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ABSTRACT: The anharmonic X-ray absorption fine structure Debye-Waller factor of Nickel has been analyzed under the 

influence of thermal disorders. This Debye-Waller factor was calculated in explicit forms using the anharmonic correlated Debye 

model that developed from the correlated Debye model based on an anharmonic effective potential and the many-body 

perturbation approach. The thermodynamic parameters are derived from the influences on the absorbing and backscattering atoms 

caused by all their nearest neighbors in the crystal lattice with thermal vibrations. The numerical results of the Nickel in the 

temperature range from 0 to 800 K agree well with those obtained by the other theoretical models and experiments.  
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I. INTRODUCTION 

      In recent years, the X-ray absorption fine structure 

(XAFS) has been widely used to determine many 

thermodynamic properties and structural parameters of 

materials, so it has been developed into a powerful 

technique [1]. However, thermal vibration disorders lead to 

the anharmonic effect of XAFS oscillation and will smear 

out the XAFS signals [2], as seen in Figure 1. 

 

Figure 1. The XAFS signal  k k of Ni at 300 K 

obtained from the experimental data [3]. 

 

In the investigation of the anharmonic XAFS signal, the 

anharmonic XAFS Debye-Waller (DW) factor  W ,T k  

[4] is an important parameter because it can describe the 

anharmonic XAFS amplitude reduction. It is usually defined 

in the following form [5]: 

                                                  

   2 2W , exp 2T k k   ,                                                      

(1) 

where 
2  is the mean-square relative displacement 

(MSRD) and is the second XAFS cumulant. 

      Nowadays, Nickel (Ni) plays an important role in our 

daily lives, and Nickel-containing products possess better 

corrosion resistance, greater toughness, more strength at 

high and low temperatures, and a range of special magnetic 

and electronic properties [6]. Meanwhile, the experiment 

measured the second XAFS cumulants of Ni at the 

Synchrotron Radiation Siberian Center (SRSC), Russia, by 

Pirog et al. [3]. 

       Recently, an anharmonic correlated Debye (ACD) 

model has been applied to effectively treat the anharmonic 

XAFS oscillation of metals [7]. The advantage of this model 

is that it can take into account the phonon-dispersion effect 

and acoustic phonon branch for crystals in both the low-

temperature (L.T.T) and high-temperature (H.T.T) regions 

[8]. Still, it has not yet been used to analyze the anharmonic 

XAFS DW factor of Ni. Hence, the analysis and calculation 

of the anharmonic XAFS DW factor of Ni using the ACD 

model will be a necessary addition to experimental data 

analysis in the advanced XAFS technique.  

 

II. FORMALISM AND CALCULATION MODEL 

      Usually, the Morse potential can validly determine the 

pair interaction (PI) potential of the crystals [9, 10]. If this 

potential is expanded up to the three orders around its 

minimum position, it can be written as 

                        

 2 2 2 3 3 4 4

0

7
( ) e 2 ,

12

x xx D e D D x D x D x x r r             

,             (2) 

where D is the dissociation energy,   is the width of the 

potential, x  is the deviation distance between the 

backscattering and absorbing atoms, and r  and 
0r  are the 
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instantaneous and equilibrium bond length between atoms, 

respectively. 

      To determine the thermodynamic parameters of a 

system, it is necessary to specify its anharmonic effective 

(AE) potential and force constants [11]. The AE potential in 

the relative vibrations of backscattering (A) and absorbing 

(B) atoms [12] can be calculated from the PI potential:                         

 
, ,

ˆ ˆ( ) , ,eff i AB ij i

i A B j A B i

V V x V xR R
M


 

 

                                          

(3) 

where  /A B A BM M M M    is the reduced mass of 

the backscatter with masse MA and absorber with masse MB, 

sum i is the over backscatter ( i A ) and absorber ( i B ), 

the sum j is over the nearest neighbors, R̂  is a unit vector, 

( )V x  is a PI potential of these atoms,  ˆ ˆ
i AB ijV xR R  

express the contribution of nearest-neighbor atoms to 

( )V x . 

 
Figure 2. The structural model of Ni. 

 

      The structural model of Ni is illustrated in Figure 2. This 

structure has similar atoms at one center and eight corners of 

a cube [13], so each atom has a mass of m, and each unit cell 

contains two atoms [14]. After using structural 

characteristics, the AE potential of Ni is calculated from Eq. 

(3) and is written as 

                                 

 ( ) ( ) 4 0 2 8 8
2 4 4

eff

x x x
V x x    

     
           

     
,                          (4) 

      The result of A.E.E potential can be obtained from Eq. 

(4) using Morse potential in Eq. (2). If ignoring the overall 

constant, it is presented in the form: 

                                                  

2 3 3

3 4

1
( )

2
eff eff an anV x k x k x k x   ,                                           

(5) 

where keff is the effective force constant, and kan3 and kan4 is 

an anharmonic force constants [11], which are not the 

temperature-dependent and are written as 

                                             

2 3 4

3 3

5 133
5 , ,

4 192
eff an ank D k D k D     ,                             

(6) 

      The ACD model is derived from the dualism of an 

elementary particle in quantum theory and is perfected 

based on the correlated Debye model using the AE potential 

and many-body perturbation approach [7]. In this model, 

each atomic thermal vibration in the crystal lattice can be 

quantized and treated as a phonon that has a frequency 

 q  and is described via the dispersion relation. And 

these vibrations can be characterized by the correlated 

Einstein temperature 
D  and frequency 

D  [8]. These 

parameters can be defined as follows: 

                                     

5 2 5
,2 2 ,

eff E
E

B B

D

D

k m

D

m k

k

m
 

 
                               

(7) 

                                                               

  sin ,
2

D

qa
q q

a


 

 
  

 
  ,                                

(8)                        

where q is the phonon wavenumber in the first Brillouin 

(FB) zone, a is the lattice constant, and  and kB are the 

reduced Planck and Boltzmann constants, respectively. 

      Usually, the second XAFS cumulant can be presented in 

terms of the power moments of the real radial pair 

distribution (RPD) function [15]. The general expressions of 

the temperature-dependent XAFS cumulants in the ACD 

model were calculated by Hung et al. [7]. Substituting the 

expressions of local force constants effk and 
ank in Eq. (6) 

into this general expression, and after converting from 

variable q  to variable p  in the formula / 2p qa , we 

obtain the temperature-dependent second XAFS cumulant in 

the form as 

                              

   
  
  

/2

2 2

0

2
1 exp

1 x5 e p

B

B

T p dp
p k T

x
TD

x
p k



 
 





 


 
  

,                     (9) 

      Substituting this cumulant into Eq. (1) to calculate the 

temperature-dependent XAFS DW factor of Ni, we obtain 

the following result: 

                                      

   
  
  

/22

0

1 exp
W e

2
, xp

1 xp5 e

B

B

p k T
T k

p

k
p dp

kD T

 

  


   
  

  






,                     (10) 

      Using the approximations 

  exp 0,Bp k T  , we calculate the XAFS DW 
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factor of Ni in the L.T.T limit ( 0T  ) from Eq. (10). The 

obtained result is 

                                                 

 
24

W , exp
5

k
k T

Dm

 
  

 
,                                               

(11) 

      Using the approximation 

    exp 1 ,B Bp k T p k T    , we calculate 

the XAFS DW factor of Ni in the high-temperature (H.T.T) 

limit ( T  +) from Eq. (10). The obtained result is 

                                                  

 
2

2

2
W , exp

5

Bk k T
T k

D

 
  

 
 ,                                                 

(12) 

      Thus, the ACD model has been extended to efficiently 

calculate the XAFS DF factor of Ni in the temperature-

dependent. The obtained temperature-dependent expressions 

using this model can satisfy all their fundamental properties. 

 

III. RESULTS AND DISCUSSION 

      In this section, we use the atomic mass 58.6934m   

u [16] and Morse potential parameters 0.4205D   eV 

and 1.4199   Å-1, and 0 2.780r   Å [9]  in 

calculations. Using Eqs. (6) and (7), we calculate and obtain 

the local force constants 4.2effk  eVÅ-2, 
3 1.5ank  

eVÅ-3, 4 1.2ank  eVÅ-4, the correlated Debye temperature 

284.3D  K, and the correlated Debye frequency 

133.7 10D  Hz. Meanwhile, the obtained values from 

the experiment are 3.9 0.5effk   eVÅ-2, 
3 1.6 0.5ank   

eVÅ-3, 
4 1.7 0.9ank   eVÅ-4, 

133.6 0.2 10D   Hz, and 

273.9 17.1D   K [3]. It can be seen that our results 

agree with the experimental values, especially for the 

correlated Debye temperature and frequency.  

 
Figure 3. The position-dependent AE potential of Ni 

obtained from the ACD model and experiment. 

 

      The position dependence of the AE potential of Ni in the 

position range from - 0.3 to 0.3Å is illustrated in Figure 3. 

Our obtained result using the ACD model is calculated using 

Eqs. (6) and (7), while the experimental result is obtained 

from Eq. (6) with the experimental values of local force 

constants [3]. It can be seen that our result agrees better with 

those obtained from the experimental data [3], especially 

near the equilibrium position (x = 0). Moreover, the further 

away from the equilibrium position, the anharmonic effect 

has a stronger influence on the AE potential, as seen in 

Figure 3. In addition, our obtained result using the ACD 

model is similar to those obtained with the quantum-

correlated Einstein (QACE) [17] and classic-correlated 

Einstein (CACE) [18] models because all three models use 

the same AE potential. 

 
Figure 4. Temperature-dependent second cumulant of 

Ni obtained using the ACD, CACE, and QACE models 

and experiment. 
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      The temperature dependence of the second XAFS 

cumulant 
2 ( )T  of Ni in a range from 0 to 800 K is 

illustrated in Figure 4. Our obtained result using the ACD 

model is calculated by Eq. (9). It can be seen that our results 

are in agreement with those obtained using the QACE [17] 

and CACE (only at high temperatures) [18] models and 

experiment [3]. For example, the obtained results using the 

ACD model, QACE model, CACE model, and experiments 

at T  293 K        are 

2 36.4 10  Å2,
2 36.5 10  Å2 [17], 

2 36.0 10  Å2 [18], and 
2 36.8 10  Å2 [3],    

respectively. Moreover, it can be seen that the ACD and 

QACE [17] models both show quantum effect contributions, 

but the obtained results using the QACE model [17] in the 

LT region are slightly greater. Meanwhile, the obtained 

result using the CACE model [18] reaches zero as the 

temperature reaches zero, so this model is unsuitable in the 

LT region. It is because this model only uses the classical 

statistical theory, so it cannot calculate quantum effects, as 

seen in Figure 4. 

 
Figure 5. Wavenumber-dependent XAFS DW factor 

of Ni in the temperature change obtained using the ACD, 

QACE, and CACE models and experiment. 

 

      The wavenumber dependence of the anharmonic XAFS 

DW factor of Ni at 355 K, 512 K, and 633 K and in a range 

from 0 to 20 Å is illustrated in Figure 5. Herein, the 

obtained results using the QACE and CACE model are 

calculated by Eq. (1) with the temperature-dependent second 

XAFS cumulant determined in Refs. 17 and 18, 

respectively. The obtained results using the experiment are 

calculated by Eq. (1) with the experimental second XAFS 

cumulant [3], while our obtained results using the ACD 

model are calculated by Eq. (10). It can be seen that our 

results agree with those obtained using the QACE [17] and 

CACE [18] models and experiment [3], especially in 

comparison with the obtained results using the QACE 

model. For example, the obtained results using the ACD 

model, QACE model, CACE model, and experiments at 

T  633 K and k = 15 Å are W 6.6 , W 6.7  [17], 

W 6.5  [18],  and W 7.1 Å2 [3],  respectively. 

Moreover, the values of the XAFS DW factor decrease with 

fast-increasing wavenumber k  and increasing temperature 

T. It is because the XAFS DW factor is an inverse function 

of the wavenumber k and second XAFS cumulant, in which 

this cumulant increases with increasing temperature T, as 

seen in Eq. (2) and Figure 4. 

 

IV. CONCLUSION 

      In this work, we have expanded a calculation model to 

effectively analyze the anharmonic XAFS DW factor of Ni. 

The calculated expressions using the present ACD model 

satisfied all of their fundamental properties in the 

temperature-dependent. The anharmonic XAFS DW factor 

decreases with increasing temperature T, so the anharmonic 

XAFS amplitude decreases more intensely at higher 

temperatures. It is because the anharmonic XAFS amplitude 

is proportional to the anharmonic XAFS DW factor. This 

thermodynamic property shows that the higher the 

temperature, the stronger the X-ray absorption of the 

materials. These results can also describe the influence of 

anharmonic effects at high temperatures and the influence of 

quantum effects at low temperatures on the XAFS 

oscillation. 

      Our numerical results of Ni agree with those obtained 

using the QACE and CACE models and experiments at 

various temperatures. This agreement shows the 

effectiveness of the present model in investigating the 

anharmonic XAFS DW factor. This model can be applied to 

calculate and analyze the anharmonic XAFS DW factor of 

other metals from above 0 K to before the melting 

temperature. 
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