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ABSTRACT: The need for adversarial sample transferability is to attack black-box deep learning models. Whereas much recent 

work focuses on making untargeted adversarial attacks more transferable, there has been scarce research on the creation of 

transferable targeted adversarial instances that can trick models into believing they are of a particular class. The present transferable 

targeted adversarial attacks are not transferable since they cannot sufficiently define the distribution of target classes. In this paper, 

we propose a generative adversarial training system consisting of a feature-label dual discriminator to identify the adversarial 

instances formed from the target class images and a generator to construct targeted adversarial examples. It is concluded that 

adversarial scenarios have significant real-world applications in safety-critical fields like biometrics and autonomous driving. In 

addition, it is demonstrated that the current networks' susceptibility to hostile attacks, even under the worst black-box conditions 

has far-reaching societal consequences. We intend to further encourage more research into the inner workings of neural networks 

in the face of adversarial attacks, whereby people might use this knowledge to build robust defense mechanisms.  

KEYWORDS: Transferability, generative model, deep neural networks, adversarial attacks. 

 

INTRODUCTION 

In artificial intelligence (AI), one of the main fields is deep 

neural networks (DNNs). DNNs’ practical applications are many 

and include face identification (Ma, 2002), voice recognition 

(Goldberg, 2016), picture classification (Anbukkarasi & 

Varadhaganapathy, 2022), and autonomous driving technology 

(Gu & Rigazio, 2014). Many investigations on DNN adversarial 

attacks, exploring the vulnerability and ambiguity of DNNs, 

have been prompted by the extensive consequences. The study 

by Balda et al. (2020) showed how adversarial cases might fool 

DNNs, by demonstrating that instances are produced by adding 

perturbations that are identical to human inputs. Therefore, it 

remains challenging to design hostile attacks that will generally 

produce high-quality adversarial instances, as practical 

adversarial examples need to remain hidden from humans while 

tricking DNNs into making predictions.  

Untargeted and targeted attacks are the categories into which 

adversarial attack techniques fall. Untargeted adversarial attacks 

aim to fool the model into predicting random incorrect labels, 

whereas targeted adversarial attacks assume that the adversarial 

samples they supply will result in a misprediction for a specific 

label. Transferability of adversarial samples is crucial for both 

targeted and untargeted attacks, especially when the target model 

is hidden (black-box attacks). The use of generative techniques 

(Kos et al., 2018), data augmentation (Huang et al., 2017), model 

aggregation (Gao et al., 2017), and feature information 

utilization (Xiao et al., 2018) to improve the transferability of 

untargeted adversarial attacks has been the focus of most 

research up to this point. They were able to extract a limited 

amount of transferable information about the target class 

because of the over-fitting of the source model and the lack of 

target class distribution information, despite some of it being 

extended to the targeted adversarial attacks by changing the loss 

function (Gao et al., 2017).  

Agrawal et al. (2023) and Hu & Tan (2022) have recently studied 

how to make focused adversarial attacks more transferable. The 

target class information was obtained by the authors through the 

use of labeled probability distributions and feature maps. Label-

wise information, which is often generated by the classification 

model's last layer, may depict the direct relationship between 

class labels and picture distribution. However, it has been 

established that learning solely from label-wise data leads to 

insufficient cross-model transferability since it keeps high-level 

semantic information from the original class (Papernot et al., 

2017). In addition, it has been demonstrated that because the 

mid-level layer of different DNNs has comparable activation 

patterns, feature-wise information that may be gathered from the 

classification model's intermediate layer has transferability 

(Xiao et al., 2018). Nevertheless, neither the intended label nor 

the predicted misclassification is produced by the feature-wise 

data.  

Nowadays, most adversarial transferability research focuses on 

training one or more replacement models to mimic the victim 

model's actions or execute tasks (Lin et al., 2022; Wang & He, 

2021). However, because of the limitations of the black box 

scenario, the attacker cannot access the victim model's structural 

properties or training data, which makes it very difficult to train 

equivalent replacement models (Agrawal et al., 2023). 

https://doi.org/10.47191/etj/v9i06.12
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Consequently, relying just on the transferability of models with 

the same purpose makes it difficult to attain a high success rate 

in adversarial attacks. 

To address the above-described issues, we propose a technique 

that eliminates the requirement to create task-specific 

replacement models by directly producing adversarial instances 

by extracting transferable characteristics from various tasks. In 

this regard, we demonstrate that adversarial transferability 

applies not just to tasks that are exact or equivalent, but also to 

models that have been trained on several tasks. Our idea is 

supported by a few findings. Adversarial word substitution rules 

provide various highly transferable candidate replacement 

phrases, for instance. By providing a wide variety of highly 

transferable adversarial instances, a bigger pool of candidate 

words can compensate for the drawbacks of earlier techniques 

that depended on greedy searches. Specifically, we use 

adversarial sample data from several tasks to train a sequence-

to-sequence generative model called CT-GAT (Cross-Task 

Generative Adversarial ATtack). Amazingly, we hypothesize 

that even without precise victim model knowledge, the 

adversarial sample that is created may nonetheless effectively 

attack test tasks. The transferability of adversarial assaults 

between different generative models is evaluated in this work. 

Furthermore, the article provides insight into how security 

vulnerabilities might generalize across various model 

architectures.  

 

2.  MODELS OF DIFFERENT NEURAL 

ARCHITECTURES 

2.1. Convolutional Neural Networks (CNNs)  

Convolutional layers are used by CNNs to extract spatial 

properties from input images through weight sharing (Li et al., 

2021). While ResNets and DenseNets employ skip connections 

to address the vanishing gradient and over-fitting problem, 

allowing deeper learning and more outstanding performance, 

InceptionV3 uses parallel convolutional filters to collect features 

of various sizes (O'Shea & Nash, 2015).  

2.2. Vision Transformers (ViTs) 

ViTs represent an image as a list of patches and employ self-

attention techniques to extract global features, unlike CNNs, 

which are limited by local features like convolution (Ranftl et 

al., 2021). Two well-liked ViT versions are data-efficient Image 

Transformers (DeiTs) and Vision Transformers with shifting 

windows (Fan et al., 2021). DeiTs achieve data efficiency by 

knowledge distillation, whereas Swin Transformers use a 

hierarchical network topology with moving windows to 

effectively acquire context information for large-scale image 

processing applications (Park & Kim, 2022). 

2.3. Spiking Neural Networks (SNNs) 

SNNs have attracted much attention recently because of their 

biologically inspired computing and energy efficiency (Ghosh-

Dastidar & Adeli, 2009). A feature of SNNs is the integration of 

time. Rather than continually communicating information at 

each propagation cycle, neurons in the SNN fire discrete spikes 

when the accumulated stimulation exceeds the threshold (Lobo 

et al., 2020). Three types of specific learning strategies are 

available to SNNs since spiking neurons are not differentiable: 

conversion-based training, supervised learning with surrogate 

gradients, and unsupervised learning (Ponulak & Kasinski, 

2011). The conversion-based training method maps pre-trained 

CNN parameters to an SNN and modifies the weights to improve 

performance.   

2.4. Dynamic Neural Networks (DyNNs) 

Unlike traditional static neural networks, which have a set 

topology and number of parameters, DyNNs may adapt their 

structure and behavior to the complexity of the task at hand, 

increasing processing efficiency and lowering costs. The DyNN 

evaluated in this paper was the Glance and Focus Network 

(GFNet), adapted from Han et al. (2021). The GFNet technique 

consists of two stages: look and focus. The process is sequential 

from start to finish. After Glance has processed the down-scaled 

images, those that exhibit distinct features may now be securely 

classified (Becerikli et al., 2003). If the prediction is not 

sufficiently trustworthy, the framework proceeds to the focus 

stage, which processes progressively smaller, class-

discriminative sections of the full-resolution picture (Jacques et 

al., 2011). During the focus stage, adaptive termination based on 

predicted confidence is feasible. 

 

3. ADVERSARIAL ATTACKS  

3.1. Instance-specific attacks 

Many recent studies have used gradient-based optimization 

approaches to produce the data-dependent perturbations (Zhang 

et al., 2022). To increase black-box transferability, MIM adds 

the momentum term to the iterative attack method (Gupta et al., 

2004). DIM and TI seek to enhance transferability through input 

or gradient variety (Hoang et al., 2017; Qin et al., 2022). By 

expensively training many auxiliary classifiers, recent research 

(e.g. Essich et al., 2023; Luo et al., 2023) also sought to enhance 

the black-box performance of the iterative approaches. On the 

other hand, we contend that, compared to instance-specific 

approaches, it is crucial to enhance the transferability 

performance and the inference-time efficiency in the black box.  

3.2. Instance-agnostic attacks 

Instance-agnostic attacks are a subset of image-independent 

(universal) approaches, as opposed to instance-specific attacks. 

The first pipeline is the discovery of a universal disturbance. 

Feng et al. (2023) claim that UAP proposes using a learned 

universal noise vector to fool a model. An additional attack 

technique generates adversarial samples using trained generative 

models. On the other hand, Li et al. (2022) state that GAP and 

AAA produce adversarial perturbations and compress 

perceptions by directly utilizing target data. Training the same 

number of models for several target classes using earlier 

approaches such as universal perturbation and function is costly 

(Wang et al., 2023). Our approach might potentially provide 
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adversarial samples with improved attack capabilities for several 

targets simultaneously.    

3.3. Multi-target attacks 

Instance-specific attacks are capable of identifying any target 

during the optimization phase. These methods involve laborious 

iterative procedures with little transferability (Zhang et al., 

2021). MAN creates a generative model in ImageNet with a ℓ2 

norm constraint to explore particular risks. This model defines 

all 1,000 categories from ImageNet to achieve exceptional 

performance and storage (Han et al., 2019). However, the 

authors also assert that having too many categories makes it 

more challenging to switch between models, and they do not 

provide a complete comparison between the multi-target black-

box performance of MAN and prior instance-specific or 

instance-agnostic assaults. To improve single-target 

transferability, more recent methods (Yao et al., 2023; Li et al., 

2023) create a universal perturbation or function; nonetheless, 

they necessitate several training sessions with various target 

specifications. On the other hand, our approach can develop 

adversarial samples for multiple target identification, and the 

solid semantic patterns it generates can significantly exceed 

current assaults.  

With a maximum perturbation of ϵ = 16, the targeted adversarial 

attacks for the target class Viaduct employing MIM and C-GSP 

are shown in Figure 1(a) (Yang et al., 2022). In a second black-

box model, predicted labels and probability are shown. The 

presentation in (b) provides an overview of our proposed 

generative technique, which consists of conditional generator 

and classifier modules. The generator creates a hidden 

incorporation by combining the conditional class vector and 

image from the Map network. Throughout the process, the 

generator is instructed to look inside the classifier's goal 

boundaries.  

 
Fig. 1. Targeted Adversarial Examples 

(Source: Yang et al., 2022) 

 

4. GENERATIVE MODELING FOR ADVERSARIAL 

EXAMPLES 

Generative modeling has been widely used in statistics. 

Numerous fields, such as data production tasks, audio 

identification, visual recognition, and natural language 

processing, have benefited from its application to machine 

learning (Kos et al., 2018). Among these generative modeling 

methods are Markov Random fields, Hidden Markov Models, 

Bayesian networks, Linear Discriminant Analysis (LDA), and 

Naive Bayes (Yang et al., 2022). With the development of Deep 

Learning, graphical models such as Sigmoid Belief Networks, 

Variational Autoencoders, Differentiable Generator Networks, 

Restricted Boltzmann Machines, and Boltzmann machines, as 

well as Deep Belief Networks, have become possible. Recently, 

there has been much interest in the generative model known as a 

Generative Adversarial Network, or GAN, because of its 

remarkable capacity to generate synthetic data (Luo et al., 2023). 

The process of generating synthetic data for GAN models is 

depicted in Figure 2. 

 
Fig. 2. Synthetic Data Generation Process in GANs 

(Source: Torres, 2018) 

 

A significant amount of labeled data is required for 

discriminative models or supervised learning algorithms to 

perform tasks such as generating new data examples, calculating 

the probability of an event, handling missing values using 

available unlabeled data, or inferring information from related 

activities. Relatively high precision is needed for these activities. 

Training the model becomes more challenging in sectors with 

less data, such as cyber security, because labeling data may be a 

time-consuming and expensive operation (Xiao et al., 2018). 

Unsupervised and semi-supervised learning approaches are 

more likely to be used in these circumstances (Huang et al., 

2017). However, few of them have reached the same level of 

precision as the supervised algorithms. The unsupervised 

algorithms have difficulties because of the enormous 

dimensionality of random variables. The exponential growth of 

dimensions exacerbates the computational and statistical 

challenges associated with finding a tractable solution to a 

problem and with generalizing the number of configurations. 

One technique to deal with the considerable dimensionality of 

intractable computations is to approximate or design in a way 

that removes the requirement for such computations. When 

generative modeling techniques are used, the latter design 

approach has demonstrated potential (Gao et al., 2022).    

Researchers have discovered advantages in using generative 

models to create adversarial instances. Whitebox and query-

based attacks, for example, are indicated as effective attack 

strategies (Xiao et al., 2018). Emerging threat models are also 
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studied using generative models, such as unconstrained 

adversarial instances and semantic adversarial examples (Li et 

al., 2020). Transferability is not enhanced, despite the strong 

correlation between adversarial patches and unconstrained 

adversarial instances (Mustafa et al., 2019). Even though Feng 

et al. (2023) assert that transferability has improved in their 

scenario, we demonstrate that it is not ideal in the patch 

situation1.  

 

5. PRODUCING ATTACK DATA WITH ADVERSARIAL 

EXAMPLES  

It is increasingly essential to examine vulnerabilities in these 

systems because of the remarkable efficacy of machine learning 

models and their extensive use in a variety of security-sensitive 

applications. According to Szegedy et al. (2013), hostile changes 

made to the input data frequently result in inaccurate classifier 

outputs. Because even cutting-edge models, such as deep neural 

networks, are highly vulnerable to adversarial attacks that, in the 

worst-case scenario, purposefully manipulate the input, the 

security and integrity of existing machine learning algorithms 

are jeopardized (Papernot et al., 2017). These adversaries are 

generated faster and have access to the target models' gradients 

than data impacted by random noise of even greater magnitude, 

which results in significantly higher assault success rates. 

Moreover, additional regularisation may be advantageous for 

machine learning models trained against adversaries of this 

nature (Agrawal et al., 2023).  

Although they are artificial, these adversarial scenarios highlight 

"blind spots" in machine learning models since it is improbable 

that the classifier will encounter these worst-case disruptive 

occurrences in real-world circumstances. As a result, it is 

challenging to get insightful knowledge about the basic decision-

making mechanisms within the black-box classifier. The 

rationale behind the adversary's decisions, what can be changed 

to stop this behavior, and whether the classifier can tolerate 

random fluctuations in the data when it is not functioning in an 

adversarial environment are a few examples of these processes. 

Additionally, the understandable semantic space and the input 

space frequently diverge. According to Papernot et al. (2017), 

little adjustments made to the input that would not seem 

important, such as a little visual translation or rotation, can often 

have a significant impact on the input example. According to 

Goodfellow et al. (2014), light changes can trick automated 

driving systems, even when they are moderate in size. 

Adversarial situations are unable to identify this characteristic. 

The main problem involves predicting the intended distribution, 

which may be challenging and time-consuming. Agrawal et al. 

(2023) have presented the generative adversarial network 

framework as a potential solution. Motivated by concepts from 

game theory, they trained two models: the discriminator G, 

which creates data from input by following a source distribution 

in an attempt to trick the discriminator, and the generator D, 

which determines the extent to which generated data differs from 

natural data (Szegedy et al., 2013). Images may be effectively 

produced using the generator. Although sound is produced, the 

training process is not steady. To enhance learning strategy 

stability and address issues such as mode collapse, Zhao et al. 

(2017) introduced the WGAN method, which modifies the 

training strategy and adopts new distances. 

The adversary can overcome ignorance in black box attacks by 

training a local replacement DNN using a fake dataset. The 

outputs are the labels that the Oracle or remote DNN assigned 

when the adversary queried the DNN with their artificial inputs; 

in contrast, the adversary produced the artificial inputs. The 

adversary constructs adversarial situations that lead to an 

inaccurate classification of the replacement model, and similar 

decision limits are employed in its creation. These same hostile 

samples might subsequently be used to misclassify the target 

DNN. Two models, MalGAN (Hu & Tan, 2022) and IDSGAN 

(Lin et al., 2022), were proposed to employ GANs to generate 

synthetic adversarial attacks to test the detection system. We also 

explore the creation and evaluation of these models' capacity to 

provide realistic adversarial attack scenarios inside this 

framework. 

 

6. INCREASING ATTACK TRANSFERABILITY 

One intriguing aspect of adversarial attacks is their 

transferability. Instead of using a single surrogate network, an 

ensemble-based attack uses many of them (Wang & He, 2021). 

Ghost networks generate different surrogate networks by 

interfering with dropout layers and skip connections (Li et al., 

2020). VT provides gradient variance in the management of the 

stability of the localized gradients, while MI and other optimal 

approaches apply a momentum-based optimization (Hoang et 

al., 2017; Lee et al., 2012). Adversarial situations produced by 

RAP are situated in an area of flat loss (Qin et al., 2022). While 

image-altering techniques such as scaling and padding are used 

by data augmentation methods like DI, the TI considers picture-

pixel translation (Xiao et al., 2018; Zou et al., 2022). The SI uses 

several scaled benign samples to compute gradients (Gao et al., 

2022). Admix blends the benign pictures with randomly selected 

images to produce iterative gradients (Zou et al., 2020). 

Adversarial attacks are related to various network architectures 

and features in different ways. While Chakraborty et al. (2018) 

demonstrate that LinBP omits the nonlinear activation during 

propagation, Guo et al. (2018) suggest that adversarial 

vulnerability might arise from DNN linearity. Skip connections 

are used by SGM in residual networks to employ higher 

gradients (Mustafa et al., 2019). It is possible to maximize the 

distance in feature spaces between natural images and their 

adversarial examples (Yuan et al., 2019), use ILA to improve 

adversarial examples presently in the intermediate layer level 

(Zhang & Li, 2019), or train auxiliary classifiers based on feature 

spaces (Silva & Najafirad, 2020).  

 

7. CONCLUSION  

DNNs have demonstrated incredible potential across several 

domains. It has been demonstrated that DNNs may significantly 
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be influenced by adversarial instances that are created by 

introducing small perturbations to otherwise perfect images. 

Two broad categories of attacks have been specifically studied. 

Since the first one requires iterative methods to optimize the 

perturbation for each occurrence, it is frequently 

computationally expensive. Generative methods are employed in 

the latter case to train a deep network to produce perturbations. 

In this paper, we have demonstrated that a feature separation 

loss-trained generator can successfully fool models across 

architectures and workloads and that an effective perturbation 

may be learned using a proxy dataset from a different domain. 

Our results demonstrate that our technique beats cutting-edge 

attacks across various configurations and workloads. Due to a 

shortage of publicly accessible robust models across 

architectures, we limited our trials to undefended models; 

however, we will study this further in future work. In addition, 

we believe that a more in-depth investigation of learned filter 

banks in connection to architectural changes might provide 

insight into how to develop better black-box models. 

Understanding the capabilities of adversary assaults is critical 

for future security development. Adversarial scenarios have 

significant real-world applications in safety-critical fields like 

biometrics and autonomous driving. This paper reveals the 

current networks' susceptibility to hostile assaults, even under 

the worst black-box conditions, with far-reaching societal 

consequences. We desire that this research will inspire other 

people to investigate the inner workings of neural networks 

when facing adversarial attacks and to apply this understanding 

to create strong defenses. 
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