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ABSTRACT: The second expanded X-ray absorption fine structure (EXAFS) cumulant of the crystalline silicon (Si) has been 

studied in the temperature-dependent. This is calculated in explicit forms using the anharmonic correlated Einstein (ACE) model 

developed from the correlated Einstein model based on the anharmonic effective potential and the quantum statistical theory. The 

numerical results of Si in the temperature range from 0 to 1200 K are in good agreement with those obtained by the other theoretical 

models and experiments at several temperatures. The analytical results show that the ACE model is suitable for analyzing the 

experimental EXAFS data of diamond cubics. 
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I. INTRODUCTION 

      Nowadays, the expanded X-ray absorption fine structure 

(EXAFS) has been widely used to determine many 

thermodynamic properties and structural parameters of 

materials, so it has been developed into a powerful technique 

[1]. However, thermal vibration disorders lead to the 

anharmonic effect of EXAFS oscillation and will smear out 

the EXAFS signals [2], as seen in Figure 1. 

 
Figure 1. The anharmonic EXAFS signals were 

extracted from the experiments [3]. 

 

The K-edge XAFS signal includes a non-Gaussian disorder 

for a given scattering path is expressed in terms of a canonical 

average of all distance-dependent factors by [4]   
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where k  is the wave number of the photoelectron,  f k  

and  k  characterizes scattering parameters of the 

photoelectron,  2 T  is the second EXAFS cumulant, 

 R T  is the distance to the neighboring atom, and N  is the 

number of neighboring atoms. 

     In the investigation of the anharmonic EXAFS signal, the 

second EXAFS cumulant  2 T  is an important parameter 

[5]. It is because this cumulant is the mean-square relative 

displacement (MSRD) that describes the thermal disorder in 

the neighbor distance and determines the anharmonic EXAFS 

amplitude reduction via factor   2 2exp 2k T [6], as 

seen in Eq. (1). 

Currently, crystalline silicon (Si) is the most important 

semiconductor in the electronics and technology sectors, and 

it includes solar cells, transistors, high-power lasers, 

semiconductors, rectifiers, and other solid-state devices [7]. 

Meanwhile, the experiment measured the second EXAFS 

cumulants of Si at 80 K, 300 K, and 500 K, measured at the 

Synchrotron Radiation Center by Benfatto et al. [8]. 

      Recently, an anharmonic correlated Einstein (ACE) 

model has been applied to to effectively treat the anharmonic 

EXAFS cumulant of crystals [9]. This model has the 

advantage that the obtained expressions are explicit and valid 

both in the low-temperature (LT) and high-temperature (HT) 

regions [10]. Hence, the calculation of the second EXAFS 

cumulant of Si using the ACE model will be a necessary 

addition to the experimental EXAFS analysis technique. 
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II. FORMALISM AND CALCULATION MODEL 

In the anharmonic EXAFS theory, the second cumulant 

can is explicitly related to low-order moments of true RD 

function, which can be determined as follows [11]: 
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where the angular bracket  is the thermal average, x  is 

the deviation distance between the backscattering and 

absorbing atoms, and r  is the instantaneous bond length 

between atoms. 

 
Figure 2. The structural model of Si. 

 

The structural model of c-Si is illustrated in Figure 2. It 

can be seen that atoms are arranged with eight atoms in a 

diamond-cubic unit cell [12]. In this structure, all atoms are 

similar, and each atom is bonded covalently with four other 

surrounding atoms in the first shell [13]. 

      Usually, the Morse potential can validly determine the 

pair interaction (PI) potential of the crystals [14]. If this 

potential is expanded up to the three orders around its 

minimum position, it can be written as 
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where D is the dissociation energy,   is the width of the 

potential, and 0r  is the equilibrium bond length between 

atoms. 

Usually, an anharmonic effective (AE) potential can 

specify the thermodynamic parameters of crystals [13]. This 

potential can be determined from the PI potential of atoms. 

The AE potential can be calculated from the PI potential [10]:  

                                

  0

, ,

ˆ ˆ( ) , ,eff i AB ij i

i A B j A B i

V x xR R x r r
M


   

 

     

,                         (4) 

where  /A B A BM M M M    is the reduced mass of 

the backscatter with masse MA and absorber with masse MB, 

sum i is the over backscatter ( i A ) and absorber ( i B ), 

the sum j is over the nearest neighbors, R̂  is a unit vector. 

Using the Morse potential in Eq. (3) to calculate the AE 

potential according to Eq. (4) and ignoring the overall 

constant, we obtain the result as 
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where keff is the effective force constant, and k3 and k4 are 

anharmonic force constants.  

The local force constants are calculated from Eq. (5) and 

deduced as follows: 
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(6)            

The ACE model was developed from the CE model based 

on the first-order perturbation (FOP) theory and AE potential 

[10]. In this model, the atomic thermal vibrations in the 

crystal lattice of Si can be characterized by the correlated 

Einstein temperature E  and frequency E  [14]. These 

parameters can be defined as follows: 
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where  and kB are the reduced Planck and Boltzmann 

constants, respectively. 

Usually, the second EXAFS cumulants can be presented 

in terms of the power moments 
kx  with  is the thermal 

average and are approximated via the statistical density 

matrix within the quantum-statistical theory [15]. The general 

expressions of the temperature-dependent EXAFS cumulants 

in the ACE model were calculated by Hung et al. [10].  

Substituting the expressions of effective force constants 

effk in Eq. (6) into the general expression of the second 

EXAFS cumulant, we obtain the temperature-dependent 

second XAFS cumulant in the form as  
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      Using an approximation, 

 exp 1 ,E B E Bk T k T   we calculate the 

second EXAFS cumulant of Si in the LT limit ( 0T  ) from 

Eq. (8). The obtained result is 
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      Using the approximation  exp 0,E Bk T   we 

calculate the second EXAFS cumulant of Si in the HT limit ( 

T  +) from Eq. (8). The obtained result is 
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      Thus, the ACE model has been extended to efficiently 

calculate the second EXAFS cumulat of Si. The expressions 

obtained using this model can satisfy all their fundamental 

properties in temperature dependence. 

 

III. RESULTS AND DISCUSSION 

      In this section, the numerical results of W are calculated 

using the ACE model based on the obtained expressions in 

Secs. 2 and their physical parameters, which are the atomic 

mass 28.09m   u [16] and Morse potential parameters 

D  1.83 eV,   1.56  Å-1, and 0 2.34r  Å [17]. We 

calculate using Eqs. (6) and (7) in the ACE model and obtain 

the local force constants 10.39effk eVÅ-2, 

6.75ank eVÅ-3, the correlated Einstein frequency 

138.42 10E  Hz, and the correlated Einstein 

temperature 643.49E  K.  

 

 
Figure 3. The position-dependent AE potential of Si is 

obtained from the ACE model and fitting method [19]. 

 

     The position dependence of the AE potential of Si in the 

position range from - 0.4 to 0.4 Å is represented in Figure 3. 

Our obtained result using the ACE model is calculated using 

Eqs. (5) and (6), while the fitting result is obtained from a 

reactive empirical bond-order potential of c-Si by fitting its 

bond-order terms [19]. Our result agrees better with those 

obtained from the fitting method [19], especially at positions 

far from the minimum position. Moreover, the influence of 

anharmonic effects on the AE potential is stronger at 

positions further away from the minimum position of this 

potential. Moreover, the obtained result using the anharmonic 

correlated Debye  (ACD) model [20] is similar to our result 

because this model also uses Eqs. (5) and (6) in calculations. 

 
Figure 4. Temperature-dependent second EXAFS 

cumulant of Si is obtained using the ACE and ACD [20] 

models and experimental data [8]. 

 

The temperature dependence of the second EXAFS 

cumulant 
2 ( )T  of Si in a range from 0 K to 1200 K is 

represented in Figure 4. Our obtained result using the ACE 

model is calculated by Eq. (8). It can be seen that our results 

are in agreement with those obtained using the ACD model 

[20] and experimental data [8]. For example, the obtained 

results using the ACE model, ACD model, and experimental 

data at T  300 K are 
2 44.42 10  Å2, 

2 44.36 10  Å2 [20], and 
2 44.40 10  Å2 [8], 

respectively. Moreover, it can be seen that the ACE and ACD 

[20] models both show quantum effect contributions, but the 

obtained results using the ACE model in the LT region are 

slightly greater. This can be explained by the ACE model 

using only one effective frequency to describe the atomic 

thermal vibrations, as seen in Figure 4. 

     Thus, the calculated results of the second EXAFS 

cumulant using the present ACE model satisfied all of their 

fundamental properties in temperature dependence. This 

obtained result shows that the second EXAFS cumulant 

decreases with increasing temperature T and can also describe 

the anharmonic effect in the HT region and the quantum 

effect in the LT region. 

 

IV. CONCLUSION 

      In this work, we have successfully applied the ACE 

model to calculate the second EXAFS cumulant of Si. The 

temperature-dependent expression can satisfy all of their 

fundamental properties and can express the EXAFS 

amplitude increasing strongly with temperature T. These 

results can also describe the influence of the anharmonic 

effect at high temperatures and the influence of the quantum 
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effect at low temperatures on the EXAFS signal. The good 

agreement between our numerical results of Si and those 

obtained using the ACD model and experimental data at 

various temperatures shows the effectiveness of the present 

model. This model can be applied to analyze the experimental 

EXAFS data of diamond cubics from above absolute zero 

temperature to just before the melting point. 
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