
Engineering and Technology Journal e-ISSN: 2456-3358

Volume 09 Issue 06 June-2024, Page No.- 4276-4280

DOI: 10.47191/etj/v9i06.14, I.F. – 8.227

© 2024, ETJ

4276 Arjun Sudhanva Naik, ETJ Volume 9 Issue 6 June 2024

Abstracting the Architecture Design System to Create New Applications

Arjun Sudhanva Naik

Tech Lead, Commercial Advantage First Citizens Bank Virginia, USA

ABSTRACT: In software engineering, application design and architecture play an important function of their improvement,

maintenance and scalability. This paper explores the idea of abstracting architectural design approaches to facilitate the advent of

latest packages. By decoupling structure from unique application contexts, builders have the ability to test new technologies, adapt

to evolving wishes, and scale their programs. Finally, this paper recommends to adopt abstract architecture design systems as a

method for software improvement. By offering a based framework for constructing new packages, the abstraction of architectural

design structures empowers developers to innovate, iterate and optimize in a dynamic business surroundings, and truly fosters a

tradition of continuous improvement and excellence in the application development exercise.

KEYWORDS: architecture design, end to end architecture, development practice, evolving needs, scaling, abstract architecture

design systems, software engineering, scalability, new technology, architecture optimization

I. INTRODUCTION

In the ever-evolving landscape of software engineering, the

design and structure of applications stand as foundational pillars

that underpin their fulfillment, durability, and adaptability. As

technology continues to improve and consumer expectations

evolve, developers face the perennial mission of making

programs that are not only functional but also efficient, flexible

and scalable to fulfill changing demands. In reaction to this

venture, the concept of abstracting structure design structures

has emerged as a effective paradigm for steering the

improvement of latest applications.

This advent sets the level for a comprehensive exploration of

abstracting structure design systems and its implications for

modern-day software program development. We embark on an

adventure to elucidate the standards, methodologies, and

advantages of abstracting architecture design structures,

dropping light on how this approach can empower builders to

create modern, resilient, and maintainable applications.

The creation of abstracting structure layout structures

represents a paradigm shift in software engineering,

emphasizing the significance of modularity, reusability, and

abstraction within the layout system. By encapsulating not

unusual architectural styles, design concepts, and satisfactory

practices into reusable frameworks, builders can streamline the

improvement method, lessen redundancy, and foster a

subculture of code reusability.

Moreover, abstracting structure design structures offer a

pathway to agility and innovation in application development.

By decoupling architecture layout from precise implementation

information, builders advantage the flexibility to test with new

technology, adapt to evolving necessities, and iterate on their

designs with extra ease.

 In this paper, we delve into the multifaceted dimensions of

abstracting structure layout systems, exploring its theoretical

underpinnings, practical programs, and real-global

implications. Abstracting the design procedure will help

offer a comprehensive expertise of this paradigm and its ability

to revolutionize software program development practices.

II. THE BLACK BOX SOLUTION

Black Box is a term that is used to point towards a conceptual

model that will abstract the underlying components. Without

entering into the details, we can analyze the model to derive a

simple solution for visual understanding. The actual term ‘black

box’ originates from the idea of a container where the user can

only observe the inputs and outputs of the system without being

able to see or understand what lies underneath. From the user's

perspective, the system behaves like a ‘black box’ whose

internal workings are opaque or invisible.

In software development, black box approaches are often

used to encapsulate complexity, improve modularity, and

promote abstraction. By hiding implementation details,

developers can create components or systems that are easier to

understand, maintain, and integrate into larger software

architectures. Additionally, black box approaches can enhance

security by limiting access to sensitive information or

functionality.

Using this concept of black box, we have created an abstract

model that be followed to easily solve complex questions. The

dotted boxes indicate optional elements that can be added or

removed as per use case. The main elements are indicated by

https://doi.org/10.47191/etj/v9i06.14

“Abstracting the Architecture Design System to Create New Applications”

4277 Arjun Sudhanva Naik, ETJ Volume 9 Issue 6 June 2024

solid lines and need to be considered for solutions from start as

they are key pieces on the board. The optional boxes useful in

some cases and can be omitted in some cases. A good architect

will determine when to use them and when to skip them.

The diagram below should be a good starting point for all

architects envisioning a solution for a complex application build.

Of course, there are more elements that can be added and this

diagram is not your one stop solution for all problems but it gives

you the starting point from which you can begin the process of

creating a diagram to present an overarching structure.

This method will help developers ace any interview design

problems put forth as well as help them understand a general

solutioning method. Using this a developer can orchestrate an

explanation to further invoke a series of thoughts to generate an

answer to the problem put forth.

Figure 1: A black box representation of a basic

architecture diagram

III. INDIVIDUAL COMPONENTS

Here we begin to deep dive into individual components

shown in Figure 1.

A. User

A user or end user is the recipient of the application. This can

be an individual or an institution. The box denotes the end client.

This can be on any devices- mobile, computer, tablet or even

embedded point of sale device. This can vary as per the

requirement and the developer has to understand exactly what

the user base needs and use this box accordingly. Sometimes

multiple types of devices can be used by the end user to access

the application and this must be evaluated during the design

phase.

B. Load Balancer

A load balancer is a crucial element in distributed computing

structures, performing as the role of a site visitors manager that

efficiently distributes incoming network traffic throughout

multiple servers or assets. Its number one feature is to optimize

aid usage, improve responsiveness, and make sure high

availability and reliability of packages and offerings. By

distributing incoming requests equally, load balancers prevent

any single server from becoming overwhelmed, thereby

enhancing device performance and scalability. Load balancers

can utilize numerous algorithms to determine how to distribute

traffic, inclusive of round-robin, least connections, or weighted

distribution based on server capacity. Additionally, load

balancers often incorporate health tests to display the utilization

of servers and dynamically alter traffic routing to avoid sending

requests to bad or overloaded servers. In essence, load balancers

play an important function in optimizing the performance,

reliability, and scalability of current disbursed systems.

As a load balancer stands between incoming traffic

redistributing the load, it can be divided into various types

depending upon the requirements. Use cases will determine what

time of a load balancer is needed- hardware or software load

balancers, layer 4 (transport layer) or layer 7 (application layer)

or DNS load balancer and so on. This also varies if you have an

on-premise solution or a cloud solution, creating various options.

With a black box representation, we can state its presence adding

to the dynamic elements of the ever-growing architecture

designs.

C. Web Server

A web server is a software application or a hardware device

that serves content to users over the World Wide Web or as we

fondly know it , the Internet. It receives requests from

clients/user(as indicated in the black box) and delivers web

pages, files, or related content in response. Web servers may be

deployed on various operating systems, consisting of Linux,

Windows, and macOS. Popular web server software program

includes Apache HTTP Server, Nginx, Microsoft Internet

Information Services (IIS), and LiteSpeed. Web servers make up

for the foundation of the internet infrastructure, permitting the

shipping of web content and the website hosting of web sites,

internet programs, and other online offerings. They play an

important function in facilitating conversation between client

and servers and making sure the supply and accessibility of

internet assets.

As we abstract the Web server as a black box, we can use the

various options available to us to ensure that this aspect of the

architecture is well thought of. The webserver can be a full-

fledged server or can be a replaced by a serverless computing

service for smaller applications.

D. Services

As seen in Figure 1, the webserver is connected to various

services that help it to transfer data to the client. These services

are nothing but internal components built for specific tasks.

These are written in isolation to the main backend service to

ensure that data can be synchronously or asynchronously worked

on without overloading the server with a lot of threads. These

services will take in inputs or triggers and render output that will

be routed back to the client.

Services are usually defined with a request response system

and have underlying authentication to ensure that the access is

“Abstracting the Architecture Design System to Create New Applications”

4278 Arjun Sudhanva Naik, ETJ Volume 9 Issue 6 June 2024

limited and authorized. They enable modularity and scalability

in the system. Data exchange and performance is optimized with

the help of services. These services will vary with the industry

but are an important part of the structure and need to be always

considered while architecting a solution.

E. Database

Selecting the right database is an essential choice which can

extensively impact its performance, scalability, and upkeep.

Several factors ought to be considered when making this choice.

Firstly, the characteristics of the records itself plays an essential

position. A few questions need to be answered - Is the data

structured or unstructured? Is it relational or non-relational?

Understanding the data model requirements is important in

figuring out whether a SQL (relational) or NoSQL (non-

relational) database suits the overall needs.

Scalability is a pivotal element to decide the technology for

the database selection. One important question is whether the

database needs to handle a huge set of data or an excessive

variety of concurrent customers? Scalability necessities can

range significantly depending on elements like projected growth,

peak utilization instances, and geographical distribution of users.

NoSQL databases like MongoDB or Cassandra are frequently

desired for horizontal scalability, while conventional SQL

databases like MySQL or PostgreSQL may additionally require

more complex scaling techniques.

Moreover, the ecosystem surrounding the database must not

be well thought of. One must consider elements like support

from the user community, availability of third-party tools and

their integrations, in addition to risks associated with vendor

lock-in. Open-source databases frequently offer a great

community support and a big selection of resources, while

proprietary solutions may additionally provide extra

comprehensive aid alternatives however come with licensing

expenses. Ultimately, the process to select a database must

contain thorough evaluation and consideration of these elements

to make sure the selected answer aligns with the project needs

and overall future goals.

F. Messaging Queue(Optional)

Messaging queues play a pivotal role in present day

software program architectures, facilitating asynchronous

conversation between distinctive components or services within

a system. They act as intermediaries that decouple producers of

messages from clients, allowing more efficient and scalable

communication patterns. One of the primary positives of

messaging queues is their capacity to deal with bursts of traffic

and clean out load spikes by storing messages temporarily until

they can be processed. This asynchronous nature complements

resilience and fault tolerance, as it allows components to

perform independently without having to wait for instant

responses from other elements of the system.

Messaging queues are utilized in various events across

various domains, together with distributed systems,

microservices architectures, and event-driven packages. They

permit free coupling between components, making it simpler to

add new functionalities or scale existing ones without

disrupting the system overall. Additionally, messaging queues

facilitate dependable message delivery through features like

acknowledgments, retries, and dead-letter queues, making sure

that messages are processed reliably even within the face of

network failures or other network issues. Popular messaging

queue systems encompass Apache Kafka, RabbitMQ, Amazon

SQS, and Redis Pub/Sub, each offering unique capabilities and

alternate-offs suitable for different use instances. In essence,

messaging queues are crucial building blocks for growing

resilient, scalable, and loosely coupled systems which can

effectively cope with the complexities of modern-day software

program improvement. They will not be utilized in all

applications and hence are classified as optional in our abstract

model.

G. Read Replicas(Optional)

Read replicas play an essential position in improving

performance, scalability, and fault tolerance. These replicas are

copies of a primary database or service which can be

synchronized in close to actual-time, allowing for access control

to data without affecting the primary system's performance. By

distributing read requests throughout multiple replicas, systems

can manage higher loads whilst decreasing latency for users.

This is mainly beneficial in packages with heavy read traffic,

which includes e-commerce platforms, social media networks,

and content delivery networks.

Moreover, read replicas contribute to fault tolerance and

disaster recovery strategies. In the event of a failure or outage

within the primary system, read replicas can seamlessly take

over read operations, making sure non-stop availability of data

to users. Additionally, read replicas can serve as backups,

permitting quick recovery and minimizing data loss. Through

load balancing and redundancy, read replicas in computer

architecture provide scalability, performance optimization, and

robustness, essential for modern-day distributed structures

working in dynamic and stressful environments.

H. External APIs(Optional)

External APIs (Application Programming Interfaces)

function as gateways that permit applications to communicate

and interact with external services, systems, or platforms.

External APIs may not be a requirement for all applications but

it is a god to know component. External APIs can be integrated

with your application based on a need to basis. As the world is

growing with open access applications, we can see that the

integration of external APIs is increasing. With the added

advantage of reducing the stress on your backend, external APIs

give us the option to add more data that can be pulled in as

necessary.

External APIs expose unique functionalities, facts, or offerings,

enabling developers to integrate them seamlessly into their

applications without needing to apprehend the underlying

“Abstracting the Architecture Design System to Create New Applications”

4279 Arjun Sudhanva Naik, ETJ Volume 9 Issue 6 June 2024

complexities. External APIs empower developers to extend the

abilities of their software, get right of entry to valuable sources

along with payment gateways, mapping offerings, social media

platforms, or records analytics tools, and create revolutionary

answers via leveraging the capability provided by means of

third party providers. With the proliferation of cloud computing

and microservices structure, they have now become essential

additives of modern day application development, facilitating

interoperability, scalability, and agility in building sturdy and

feature-rich applications.

I. Caching System(Optional)

Caching structures are essential components of

contemporary computing infrastructure, designed to improve

the efficiency and performance of software applications by way

of quickly storing regularly accessed records or computations.

By storing copies of records in a cache, commonly closer to the

application or end user, caching systems lessen the need to fetch

records from slower, far off information sources consisting of

databases or web servers. This drastically reduces latency and

improves reaction instances, leading to a smoother and greater

responsive time. Caching structures are available in numerous

forms, which include in-memory caches like Redis or

Memcached, Content Delivery Networks (CDNs), and browser

caches. These structures utilize state-of-the-art algorithms and

cache eviction guidelines to manipulate memory correctly and

make sure that the most applicable and frequently accessed data

stays readily accessible. As a result, caching systems play a

crucial role in optimizing overall performance, scalability, and

reliability in dispensed computing environments, powering

some of the applications and offerings we have interaction with

daily on the internet.

J. BI Tools(Optional)

Business Intelligence (BI) tools are essential software

solutions that permit agencies to analyze, visualize, and

interpret information to make informed business selections.

They offer a complete suite of functionalities for statistics

extraction, transformation, and loading (ETL), statistics

warehousing, information modeling, and reporting. BI tools

empower customers to advantage insights into numerous factors

in their enterprise operations, along with sales traits, customer

behavior, market analysis, and financial performance, through

interactive dashboards, charts, graphs, and reviews. By

centralizing information from disparate assets and providing it

in a user-friendly layout, BI gear facilitate data driven, decision-

making, streamline operational procedures, perceive

possibilities for evolution, and optimize resource allocation.

Leading BI equipment like Tableau, Power BI, and Qlik provide

advanced capabilities which includes predictive analytics,

system studying integration, and natural language processing

(NLP), making them quintessential assets for groups in search

of to harness the full capability in their information assets in

today's competitive panorama.

IV. PAINTING A PICTURE

Overall, all the components that have been laid out will

contribute towards a full-fledged architecture diagram with

modifications. The black box solution mentioned is a starting

off point but will be applicable to most applications as we build

or design a system. The black box solution mentioned above

can be altered as necessary and will provide a solution that can

fit most cases. To give an example, if we are designing a social

media platform like twitter, we can use our black box design

with all the components mentioned. The end user can be on

various devices like a laptop, mobile device or a tablet. It will

connect to the backend via load balancer to ensure that the

incoming traffic is well dispersed and the users can access the

application without any delays. A messaging queue like Apache

Kakfa will be required to connect to various services that are

created for specific needs- these can be advertising services,

news feed services, announcement services and various other

services. The database can be chosen as per the need of the

application and we would choose a NoSQL database as we need

highly available data. I this case we will choose MongoDB as a

starter database. We can design this system with various read

replicas to ensure that data is highly available. A caching system

like Redis cache can be introduced for data that is frequently

accessed and does not have a lot of modification to enhance the

user’s experience. Data Warehousing connected to external BI

tools help business analyze the data and better the consumer’s

overall experience. Incoming API’s can be used to ingest data

like news feed and from other existing applications. Integrating

with other applications can help users push content without

having to access the application.

Overall, using the black box solution as a cheat sheet,

a very initial architecture diagram can be created to help build

a more detailed architecture by diving in further. An initial

diagram would look as follows

Figure 2: An architecture of twitter like social media

platform derived from the black box architecture diagram.

V. CONCLUSION

The abstract model can be a starter system for various

solutions. In conclusion, this research paper has delved into the

“Abstracting the Architecture Design System to Create New Applications”

4280 Arjun Sudhanva Naik, ETJ Volume 9 Issue 6 June 2024

critical function of abstracting architectural design structures

within the creation of new applications within the realm of

software engineering. Throughout the paper, we have explored

the significance of decoupling structure from precise software

contexts, permitting developers the flexibility to innovate, adapt

to evolving needs, and scale their applications correctly.

By adopting abstract architecture design techniques,

developers are empowered to discover new technology,

streamline development tactics, and optimize their packages for

more advantageous performance and scalability. The structured

framework furnished by using summary structure layout systems

fosters a tradition of continuous development and excellence in

software program improvement practices.

The paper has highlighted the advantages of abstract

architecture layout structures, along with extended agility,

decreased time-to-marketplace, and progressed maintainability.

Moreover, by using presenting a basis for innovation and new

release, abstract architecture design structures enable developers

to navigate dynamic commercial enterprise environments with

self-assurance and efficiency.

As we look to the future, the importance of abstracting

architecture design systems will continue to grow. As

technology advances and user demands evolve, developers

should continue to be adaptable and aware of innovation in

technology. Abstract structure layout systems provide a strategic

technique to software program development, ensuring that

packages are built on a strong foundation that can face up to the

take a look at of time. In conclusion, abstracting architecture

design systems represents a key strategy for creating new

applications that are both resilient and scalable.

In conclusion, abstracting architecture design systems

represents a key strategy for creating new applications that are

both resilient and scalable. By embracing the principles outlined

in this paper, developers can position themselves for success in

an increasingly competitive and fast-paced digital landscape

REFERENCES

1. Bass, L., Clements, P., & Kazman, R. (1997). Software

Architecture in practice.

https://www.researchgate.net/profile/Rick_Kazman/p

ublication/224001127_Software_Architecture_In_Pra

ctice/links/02bfe510fef5da3230000000.pdf)

2. Naik, A. (2024). The Front-End Dilemma: How to

Choose the Perfect Technology for your

Application. Journal of Computer Science and

Technology Studies, 6(1), 211–216.

https://doi.org/10.32996/jcsts.2024.6.1.24

3. Cockburn, A. (2001). Agile software development.

http://java.cz/dwn/1003/5386_AgileSoftwareDevelop

ment.pdf.

4. Hofmeister, C., Nord, R., & Soni, D. (2009). Applied

software architecture (p. 397).

https://dl.acm.org/citation.cfm?id=1611482

5.

http://java.cz/dwn/1003/5386_AgileSoftwareDevelopment.pdf
http://java.cz/dwn/1003/5386_AgileSoftwareDevelopment.pdf

