithm is a powerful optimization technique

widely applied to solve various combinatorial optimization

problems, including the knapsack problem. In the context of

the knapsack problem, the genetic algorithm offers a unique

and effective approach to finding near-optimal solutions.

Challenges

The genetic algorithm offers a powerful approach to solving

the knapsack problem, challenges such as representation and

encoding, constraint handling, fitness evaluation, premature

convergence, scalability, and multiple objectives need to be

carefully addressed. Overcoming these challenges requires

thoughtful algorithm design, parameter tuning, and the

incorporation of efficient techniques from the field of

evolutionary computation.

CONCLUSION

Numerous fields, such as resource allocation, material cutting

and packaging, and energy management, use knapsack

problems. While approximation algorithms prioritize speed,

exact algorithms provide optimal answers. Research

guarantees that instruments and methods for resolving

increasingly complicated variants of knapsack problems will

continue to progress. These improvements result in increased

productivity, faster decision-making, and lower resource

allocation and logistics costs. They are helpful in industries

like supply chain management and big data because they

enable handling larger, more complicated problems. More

adaptable solutions can be obtained by fusing machine

learning approaches with conventional knapsack problem-

solving strategies. An effective search engine ought to be

universal, with a heuristic included to provide the algorithm

with helpful guidance. Running the approach on larger

instances for which optimal solutions exist could be the focus

of future development.

REFERENCES

1. Bansal, A., Gadia, H., Dhanusha, S., & Pandey, A.

(2021). Solving 0-1 Knapsack Problem using

Genetic Algorithm.

2. Shu, Z., Ye, Z., Zong, X., Liu, S., Zhang, D., Wang,

C., & Wang, M. (2022). A modified hybrid rice

optimization algorithm for solving 0-1 knapsack

problem. Applied Intelligence, 52(5), 5751-5769.

3. Yang, Y. (2024). An upper bound of the mutation

probability in the genetic algorithm for general 0-1

knapsack problem. arXiv preprint

arXiv:2403.11307.

4. Wei, Y., & Luo, Q. (2020, March). Cognitive

Behavior Optimization Algorithm Application for

Large-scale Knapsack Problem. In 2020 IEEE

International Conference on Artificial Intelligence

and Information Systems (ICAIIS) (pp. 179-183).

IEEE.

5. Moradi, N., Kayvanfar, V., & Rafiee, M. (2022). An

efficient population-based simulated annealing

algorithm for 0–1 knapsack problem. Engineering

with Computers, 38(3), 2771-2790.

6. Liu, K., Ouyang, H., Li, S., & Gao, L. (2022). A

hybrid harmony search algorithm with distribution

estimation for solving the 0-1 knapsack

problem. Mathematical Problems in

Engineering, 2022.

7. Wang, C., Li, D., Kaewniam, P., Wang, J., & Al

Hababi, T. (2023). An ED-PSO model updating

algorithm for structure health monitoring of beam-

like structures. Journal of Measurements in

Engineering, 11(3), 358-372.

8. Okwu, M., Otanocha, O. B., Omoregbee, H. O., &

Edward, B. A. (2020). Appraisal of genetic

algorithm and its application in 0-1 knapsack

problem. Journal of Mechanical and Energy

Engineering, 4(1), 39-46.

9. Nand, R., & Sharma, P. (2019, December). Iteration

split with Firefly Algorithm and Genetic Algorithm

to solve multidimensional knapsack problems.

In 2019 IEEE Asia-Pacific Conference on Computer

Science and Data Engineering (CSDE) (pp. 1-7).

IEEE.

10. Gupta, I. K. (2018, March). A hybrid GA-GSA

algorithm to solve multidimensional knapsack

problem. In 2018 4th International Conference on

Recent Advances in Information Technology

(RAIT) (pp. 1-6). IEEE.

11. Al Etawi, N. A., & Aburomman, F. T. (2020). 0/1

KNAPSACK PROBLEM: GREEDY VS.

DYNAMIC-PROGRAMMING. Int J Adv Eng

Manag Res, 5(2), 1-10.

12. do Vale Pereda, M., Scarpin, C. T., Junior, J. E. P.,

Puhl, C., & Ferrer, L. W. U. (2023). Comparison of

Metaheuristics in Solving the Knapsack Problem:

An Experimental Analysis. Revista de Gestão Social

e Ambiental, 17(9), e03814-e03814.

13. Agrawal, P., Ganesh, T., & Mohamed, A. W. (2021).

Solving knapsack problems using a binary gaining

sharing knowledge-based optimization

algorithm. Complex & Intelligent Systems, 1-21.

14. Yang, Y., Liu, S., & ZHOU, Y. (2020). Greedy

binary lion swarm optimization algorithm for

solving multidimensional knapsack

problem. Journal of Computer Applications, 40(5),

1291.

15. Saraswat, M., & Tripathi, R. C. (2021). Solving

Knapsack Problem with Genetic Algorithm

Approach. In Mathematical Modeling and

Computation of Real-Time Problems (pp. 169-177).

CRC Press.

“0-1 Knapsack Problem Solving using Genetic Optimization Algorithm”

4426 Mubarak Altamimi 1, ETJ Volume 09 Issue 07 July 2024

16. Kabadurmus, O., Tasgetiren, M. F., Oztop, H., &

Erdogan, M. S. (2021). Solving 0-1 bi-objective

multi-dimensional knapsack problems using binary

genetic algorithm. Heuristics for Optimization and

Learning, 51-67.

17. Abdel-Basset, M., Mohamed, R., Elkomy, O. M., &

Abouhawwash, M. (2022). Recent metaheuristic

algorithms with genetic operators for high-

dimensional knapsack instances: A comparative

study. Computers & Industrial Engineering, 166,

107974.

18. He, Y., Wang, J., Liu, X., Wang, X., & Ouyang, H.

(2024). Modeling and solving of knapsack problem

with setup based on evolutionary

algorithm. Mathematics and Computers in

Simulation, 219, 378-403.

19. Gen, M., & Lin, L. (2023). Genetic algorithms and

their applications. In Springer handbook of

engineering statistics (pp. 635-674). London:

Springer London.

20. Gazioğlu, E. (2022). Solving Multidimensional

Knapsack Problem with Bayesian Multiploid

Genetic Algorithm. Journal of Soft Computing and

Artificial Intelligence, 3(2), 58-64.

21. Wang, R., & Zhang, Z. (2021). Set theory-based

operator design in evolutionary algorithms for

solving knapsack problems. IEEE Transactions on

Evolutionary Computation, 25(6), 1133-1147.

22. Zhang, X., Qi, F., Hua, Z., & Yang, S. (2020, April).

Solving billion-scale knapsack problems.

In Proceedings of The Web Conference 2020 (pp.

3105-3111).

23. P. T. Pantzan, GitHub - Pantzan/KnapsackGA:

Knapsack Problem solved using Genetic

optimization algorithm, (2020).

24. Baş, E. (2023). Binary aquila optimizer for 0–1

knapsack problems. Engineering Applications of

Artificial Intelligence, 118, 105592.

25. William, I. O., & Altamimi, E. M. (2024).

Hierarchical Long Short-Term Memory (LSTM)

Model for News Sentiment Analysis.

https://github.com/Pantzan/KnapsackGA?tab=readme-ov-file
https://github.com/Pantzan/KnapsackGA?tab=readme-ov-file
https://github.com/Pantzan/KnapsackGA?tab=readme-ov-file

