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ABSTRACT: A 0-1 knapsack problem with m constraints is known as the 0-1 multidimensional knapsack problem, and it is 

challenging to solve using standard techniques like branch and bound algorithms or dynamic programming. The goal of the 

Knapsack problem is to maximize the utility of the items in a knapsack while staying within its carrying capacity. This paper presents 

a genetic algorithm with Python code that can solve publicly available instances of the multidimensional knapsack problem in a 

very quick computational time. By identifying the significant genes, the attribute reduction method that uses the rough set theory 

reduces the search space and guarantees that useful information is not lost. To regulate convergence, the algorithm makes use of 

many additional hyperparameters that can be adjusted in the code. 
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INTRODUCTION 

The goal of the combinatorial optimization problem known 

as the Knapsack problem is to maximize the utility of the 

items in a backpack while staying within its carrying capacity 

[1]. Swarm intelligence algorithms may be able to solve the 

classic NP-hard 0-1 knapsack problem (KP) [2]. The aim is 

to pack a backpack as efficiently as possible such that the 

overall weight is less than or equal to the capacity and each 

item's weight and profit value are compared to the capacity 

[3]. Stochastic approaches are increasingly being used to 

address the classic combinatorial optimization problem 

known as the Knapsack problem, first presented by Dantzig 

in 1950 [4]. previously, a series of mathematical approaches 

have been given to solve the 0-1Knapsack problem using 

metaheuristic optimization algorithms. they used famous 

optimization algorithms such as the Ant Colony Algorithm, 

Genetic, Greedi, Brute Force, and other optimization 

algorithms. In addition, some studies based their 

methodology on a modified hybrid metaheuristic 

optimization algorithm to solve the 0-1 knapsack problem, 

basing their work on pure mathematical methods and models 

[2-6]. This study aims to provide a comprehensive review of 

the literature and previous research on solving the 0-1 

knapsack problem using optimization algorithms, in addition 

to contributing to how genetic algorithms can be used to solve 

the problem using advanced dynamic programming methods.  

1.1. 0-1 Knapsack Problem 

Intelligent optimization techniques such as the meta-heuristic 

optimization algorithm have split the traditional 0-1 knapsack 

problem into two and have shown success in a variety of 

domains, including national security, engineering 

technology, industrial management, and economic planning. 

One may reduce a significant number of engineering 

optimization issues to KP problems. We thus concentrate on 

0-1 KP. You are requested to locate a collection of objects 

inside the knapsack, given a set of I ={i1,i2,i3,…….,in } and 

the knapsack's maximum capacity [5]. Every item has a 

distinct weight (Wi) and value (Pi) [5]. By using a 

mathematical model, the maximum capacity of the knapsack 

is guaranteed not to surpass the whole value of the products, 

hence guaranteeing that the overall weight of the items does 

not surpass the capacity [5]. The model in mathematics is: 

 Maximize f(x) = ∑ (pixi)n
i=1 ,               (1) 

 sbjct to {
∑ wixi ≤ Cn

i=1

xi = 0 or 1, i = 1, . . N
             (2) 

The carrying weight of the knapsack is denoted by C in the 

formula, along with the number of items (n), the value (pi) 

and the weight (wi) of the No.i item (xi), and a choice variable 

(between 0 and 1). 

1.2.  Scenario of problem and problem statement 

When robbing a store, a robber can fit the maximum weight 

of W into his backpack. There are n items, each weighing wi, 

and choosing this one will yield a profit of pi. What goods 

ought the burglar to take? 

Assume that item i has the highest number in an ideal solution 

S for W dollars. Then, the optimal solution for W - wi dollars 

is S' = S − {i}, and the value of the solution S is Vi plus the 

subproblem's value. This fact can be expressed using the 

formula below: Define the answer for items 1, 2,..., i and the 

maximum weight w as X[i, w]. 
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Fig. 1. Knapsack proplem idea[5]. 

 

1.3. The Study and Implement Algorithms 

The 0-1 KP has been solved using a variety of methods, 

including both exact and approximative algorithms. It is 

difficult to solve this NP-hard problem with polynomial time 

complexity, though [6]. In contrast to exact algorithms, 

approximate algorithms are widely employed to solve NP-

hard problems and provide reasonable solutions in a 

reasonable amount of time. 

1.3.1. Distributed\Parallel Techniques computing for 

Solving 0-1Knapsack Problem 

Knapsack problems are excellent candidates for 

parallelization because they inherently split the problem into 

smaller, independent sub-problems. Here's how to use 

distributed and parallel computing methods to solve knapsack 

difficulties more quickly: 

1.3.1.1. Techniques for Distributed Computing: 

 Master-Worker approach: With this method, multiple 

"worker" nodes are assigned to distinct sub-problems 

within the knapsack issue by a central "master" node. 

Worker nodes independently solve the subproblems 

and report their results back to the master, which 

assembles the entire answer. 

 MapReduce: This distributed computing system can 

be used for variants in the knapsack problem wherein 

item counts and weights are independent. While the 

"map" function distributes tasks among worker 

nodes, the "reduce" function aggregates partial 

solutions to select the best one. 

1.3.1.2. Parallel Computing Techniques 

 Dynamic Programming Parallelization: It is possible 

to parallelize the conventional dynamic programming 

approach for knapsack problems by dividing the 

computations over multiple cores or processors. This 

can be achieved by splitting the dynamic 

programming field and performing simultaneous 

calculations for each sub-table. 

 Branch-and-Bound Parallelization: This approach 

simultaneously explores multiple branches of the 

solution space. The best answer may be found more 

quickly if each processor can work on a separate 

branch. 

 Task-Based Parallelism: The knapsack problem can 

be broken down into smaller jobs, such as deciding 

which specific objects to include. These jobs are 

then divided over multiple cores and executed 

concurrently to process data faster. 

1.3.1.3. Distributed and Parallel Computing Advantages 

 Scalability: As the size of the issue increases, more 

processing units can be added to preserve the 

system's efficiency. 

 Speedup: By distributing calculations across 

multiple processing units, these solutions can 

significantly reduce the time required to solve 

complex knapsack problems. 

1.3.2. Approximation and heuristics Algorithms for 

solving 0-1Knapsack problem. 

As members of the NP-hard problem class, knapsack issues 

are notoriously difficult to solve exactly for large cases.  This 

suggests that it can take longer to find the ideal answer as the 

problem's complexity rises.  However, several approaches 

that employ approximation algorithms and heuristics can 

yield precise results much faster. 

  Greedy Algorithm: these are straightforward and 

effective techniques that fill the knapsack one item at 

a time until it is full.  Sorting products according to 

their highest profit-to-weight ratio is a popular tactic. 

Despite not always being the best, greedy algorithms 

frequently locate workable solutions quickly. 

  Relaxation using Linear Programming (LP): This 

method rewrites the knapsack problem as a linear 

program where items may be partially included. 

There's not much utility for fractional knapsacks, but 

the solution provides a lower bound on the optimal 

value, even though it might not be immediately 

helpful. This lower bound can help evaluate various 

heuristic solutions. 

  Dynamic programming: a process wherein answers to 

smaller subproblems are assembled to address a larger 

problem. For some backpack versions, it might 



“0-1 Knapsack Problem Solving using Genetic Optimization Algorithm” 

4414 Mubarak Altamimi 1, ETJ  Volume 09 Issue 07 July 2024 

 

function well, but the memory requirements might go 

up as the issue size rises. 

  Metaheuristics: these are more advanced approaches 

that use iterative search strategies to find the solution 

space. Among these are simulated annealing, genetic 

algorithms, and ant colony optimization. These 

methods provide good solutions for large problems, 

while careful parameter tweaking may be required. 

  Large Neighbourhood Search (LNS): This 

metaheuristic method explores a wider range of 

possibilities by upending established solutions. 

Removing and adding items iteratively can yield 

significant benefits. 

 Guaranteed-Performance Approximation Algorithms: 

these algorithms compute guaranteed answers within a 

given factor (e.g., within 1-ε of the best result) in 

polynomial time. For large-scale problems, however, 

their approximation factor might not be ideal, and 

benefit from guaranteed performance and fast runtime. 

  Brute Force Algorithm: are precisely what they sound 

like: simple approaches to problem-solving that rely 

on a computer's raw capability and exploring every 

option rather than sophisticated strategies to increase 

efficiency. 

1.3.3. Genetic Algorithm for 0-1knapsack problem 

For big cases, NP-hard issues like knapsack problems might 

be difficult to solve, although heuristics and approximation 

techniques can yield faster, more precise solutions. Utilizing 

computer simulations, genetic algorithms identify potential 

solutions from a population of individuals called 

chromosomes to optimize problems. Natural selection and 

mutation produce new populations by assessing adaptation, 

choosing individuals, and starting with a random population. 

Evolution happens from generation to generation[7]. The 

fundamental genetic algorithms begin with an initial 

population and proceed to create additional populations by 

natural selection, crossover, and mutation processes. These 

populations are then updated continuously until the best 

possible solutions are identified. The stages involved in the 

calculation for the knapsack problem are as follows: 

1. Coding: I have created a chromosomal encoding approach 

for the knapsack issue based on its paradigm. An n-bit 

binary string x contains the encoded data for n objects. 

When x[i] = 1, object i has been put in the knapsack; 

otherwise, it implies that object i is not in the knapsack. 

As an illustration, the number 1010 denotes a solution, 

which indicates that only items 1 and 3 are packed in a 

backpack and not the remaining items[8]. 

2. Creating the initial population: in this scenario, the 

population size is set to n, meaning that population A is 

made up of n individuals, and A[i] can be created at 

random.  

3. Calculating population fitness: The following formula is 

used to determine each member's fitness within a 

population: 

 

{T =
∑ w[i]x[i]

                                                                       (3) 

FTNSS = {
∑ V[i]X[i, if T ≤ W

∑ V[i]x[i] − α ∗ ( T − W), if T ≥ W
             

(4)                             

 

Equation (3) represents the fitness penalty function, with 

α > 1.0. For this instance, we'll choose α = 2 [8]. 

4. Choice: To calculate the population of the following 

generation, I use a likelihood proportional to fitness. The 

steps of the process are as follows: 

  a - Determine the total fitness of every member in the 

population, denoted as Σ f (A[i]), where i ranges 

from 1 to n. 

b - Second, for each i = 1, 2,..., n, the relative fitness for 

each person is computed as p(A[i] = f (A[i])/Σ f 

(A[i]).  

c - For any probabilistic value, the entire sum of the 

probabilistic values equals 1. 

d - Following the generation of a random number from 0 

to 1, the amount of unknown numbers that take place 

in the aforementioned probabilistic zones determines 

how many times an individual is chosen. 

5. Intersections: A cross-cutting technique with a single point 

is used. First, groups are matched at random. Next, a 

random location is chosen for the crossing point. After 

that, a few genes that connect the linked chromosomes are 

exchanged. 

6. Mutation: To carry out the mutation operation, I employ 

the basic mutation technique. First, each person's location 

regarding gene variation was ascertained. Then, based on 

a specific likelihood, the mutation point's initial genetic 

value is inverted [8]. 

 

PSEUDO CODE FOR GENETIC ALGORITHM 

       t := 0; // start with an initial time    

  initpopulation P (t); // initiate a population of 

individuals typically at random. 

  evaluate P (t);  // assess the fitness of each initial individual 

in the population. 

  while not done do  // checks for the termination criteria. 

  t := t + 1;       // extend the timer. 

  P' := selectparents P (t); // select a subpopulation to produce 

offspring from. 

  recombine P' (t);       // reassemble a chosen parent's "genes". 

  mutate P' (t);       // random perturbation of the mated 

population. 

  evaluate P' (t);       // evaluate its increased fitness. 

  P := survive P,P' (t);       // select the survivors based on their 

level of fitness.  
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   od 

     end GA. [9]. 

 

Related Work 

As more absolute quantity equals more time required, the 

knapsack problem contributes to the NP problem, which 

raises the issue of temporal complexity. Using genetic 

algorithms could provide advantages over the standard 

themes described above and result in more optimal and 

efficient solutions. In[1], authors perform 0-1 knapsack tasks 

based on genetic algorithms and use the results to determine 

the fitness and incentive for the next generation of people who 

have the innate desire to find the best possible arrangement. 

In[2] An author-modified version of the HRO algorithm is 

suggested for the challenging large-scale 0-1 KP. In the 

renewal stage, a dynamic step is included to balance the 

stages of exploration and exploitation. In[3] A novel 

cognitive behavior optimization algorithm (COA) was 

applied by the author to solve large-scale 0-1 knapsack 

problems. Four large-scale knapsack problems were solved 

using COA. In[4], the authors present a novel reduction 

technique for the 0-1 knapsack problem (0- 1 KP) and a better 

mutations operator (IMO) based on the premise NP 6= P. 

In[5], For KP01, the author suggests a novel population-based 

SA (PSA) and evaluates it against the current approaches. 

In[6], the author put forth a distribution estimation-based 

hybrid harmony search technique. To enhance algorithm 

searching performance, a fixed improvisation procedure is 

introduced. In[7], the researcher creates a model update 

algorithm using particle swarm optimization (PSO) and the 

eigenvector difference approach. The outcomes demonstrate 

the increased accuracy of the suggested ED-PSO model 

updating approach, which is anticipated to be more useful for 

bridge finite element model updating study. In[8], the GA 

model's solution revealed that no combination could provide 

the precise weight or capacity that the 35-kilogram bag could 

hold, but 34 kg and 36 kg are the range that the solution model 

could suggest. In[9], researchers show that in 

multidimensional knapsack problems, the FAGA model 

performed rather well. In[10], the author used GSA & GA 

Algorithms and made sure multidimensional knapsack 

problems were solved using the hybrid GSA-GA approach. 

In[11], the authors contrast the Greedy technique and the 

Dynamic Programming approach as two methods for solving 

the KP. Greedy is superior to DP in terms of runtime and 

space requirements, but DP performs better in terms of the 

optimized solution. In[12], modeling to compare instances 

that were created at random and for which the metaheuristics 

were implemented in the cloud, Google Colaboratory, and 

Python programming. In[13] suggests using the recently 

created Gaining Sharing knowledge-based optimization 

algorithm (GSK) in a unique binary form to handle binary 

optimization challenges. In[14] To compare the GBLSO 

algorithm with the Binary Bat Algorithm (BBA) and Discrete 

Binary Particle Swarm Optimisation (DPSO) algorithm, ten 

common MKP cases were simulated. In[15] A series of 

numbers known as "chromosomes" make up the population, 

and the sequence of numbers that makes up a chromosome is 

known as a "gene.". In[16], the authors suggest using a Binary 

Genetic Algorithm (BGA) and a third-party archive. 

Additionally, a kind of binary local search is used in the 

suggested BGA algorithm. In[17] the following five meta-

heuristic algorithms have recently been proposed: gradient-

based optimizer (GBO), golden eagle optimizer (GEO), red 

fox search optimizer (RFSO), horse herd optimization 

algorithm (HOA), and bonobo optimizer (BO). In[18], a 

heuristic algorithm An optimization technique based on 

group theory is suggested to solve KPS using RA-GTOA. 

In[19], combinatorial optimization issues, such as the 

traveling salesman problem, set-covering problem, least 

spanning tree problem, knapsack problem, and bin-packing 

problem, as well as genetic algorithms. In[20] the Bayesian 

Multiploid Genetic Algorithm is responsible for solving the 

well-known Multidimensional Knapsack Problem (MKP). 

An enormous edge in resolving the given problem comes 

from making use of the relationships between the variables.

 

Table 1. Literature Review For Most Important Papers 

No. Paper title publishin

g 

Method that 

used 

Results 

[1] Bansal, A., et 

al.,2021 

Esaychair Genetic 

algorithm GA 

In GA, all chromosomes are rearranged to fit under 

the highest possible weight. 

[2] Shu, Z., Ye, et 

al.,2024 

arXiv HRO algorithm, 

Python 3.6 

By harmonizing the periods of exploration and 

exploitation, the dynamic step approach raises the 

quality of solutions. 

[3] Yang, Y., et 

al.,2024 

arXiv UBMP & GA  Large-scale NP-hard issues are the main use case 

for Gas, the IMO typically performs better than the 

MO. 

[4] Wei, Y., et 

al.,2020 

IEEE COA Algorithm The COA demonstrates the effectiveness and 

viability of COA in the extensive 0-1 KP. 

[5] Moradi, N., et 

al., 

Springer SSAs and PSA  

algorithms  

Of all the SA-based solutions, PSA is the most 

effective optimization strategy for KP01. 
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[6] Liu, K., et 

al.,2022 

Hindawi HHSEDA 

Algorithm 

HHSEDA is stable and has good optimization 

potential when it comes to addressing the 0-1 

knapsack problem. 

[7] Wang, C., et 

al.,2023 

Extrica FEMU 

Algorithm 

ED-PSO model updating approach is more 

accurate, bridge finite element simulation updating 

research is anticipated to benefit from its use. 

[8] Okwu, M., et 

al,2020 

biblioteka

nauki.pl 

Genetic 

algorithm GA 

Finding roughly optimal solutions to an NP 

problem is made achievable by the GA technique, 

decreasing the KP's complexity to linear. 

[9] Nand, R., et 

al,2019 

IEEE FA & GA 

Algorithms 

In multidimensional knapsack problems, the 

FAGA model performed rather well. 

[10

] 

Kumar Gupta, 

2018 

IEEE GSA & GA 

Algorithms 

Multidimensional knapsack problems are solved 

using the hybrid GSA-GA approach. 

[11

] 

AlEtawi, et 

al,2020 

IEEE GA & DP 

algorithms 

Greedy is superior to DP in terms of runtime and 

space requirements, but DP performs better in 

terms of the optimized solution. 

[12

] 

do Vale, et 

al.,2023 

Springer ANOVA 

MODEL 

The genetic algorithm produced more satisfactory 

outcomes than the other metaheuristics. 

[13

] 

Agrawal, et 

al.,2021 

Springer NBGSK model 

Algorithm 

NBGSK and PR-NBGSK provide superior efficacy 

and efficiency for convergence, robustness, and 

precision. 

[14

] 

Yang, Y., et 

al.,2021 

joca.cn DPSO\BBA & 

GBLSO 

Algorithm 

The GBLSO algorithm is powerful for addressing 

MKP problems. It has strong robustness, high 

optimization accuracy, and good convergence 

efficiency. 

[15

] 

Saraswat, et 

al.,2021 

Springer GA Algorithm A population's fitness value for each chromosome 

affects the likelihood that that specific chromosome 

will survive in the following generation. 

[16

] 

Kabadurmus, et 

al.,2021 

Springer BGA Algorithm BGA is a more efficient solution for the BOMDKP. 

[17

] 

Abdel-Basset, et 

al.,2022 

Elsevier GBO, RFSO, 

HQA, BO 

Algorithms 

BIRFSO's competitiveness for the remaining cases 

and its superiority for those with dimensions larger 

than 500.  

[18

] 

He, Y., et 

al.,2024 

Elsevier RA-GTOA 

Algorithm 

An effective algorithm for resolving KPS is RA-

GTOA. 

[19

] 

Gen, M., et 

al.,2023 

Springer GA Algorithm GA is an efficient algorithm for solving KPS. 

[20

] 

Gazioğlu, et 

al.,2022 

Dergipark BMGA 

Algorithm 

An enormous edge in resolving the given problem 

comes from taking use of the relationships between 

the variables. 

The Proposed Method 

By growing a population of potential solutions to a problem, 

each having altered attributes and typically expressed in 

binary, a Genetic algorithm (GA) is an algorithm that mimics 

natural selection. Each generation of evolution is an iterative 

process that begins with a random population. A new 

generation is created by selecting fit individuals and 

modifying their genomes. When the desired level of fitness is 

attained or a maximum number of generations is achieved, 

the algorithm stops 
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Fig. 1. A methodology of genetic algorithm for knapsack problem [11]. 

The majority of genetically altered procedures (GAs) rely on 

multiple factors, including chromosomal populations, fitness-

based selection, progeny crossover, and random mutation of 

offspring [12]. 

Chromosomes: The space of potential solutions is 

represented by the chromosomes in GAs. Different kinds of 

chromosomal encodings exist. We employ binary encoding 

for the Knapsack problem, in which each chromosome is 

represented by a string of bits, either 0 or 1. 

(5)

 

 

 

 

 

 

Fig. 2. Chromosome initialization gene [11]. 

 

Initialize chromosom like this operation code: 

#generating chromosome with probability of 1's 

import random 

def generate_chromosome(N, w, L, p): #N choromosome_size, weight, #limit, probability 

  score = 0 

  g = np.zeros(N) #verify if vector is 64 or 65 

  for i in range(len(g)): 

    prob = random.uniform(0, 1) 

    if prob < p: 

      g[i] = 1 

    else: 

      g[i]  

 

 

 

 

= 0 

  for c in range(N): 

    score = score + np.sum(w[c]*g[c]) 
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  if score <= L: 

    pass 

  return g 

 

Encoding og chromosoms: One way to represent a chromosome is with an array whose size is the same as the number of entries 

(in our case, three). This array's elements each indicate whether an item is in the knapsack ('1') or not ('0') [ I]. Take this chromosome, 

for instance: 

 

 

 

 

 

Shows that the knapsack contains the first and third items (A and C).  

Fitness: Chromosomes' code and problem-solving efficiency, such as the chromosome's total profit in the 0-1 knapsack problem, 

are calculated by GAs using fitness functions to assign scores to each chromosome. 

(6) 

 

 

 

 

To impliment function of fitness letus implement this task code: 

#fitness function for each chromosome  

def fitness(w, c, L, g): #weight, cost, weight_limit, chromosome score = 0  

score1 = 0  

for i in range(len(w)):  

score = score + np.sum(w[i]*g[i])  

if score > L: f = 0  

else: for i in range(len(w)):  

score1 = score1 + np.sum(c[i]*g[i])  

f = score1  

return score1 

 

 

 

 

A chromosome's fitness, which comprises only A and B, is calculated by combining their profits, yielding a fitness of 7. 

Selection: Fitness plays a key role in the selection process, as more fit chromosomes are more likely to replicate. Like natural 

organism survival, the number of chosen chromosomes is proportionate to the population size, ensuring a stable size for every 

generation. This equation shows the se 

             (7) 

This code shows how we can implement the selection step: 

#roulette selection based on fitness score 

Choose the population and fitness, use probability and random selection in roulette, and choose the chromosome according to the 

parent-size specification.  

  fitness = fitness_score 

  total_fit = sum(fitness) 

  relative_fitness = [f/total_fit for f in fitness] 

  cum_probs = np.cumesum(relative_fitness) 

  roul = np.zeros((parents, len(pop[0]))) # matrix's form depending on parent size. 

 

  for i in range(parents): 

    r = random.uniform(0, 1) 

    for ind in range(len(pop[:, 0])): # number of population entries 

 

0 1 0 

1 1 0 

             A                                B                                  C 

             A                                B                                  C 
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  if cum_probs[ind] > r: 

    #print(r) '''for debugging''' 

    #print(ind) 

    roul[i] = pop[ind] 

    break 

return roul  

 

Crossover: Through a biological process called crossover, chromosomal fragments from both parents are combined to generate 

offspring[13]. A locus is chosen at random, and two chromosomes' subsequences are switched. 

(8) 

 

Parent1 100 0111 

Parent2 111 1000 

Ofspring1 100 1000 

Ofspring2 111 0111 

This code implement a crossover step and operation: 

def crossover(a, b, p): #a=chromosome 1, b=chromosome 2, 

#p = probability for crossover 

  ind = np.random.randint(0, 64) 

  r = random.uniform(0, 1) 

  if r < p: 

    c1 = list(b[:ind]) + list(a[ind:]) #since array were having shape issues, converting to lists 

    c1 = np.array(c1) 

    c2 = list(a[:ind]) + list(b[ind:]) 

    c2 = np.array(c1) 

  else: 

    c1 = a 

    c2 = breturn c1, c2 #returning the crossover childs 

Mutation: As demonstrated by chromosomes having a mutation point at location 2, genetic algorithm mutation preserves genetic 

variety by flipping bits from 1 to 0 or 0 to 1.  

 (9) 

  

  

 

 

 

 

 

 

A 0 at two position will be flip to 1after one time matuate. 

This code shows how we can implement the mutation operation in the genetic algorithm for 0-1 knapsack problem solving: 

#mutattion of bits from 1 to 0 and 0 to 1 based on probability 

def mutation(g, p): 

  N = len(g) 

  m = np.zeros(len(g)) #mutated chromosome 

  for i in range(N): 

    d = g[i] 

    r = random.uniform(0, 1) 

    if g[i] == 1.0 and r < p: 

      m[i] = 0 

    elif g[i] == 0.0 and r < p: 

Orginal chromosom 1000111 

Mutatute chromsom 1100111 
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      m[i] = 1 

    else: 

      m[i] = d 

  return m 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Cycle of genetic algorithm[13]. 

 

The rationale behind genetic algorithms is similar to the idea 

that life is an evolution of generations, with the only 

distinction being that excellent generations are retained. In 

contrast "bad generations" that may not have adequate fitness 

functions are discarded [21]. First, the program generates 100 

random arrays of size 5. Binary values 0 and 1 make up this 

array. Following initialization, the selection function chooses 

the top 50 arrays based on their fitness. The approach that 

verifies each array for weight and profit correspondence is the 

most fit [21]. For every index of the parent array, which is 1, 

those two arrays hold the weight and the profit. For 

optimization, the arrays are now randomly generated via the 

mutation mechanism. In this instance, my approach uses a 

range of 0,1 to produce random values for each array's index. 

The index is then switched from 0 to 1 or 1 to 0, depending 

on whether the value is smaller than 0.5 [22]. The next 

technique used in the running time is the crossover, which 

creates children by combining two parents (arrays)[22]. This 

method aims to produce 100 new parents for the algorithm's 

subsequent iterations and identify the ideal profit margin. 

When the ideal value is discovered, the program ends if not, 

it keeps creating new offspring until it does, which in this 

example is [0, 1, 1, 1, 0]. 

Explanation of Genetic Algorithm Procedures 

1. [Start] Generate a random population of n chromosomes 

(suitable solutions for the problem) 

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in 

the population 

3. [New population] Create a new population by repeating the 

following steps until the new population is complete: 

I. [Selection] Select two parent chromosomes from a 

population according to their fitness (the better fitness, the 

bigger the chance to be selected) 

II. [Crossover] With a crossover probability cross over the 

parents to form a new offspring (children). If no crossover 

was performed, the offspring is an exact copy of the 

parents. 

III. [Mutation] With a mutation probability mutate new 

offspring at each locus (position in chromosome). 

IV. [Accepting] Place new offspring in a new population 

4. [Replace] Use the newly generated population for a further 

run of the algorithm 

5. [Test] If the end condition is satisfied, stop, and return the 

best solution in the current population 

 

 
 

Fig. 4. The Cycle reproduction of genetic algorithm [24]. 

 

1. Encoding 

Encoding of chromosomes is one of the problems, when you 

are starting to solve problem with GA. Encoding very 

depends on the problem. 

1.1 Binary Encoding 

• Binary encoding is the most common, mainly because 

first works about GA used this type of encoding. 

• In binary encoding every chromosome is a string of bits, 

0 or 1 

1.2 Permutation Encoding 

• Permutation encoding can be used in ordering problems, 

such as travelling salesman problem or task ordering 

problem. 

• In permutation encoding, every chromosome is a string of 

numbers, which represents number in a sequence. 
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1.3 Value Encoding 

• Direct value encoding can be used in problems, where 

some complicated value, such as real numbers, are used. 

Use of binary encoding for this type of problems would be 

very difficult. 

• In value encoding, every chromosome is a string of some 

values. Values can be anything connected to problem, form 

numbers, real numbers or chars to some complicated 

objects. 

2. Selection 

The problem is how to select these chromosomes. 

According to Darwin's evolution theory the best ones 

should survive and create new offspring. There are many 

methods how to select the best chromosomes, for example, 

roulette wheel selection, Boltzman selection, tournament 

selection, rank selection, steady state selection 

2.1 Roulette Wheel Selection 

 Parents are selected according to their fitness. The better 

the chromosomes are, the more chances to be selected they 

have. Imagine a roulette wheel where are placed all 

chromosomes in the population, every has its place 

according to its fitness function 

2.2 Rank Selection 

• The previous selection will have problems when the 

fitnesses differs very much. For example, if the best 

chromosome fitness is 90% of all the roulette wheel then 

the other chromosomes will have very few chances to be 

selected. 

• Rank selection first ranks the population, and then every 

chromosome receives fitness from this ranking. The worst 

will have fitness 1, the second worst 2, and the best will 

have fitness N (number of chromosomes in population). 

2.3 Tournament selection 

Tournament selection involves running several 

"tournaments" among a few individuals chosen at random 

from the population. The winner of each tournament (the 

one with the best fitness) is selected for crossover. 

Selection pressure is easily adjusted by changing the 

tournament size. Weak individuals have a smaller chance 

of being chosen if the tournament size is larger. 

 

Population 

Chromosomes could be: 

– Bit strings (0101 ... 1100) 

– Real numbers (43.2 -33.1 ... 0.0 89.2) 

– Permutations of element (E11 E3 E7 ... E1 E15) 

– Lists of rules (R1 R2 R3 ... R22 R23) 

– Program elements (genetic programming) 

 

 
Fig. 4. Crossover Offspring Operation [24]. 

 

• Crossover rate 

Crossover rate generally should be high, about 80%-95%. 

(However some results show that for some problems 

crossover rate about 60% is the best.) 

• Mutation rate 

On the other side, mutation rate should be very low. Best rates 

reported are about 0.5%-1%. 

• Population size 

It may be surprising, that very big population size usually 

does not improve performance of GA (in meaning of speed of 

finding solution). Good population size is about 20-30, 

however sometimes sizes 50-100 are reported as best. 

• Some research also shows, that best population size depends 

on encoding, on size of encoded string. It means, if you have 

a chromosome with 32 bits, the population should be say 32, 

but surely two times more than the best population size for a 

chromosome with 16 bits. 

• Encoding 

Encoding depends on the problem and also on the size of the 

instance of the problem. 

• Crcrossover and mutation type 

Operators depend on encoding and the problem. about 

operators for some suggestions. 

01 Knapsack Problem Dataset 

A dataset has sample data for the 01 Knapsack issue. The 01 

Knapsack problem involves a rucksack with a capacity of C 

and N items with weights and profits. The goal is to increase 

the overall profit from each item. A subset S of items that 

maximize overall profit and have a weight sum below or 

equal to C is the solution[23]. 

ınput 
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Knapsack Problem 

Instance Optimal 

ks_8a 3,924,400 

ks_8b 3,813,669 

ks_8c 3,347,452 

ks_8d 4,187,707 

ks_8e 4,955,555 

ks_12a 5,688,887 

ks_12b 6,498,597 

ks_12c 5,170,626 

ks_12d 6,992,404 

ks_12e 5,337,472 

ks_16a 7,850,983 

ks_16b 9,352,998 

ks_16c 9,151,147 

ks_16d 9,348,889 

ks_16e 7,769,117 

ks_20a 10,727,049 

ks_20b 9,818,261 

ks_20c 10,714,023 

ks_20d 8,929,156 

ks_20e 9,357,969 

ks_24a 13,549,094 

ks_24b 12,233,713 

ks_24c 12,448,780 

ks_24d 11,815,315 

ks_24e 13,940,099 

 

Best cost table: 

Permutation Total Cost 

(0, 1, 2, 3) 82 

(0, 1, 3, 2) 83 

(0, 2, 1, 3) 157 

(0, 2, 3, 1) 64 

(0, 3, 1, 2) 29 

(0, 3, 2, 1) 128 

(1, 0, 2, 3) 79 

(1, 0, 3, 2) 80 

(1, 2, 0, 3) 32 

(1, 2, 3, 0) 64 

(1, 3, 0, 2) 128 

(1, 3, 2, 0) 128 

(2, 0, 1, 3) 150 

 

Iteration table:  

Iteration Random Number Set 1 Random Number Set 2 

1 0.45231413352303207 0.45231413352303207 

2 0.45231413352303207 0.45231413352303207 

3 0.45231413352303207 0.45231413352303207 

4 0.45231413352303207 0.45231413352303207 
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5 0.45231413352303207 0.45231413352303207 

6 0.45231413352303207 0.45231413352303207 

7 0.45231413352303207 0.45231413352303207 

8 0.45231413352303207 0.45231413352303207 

9 0.45231413352303207 0.45231413352303207 

10 0.45231413352303207 0.45231413352303207 

11 0.45231413352303207 0.45231413352303207 

12 0.45231413352303207 0.45231413352303207 

13 0.45231413352303207 0.45231413352303207 

14 0.45231413352303207 0.45231413352303207 

15 0.45231413352303207 0.45231413352303207 

16 0.45231413352303207 0.45231413352303207 

17 0.45231413352303207 0.45231413352303207 

18 0.45231413352303207 0.45231413352303207 

19 0.45231413352303207 0.45231413352303207 

20 0.45231413352303207 0.45231413352303207 

21 0.45231413352303207 0.45231413352303207 

22 0.45231413352303207 0.45231413352303207 

23 0.45231413352303207 0.45231413352303207 

24 0.45231413352303207 0.45231413352303207 

 

Experimental Results 

This Python genetic algorithm example is quite basic. An 

array of random strings is evolved in the direction of the target 

string by this code: 

 

#Represent a chromosome as a binary vector of length 

500000 (5000 families, 100 days). 

chromosome = [0 for i in range(500000)] 

for i in range(5000): 

    chromosome[i*100+best[i]-1] = 1 

     

population = [] 

population.append(chromosome) 

 

family_size_dict = data[['n_people']].to_dict()['n_people'] 

 

cols = [f'choice_{i}' for i in range(10)] 

choice_dict = data[cols].T.to_dict() 

 

N_DAYS = 100 

MAX_OCCUPANCY = 300 

MIN_OCCUPANCY = 125 

 

# from 100 to 1 

days = list(range(N_DAYS,0,-1)) 

 

family_size_ls = list(family_size_dict.values()) 

choice_dict_num = [{vv:i for i, vv in enumerate(di.values())} 

for di in choice_dict.values()] 

 

# Computer penalities in a list 

penalties_dict = { 

    n: [ 

        0, 

        50, 

        50 + 9 * n, 

        100 + 9 * n, 

        200 + 9 * n, 

        200 + 18 * n, 

        300 + 18 * n, 

        300 + 36 * n, 

        400 + 36 * n, 

        500 + 36 * n + 199 * n, 

        500 + 36 * n + 398 * n 

    ] 

    for n in range(max(family_size_dict.values())+1) 

}  

 

def cost_function(prediction): 

    penalty = 0 

 

    # We'll use this to count the number of people scheduled 

each day 

    daily_occupancy = {k:0 for k in days} 

     

    # Looping over each family; d is the day, n is size of that 

family,  

    # and choice is their top choices 

    for n, d, choice in zip(family_size_ls, prediction, 

choice_dict_num): 

        # add the family member count to the daily occupancy 

        daily_occupancy[d] += n 

 

        # Calculate the penalty for not getting top preference 
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        if d not in choice: 

            penalty += penalties_dict[n][-1] 

        else: 

            penalty += penalties_dict[n][choice[d]] 

 

    # for each date, check total occupancy 

    #  (using soft constraints instead of hard constraints) 

    for v in daily_occupancy.values(): 

        if (v > MAX_OCCUPANCY) or (v < 

MIN_OCCUPANCY): 

            penalty += 100000000 

 

    # Calculate the accounting cost 

    # The first day (day 100) is treated special 

    accounting_cost = (daily_occupancy[days[0]]-125.0) / 

400.0 * daily_occupancy[days[0]]**(0.5) 

    # using the max function because the soft constraints might 

allow occupancy to dip below 125 

    accounting_cost = max(0, accounting_cost) 

     

    # Loop over the rest of the days, keeping track of previous 

count 

    yesterday_count = daily_occupancy[days[0]] 

    for day in days[1:]: 

        today_count = daily_occupancy[day] 

        diff = abs(today_count - yesterday_count) 

        accounting_cost += max(0, (daily_occupancy[day]-

125.0) / 400.0 * daily_occupancy[day]**(0.5 + diff / 50.0)) 

        yesterday_count = today_count 

 

    penalty += accounting_cost 

 

    return penalty 

best = -1 

best_val = 105163.8446075958 

for i in range(20): 

    print(i) 

    population = selection(population, 25, 5) 

    population = reproduction(matrix, population, 50, 0.25, 10) 

    ind, val = epoch_optimal(population) 

    print('Min on epoch: ', str(val)) 

    if best_val > val: 

        best_val = val 

        best = ind 

 

Explanation for the code: 

Import libraries: numpy is the most commonly used 

numerical library function. 

Define function: Cost function which is used to make several 

decision variables. 

Define variable: These represent the number of data to be 

processed per batch or the number of decision variables. 

Maxit: This involves the number of iterations of the 

population sample or the number of iterations. 

Sigma: This evaluates a certain expression many times, with 

slightly different variables, and returns the sum of all those 

expressions or step size of mutation. 

Plt.plot: It is the library used to generate or plot the x and y 

axis graphs. 

Var num_children: It is a variable that makes sure it always 

has an even number. 

Beta: the measure of risk/volatility of a stock or iteration. 

 

The fittest individuals are chosen to reproduce through 

mutation from an arbitrary number of strings created by this 

code. The fitness function determines how many characters 

in the sentence fit the target string. Once a match is 

discovered, the evolution goes on. Complexity meticulous 

strategy and parameter adjustment are hallmarks of real-

world genetic algorithms. 

 

Results return per 100 iteration 

Iteration 0: Best Cost = 11.953159210518818 

Iteration 100: Best Cost = 0.2557520472002101 

Iteration 200: Best Cost = 0.2557520472002101 

Iteration 300: Best Cost = 0.11281281227221135 

Iteration 400: Best Cost = 0.11281281227221135 

 

 
Fig. 4. Histogram of genetic algorithm results with knapsack problem solving [Jupyter Python]. 
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The genetic algorithm is a powerful optimization technique 

widely applied to solve various combinatorial optimization 

problems, including the knapsack problem. In the context of 

the knapsack problem, the genetic algorithm offers a unique 

and effective approach to finding near-optimal solutions. 

Challenges 

The genetic algorithm offers a powerful approach to solving 

the knapsack problem, challenges such as representation and 

encoding, constraint handling, fitness evaluation, premature 

convergence, scalability, and multiple objectives need to be 

carefully addressed. Overcoming these challenges requires 

thoughtful algorithm design, parameter tuning, and the 

incorporation of efficient techniques from the field of 

evolutionary computation. 

 

CONCLUSION 

Numerous fields, such as resource allocation, material cutting 

and packaging, and energy management, use knapsack 

problems. While approximation algorithms prioritize speed, 

exact algorithms provide optimal answers. Research 

guarantees that instruments and methods for resolving 

increasingly complicated variants of knapsack problems will 

continue to progress. These improvements result in increased 

productivity, faster decision-making, and lower resource 

allocation and logistics costs. They are helpful in industries 

like supply chain management and big data because they 

enable handling larger, more complicated problems. More 

adaptable solutions can be obtained by fusing machine 

learning approaches with conventional knapsack problem-

solving strategies. An effective search engine ought to be 

universal, with a heuristic included to provide the algorithm 

with helpful guidance. Running the approach on larger 

instances for which optimal solutions exist could be the focus 

of future development. 

 

REFERENCES 

1. Bansal, A., Gadia, H., Dhanusha, S., & Pandey, A. 

(2021). Solving 0-1 Knapsack Problem using 

Genetic Algorithm. 

2. Shu, Z., Ye, Z., Zong, X., Liu, S., Zhang, D., Wang, 

C., & Wang, M. (2022). A modified hybrid rice 

optimization algorithm for solving 0-1 knapsack 

problem. Applied Intelligence, 52(5), 5751-5769. 

3. Yang, Y. (2024). An upper bound of the mutation 

probability in the genetic algorithm for general 0-1 

knapsack problem. arXiv preprint 

arXiv:2403.11307. 

4. Wei, Y., & Luo, Q. (2020, March). Cognitive 

Behavior Optimization Algorithm Application for 

Large-scale Knapsack Problem. In 2020 IEEE 

International Conference on Artificial Intelligence 

and Information Systems (ICAIIS) (pp. 179-183). 

IEEE. 

5. Moradi, N., Kayvanfar, V., & Rafiee, M. (2022). An 

efficient population-based simulated annealing 

algorithm for 0–1 knapsack problem. Engineering 

with Computers, 38(3), 2771-2790. 

6. Liu, K., Ouyang, H., Li, S., & Gao, L. (2022). A 

hybrid harmony search algorithm with distribution 

estimation for solving the 0-1 knapsack 

problem. Mathematical Problems in 

Engineering, 2022. 

7. Wang, C., Li, D., Kaewniam, P., Wang, J., & Al 

Hababi, T. (2023). An ED-PSO model updating 

algorithm for structure health monitoring of beam-

like structures. Journal of Measurements in 

Engineering, 11(3), 358-372. 

8. Okwu, M., Otanocha, O. B., Omoregbee, H. O., & 

Edward, B. A. (2020). Appraisal of genetic 

algorithm and its application in 0-1 knapsack 

problem. Journal of Mechanical and Energy 

Engineering, 4(1), 39-46. 

9. Nand, R., & Sharma, P. (2019, December). Iteration 

split with Firefly Algorithm and Genetic Algorithm 

to solve multidimensional knapsack problems. 

In 2019 IEEE Asia-Pacific Conference on Computer 

Science and Data Engineering (CSDE) (pp. 1-7). 

IEEE. 

10. Gupta, I. K. (2018, March). A hybrid GA-GSA 

algorithm to solve multidimensional knapsack 

problem. In 2018 4th International Conference on 

Recent Advances in Information Technology 

(RAIT) (pp. 1-6). IEEE. 

11. Al Etawi, N. A., & Aburomman, F. T. (2020). 0/1 

KNAPSACK PROBLEM: GREEDY VS. 

DYNAMIC-PROGRAMMING. Int J Adv Eng 

Manag Res, 5(2), 1-10. 

12. do Vale Pereda, M., Scarpin, C. T., Junior, J. E. P., 

Puhl, C., & Ferrer, L. W. U. (2023). Comparison of 

Metaheuristics in Solving the Knapsack Problem: 

An Experimental Analysis. Revista de Gestão Social 

e Ambiental, 17(9), e03814-e03814. 

13. Agrawal, P., Ganesh, T., & Mohamed, A. W. (2021). 

Solving knapsack problems using a binary gaining 

sharing knowledge-based optimization 

algorithm. Complex & Intelligent Systems, 1-21. 

14. Yang, Y., Liu, S., & ZHOU, Y. (2020). Greedy 

binary lion swarm optimization algorithm for 

solving multidimensional knapsack 

problem. Journal of Computer Applications, 40(5), 

1291. 

15. Saraswat, M., & Tripathi, R. C. (2021). Solving 

Knapsack Problem with Genetic Algorithm 

Approach. In Mathematical Modeling and 

Computation of Real-Time Problems (pp. 169-177). 

CRC Press. 



“0-1 Knapsack Problem Solving using Genetic Optimization Algorithm” 

4426 Mubarak Altamimi 1, ETJ  Volume 09 Issue 07 July 2024 

 

16. Kabadurmus, O., Tasgetiren, M. F., Oztop, H., & 

Erdogan, M. S. (2021). Solving 0-1 bi-objective 

multi-dimensional knapsack problems using binary 

genetic algorithm. Heuristics for Optimization and 

Learning, 51-67. 

17. Abdel-Basset, M., Mohamed, R., Elkomy, O. M., & 

Abouhawwash, M. (2022). Recent metaheuristic 

algorithms with genetic operators for high-

dimensional knapsack instances: A comparative 

study. Computers & Industrial Engineering, 166, 

107974. 

18. He, Y., Wang, J., Liu, X., Wang, X., & Ouyang, H. 

(2024). Modeling and solving of knapsack problem 

with setup based on evolutionary 

algorithm. Mathematics and Computers in 

Simulation, 219, 378-403. 

19. Gen, M., & Lin, L. (2023). Genetic algorithms and 

their applications. In Springer handbook of 

engineering statistics (pp. 635-674). London: 

Springer London. 

20. Gazioğlu, E. (2022). Solving Multidimensional 

Knapsack Problem with Bayesian Multiploid 

Genetic Algorithm. Journal of Soft Computing and 

Artificial Intelligence, 3(2), 58-64. 

21. Wang, R., & Zhang, Z. (2021). Set theory-based 

operator design in evolutionary algorithms for 

solving knapsack problems. IEEE Transactions on 

Evolutionary Computation, 25(6), 1133-1147. 

22. Zhang, X., Qi, F., Hua, Z., & Yang, S. (2020, April). 

Solving billion-scale knapsack problems. 

In Proceedings of The Web Conference 2020 (pp. 

3105-3111). 

23. P. T. Pantzan, GitHub - Pantzan/KnapsackGA: 

Knapsack Problem solved using Genetic 

optimization algorithm, (2020). 

24. Baş, E. (2023). Binary aquila optimizer for 0–1 

knapsack problems. Engineering Applications of 

Artificial Intelligence, 118, 105592. 

25. William, I. O., & Altamimi, E. M. (2024). 

Hierarchical Long Short-Term Memory (LSTM) 

Model for News Sentiment Analysis. 

 

 

 

https://github.com/Pantzan/KnapsackGA?tab=readme-ov-file
https://github.com/Pantzan/KnapsackGA?tab=readme-ov-file
https://github.com/Pantzan/KnapsackGA?tab=readme-ov-file

